Using GPUs to Accelerate the Solution of Large-Scale Model Reduction Problems

Peter Benner1 Pablo Ezzatti2 Francisco Igual3 Daniel Kressner4 Enrique S. Quintana-Ortí3 Alfredo Remón3

1Fakultät für Mathematik, Chemnitz University of Technology, Chemnitz (Germany)
2Centro de Cálculo–Instituto de la Computación, Universidad de la República, Montevideo (Uruguay)
3Seminar für angewandte Mathematik, ETH Zürich, Zurich (Switzerland).
4Depto. de Ingeniería y Ciencia de Computadores, Universidad Jaume I, Castellón (Spain).
Linear time-invariant systems:

\[\dot{x}(t) = Ax(t) + Bu(t), \quad t > 0, \quad x(0) = x^0, \]
\[y(t) = Cx(t) + Du(t), \quad t \geq 0, \]

- \(n \) state-space variables, i.e., \(n \) is the order of the system;
- \(m \) inputs,
- \(p \) outputs.

Corresponding TFM:

\[G(s) = C(sI_n - A)^{-1}B + D. \]
Find a reduced-order model

\[
\dot{x}(t) = \hat{A} \hat{x}(t) + \hat{B} u(t), \quad t > 0, \quad \hat{x}(0) = \hat{x}^0,
\]

\[
\hat{y}(t) = \hat{C} \hat{x}(t) + \hat{D} u(t), \quad t \geq 0,
\]

of order \(r \ll n \) such that the output error

\[
y - \hat{y} = G u - \hat{G} u = (G - \hat{G}) u
\]

is “small”.

Example

μ-mechanical Gyroscope
[The IMEGO Institute (Sweden) + Saab Bofors Dynamics AB]

- Commercial rate sensor with applications in inertial navigation systems.
- Simulation problem: Improve the design with respect to a number of parameters.
- \(n = 17,361 \) states.

Can we obtain a reduced-order model with similar behavior?
1. Truncation methods for model reduction
2. Solution of Lyapunov equations
3. GPU implementation
 - Matrix inversion
4. Iterative refinement
5. Conclusions
Outline

1. Truncation methods for model reduction

2. Solution of Lyapunov equations

3. GPU implementation
 - Matrix inversion

4. Iterative refinement

5. Conclusions
Balanced Truncation is an absolute error method, which aims at
\[
\min \| G - \hat{G} \|_\infty
\]
Composed of the following three steps:

Step 1. Solve the *coupled* Lyapunov matrix equations

\[
AW_c + W_c A^T + BB^T = 0,
\]
\[
A^T W_o + W_o A + C^T C = 0,
\]

for the observability and controllability Gramians, W_c and W_o. Actually, we need the Cholesky factors S and R such that

\[
W_c = S^T S, \quad W_o = R^T R.
\]

S and R are dense.
Balanced Truncation is an absolute error method, which aims at

$$\min \| G - \hat{G} \|_\infty$$

Composed of the following three steps:

Step 1. Solve the *coupled* Lyapunov matrix equations

$$AW_c + W_c A^T + BB^T = 0,$$

$$A^T W_o + W_o A + C^T C = 0,$$

for the observability and controllability Gramians, W_c and W_o. Actually, we need the Cholesky factors S and R such that

$$W_c = S^T S, \quad W_o = R^T R.$$

S and R are dense.
Step 2. Compute the **Hankel singular values (HSV)** from

\[SR^T = U\Sigma V^T = [U_1 \ U_2] \begin{bmatrix} \Sigma_1 & \Sigma_2 \\ \\ \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}, \]

with \(U, V, \) and \(\Sigma \) partitioned at a certain order \(r \).

The HSV in \(\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n) \), measure how much a state is involved in energy transfer from a given input to a certain output!
Step 3. In the square-root balance truncation (SRBT) method

\[T_l = \Sigma_1^{-1/2} V_1^T R \quad \text{and} \quad T_r = S^T U_1 \Sigma_1^{-1/2}, \]

and \((\hat{A}, \hat{B}, \hat{C}, \hat{D}) = (T_l AT_r, T_l B, C T_r, D)\) for the TFM:

\[\hat{G}(s) = C T_r (sI_n - T_l AT_r)^{-1} T_l B + D. \]

Computable error bound: \[\| G - \hat{G} \|_\infty \leq 2 \sum_{k=r+1}^{n} \sigma_k. \]
Given \((A, B, C, D, x^0)\) with \(A\) large, and \(m, p \ll n\)...

How do we solve the previous numerical problems?

2. SVD of matrix product.
3. Application of the SRBT formulae to obtain the reduced-order model.
Outline

1. Truncation methods for model reduction
2. Solution of Lyapunov equations
3. GPU implementation
 - Matrix inversion
4. Iterative refinement
5. Conclusions
Solution of Lyapunov equations

Sign Function Method

Given $\alpha \in \mathbb{R}$,

$$
\text{sign}(\alpha) = \begin{cases}
1 & \text{if } \alpha > 0, \\
-1 & \text{if } \alpha < 0, \\
\text{undefined} & \text{otherwise.}
\end{cases}
$$

For a matrix $A \in \mathbb{R}^{n \times n}$, $\text{sign}(A)$ is a function of the signs of its eigenvalues.

Given

$$
H = \begin{bmatrix}
A & 0 \\
C^T C & -A^T
\end{bmatrix}, \quad \text{sign}(H) = \begin{bmatrix}
-I_n & 0 \\
2W_o & I_n
\end{bmatrix},
$$

where W_o is the observability Gramian.

So, how do we compute the sign function?
For $H = \begin{bmatrix} A & 0 \\ C^T C & -A^T \end{bmatrix}$ the classical Newton iteration boils down to

\[
A_{j+1} = \frac{1}{2} (A_j + A_j^{-1})/2, \quad A_0 = A,
\]

\[
R_{j+1} = \frac{1}{\sqrt{2}} \begin{bmatrix} R_j \\ R_j A_j^{-1} \end{bmatrix}, \quad R_0 = C,
\]

which converges to R, the Cholesky factor of W_o.

At each iteration R_j is increased in p rows ($p \Rightarrow$ number of outputs).

The computation of the inverse represents the main part of the computation ($O(2n^3)$ flops).
As in model reduction R (and S) is usually rank-deficient the cost of the iteration and subsequent steps can be greatly reduced:

At the jth iteration, compute the rank-revealing QR (RRQR) factorization

$$\frac{1}{\sqrt{2}} \begin{bmatrix} R_j \\ R_j A_j^{-1} \end{bmatrix} = \bar{Q} \bar{R} \Pi$$

and then set

$$R_{j+1} = (\bar{R} \Pi)^T.$$

On convergence the iteration produces dense, full-rank \hat{R} with $l \ll n$ columns, such that

$$\hat{R}^T \hat{R} \approx R^T R = W_o.$$
Outline

1. Truncation methods for model reduction
2. Solution of Lyapunov equations
3. **GPU implementation**
 - Matrix inversion
4. Iterative refinement
5. Conclusions
Hybrid approach for the sign function

Each step is performed in the most suitable device:

1. \[A_{j+1} = \frac{1}{2} (A_j + A_j^{-1}) / 2, \quad A_0 = A \Rightarrow \text{Matrix inverse on GPU} \]

2. \[R_{j+1} = \frac{1}{\sqrt{2}} \begin{bmatrix} R_j \\ R_j A_j^{-1} \end{bmatrix}, \quad R_0 = C \Rightarrow \text{GEMM on CPU or GPU} \]

3. RRQR \Rightarrow \text{Executed on CPU}
Matrix inversion

Via LU factorization

1. \(PA = LU \)
2. \(U \rightarrow U^{-1} \)
3. Solve the system \(XL = U^{-1} \) for \(X \)
4. Undo the permutations \(A^{-1} := XP \)

Implementation

- The algorithm sweeps through the matrix four times
- Presents a mild load imbalance, due to the work with triangular factors

Algorithm implemented by LAPACK
Matrix inversion

Via Gauss-Jordan elimination (GJE)
- Reordering of the computations of LU-based methods
- Requires the same arithmetic cost

Implementation
- The algorithm sweeps through the matrix once
- Most of the computations are highly parallel
Algorithm: \([A] := \text{GJE}_{\text{BLK}}(A)\)

Partition \(A \rightarrow \left(\begin{array}{c|c} \bar{A}_L & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right)\)

where \(A_{TL}\) is 0 \(\times\) 0 and \(A_{BR}\) is \(n \times n\)

while \(m(A_{TL}) < m(A)\) do

 Determine block size \(b\)

 Repartition

 \[
 \left(\begin{array}{c|c} \bar{A}_L & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) \rightarrow \left(\begin{array}{c|c|c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array} \right)
 \]

 where \(A_{11}\) is \(b \times b\)

 \[
 \begin{array}{l}
 \begin{bmatrix}
 A_{01} \\
 A_{11} \\
 A_{21}
 \end{bmatrix} := \text{GJE}_{\text{UNB}} \left(\begin{bmatrix}
 A_{01} \\
 A_{11} \\
 A_{21}
 \end{bmatrix} \right) \\
 A_{00} := A_{00} + A_{01}A_{10} \\
 A_{20} := A_{20} + A_{21}A_{10} \\
 A_{10} := A_{11}A_{10} \\
 A_{02} := A_{02} + A_{01}A_{12} \\
 A_{22} := A_{22} + A_{21}A_{12} \\
 A_{12} := A_{11}A_{12}
 \end{array}
 \]

 Unblocked Gauss-Jordan

 Matrix-matrix product

 Continue with

 \[
 \left(\begin{array}{c|c} \bar{A}_L & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) \rightarrow \left(\begin{array}{c|c|c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array} \right)
 \]

endwhile

Figure: Blocked algorithm for matrix inversion via GJE without pivoting.
Matrix inversion (GJE)

GPU implementation
- The matrix is transferred to the GPU
- The inverse is computed **completely** on the GPU
- Result is transferred back to the CPU

Hybrid implementation
- GPU computes all the matrix-matrix products
- CPU computes the GJE_{UNB}
- Only small (column) panels are transferred
Experimental Results

Experimental setup

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Dual Xeon QuadCore E5410</td>
</tr>
<tr>
<td>CPU frequency</td>
<td>2.33 Ghz</td>
</tr>
<tr>
<td>RAM memory</td>
<td>8 Gbytes</td>
</tr>
<tr>
<td>GPU</td>
<td>Tesla C1060</td>
</tr>
<tr>
<td>Processor</td>
<td>Nvidia GT200</td>
</tr>
<tr>
<td>GPU frequency</td>
<td>1.3 Ghz</td>
</tr>
<tr>
<td>Video memory</td>
<td>4 Gbytes DDR3</td>
</tr>
<tr>
<td>Interconnection</td>
<td>PCIExpress Gen2</td>
</tr>
<tr>
<td>CUDA (CUBLAS) version</td>
<td>2.1</td>
</tr>
<tr>
<td>BLAS implementation</td>
<td>GOTOBlas 1.26</td>
</tr>
<tr>
<td>Driver version</td>
<td>185.18</td>
</tr>
</tbody>
</table>

Results for matrices with $1000 \leq n \leq 8000$ and $b \leq 200$

Transfer times included in all results
Experimental Results

(Matrix inverse - GotoBLAS)

Matrix inversion on Caton2 + Goto 1.26

- LAPACK+CPU
- GJE+CPU
- GJE+GPU
- GJE+Hybrid

Model Reduction Problems on GPUs... Benner et al.
Experimental Results
(Single precision Matrix Sign Function - GotoBLAS)

![Graph showing performance comparison of different methods for computing the sign function on Caton2 + Goto 1.26](image)

- LAPACK
- GJE(CPU)
- GJE(GPU)
- GJE(Hybrid)

Model Reduction Problems on GPUs...
Experimental Results

(Double Precision Matrix Sign Function - GotoBLAS)

Sign Function on Caton2 + Goto 1.26

Matrix size vs. Time(s)

- LAPACK
- DGJE(CPU)
- DGJE(GPU)
- DGJE(Hybrid)

Model Reduction Problems on GPUs...
Outline

1. Truncation methods for model reduction
2. Solution of Lyapunov equations
3. GPU implementation
 - Matrix inversion
4. Iterative refinement
5. Conclusions
Given a Lyapunov equation:

\[AX + XA^T = -BB^T \]

Goals

1. Exploit the single-precision capabilities of GPUs.
2. Get an approximation of the solution in low-precision arithmetic:
 \[L = \text{ApproxLyap}(B), \quad X \approx LL^T \]
3. Refine the result to regain full accuracy.
Iterative refinement (II)

Let

\[L_0 = \text{ApproxLyap}(B) \quad \text{SinglePrecision}(GPU) \]

to improve \(L_0 \) we construct a correction based on the residual

\[\text{Res} = A L_0 L_0^T + L_0 L_0^T A^T + B B^T \quad \text{DoublePrecision} \]

and solve

\[L_1 = \text{ApproxLyap}(\text{-Res}) \quad \text{SinglePrecision} \]

to get the correction term.

Problem

\[\text{Res is usually indefinite} \]
Solution

Decompose Res into a positive definite and a negative definite part:

\[\text{Res} = R_p R_p^T - R_n R_n^T \]

Each term corresponds to a Lyapunov equation (solved in SP):

\[AX_p + X_p A^T = -R_p R_p^T \quad A(-X_n) + (-X_n) A^T = -R_n R_n^T \]

Then \(X_c = X_p + X_n \) solves the correction equation

\[AX_c + X_c A^T = -\text{Res} \]

Corrected solution:

\[X_1 = L_0 L_0^T + L_p L_p^T - L_n L_n^T \]
Numerical example (MATLAB)

- $A \rightarrow 900 \times 900$ symmetric negative definite matrix
- $\text{it} \rightarrow$ number of sign function iterations
- $\text{tol} \rightarrow$ tolerance for sign function
- $\text{res}_i \rightarrow$ residual after i steps of iterative refinement

<table>
<thead>
<tr>
<th>tol</th>
<th>10^{-2}</th>
<th>10^{-4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>it</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>res_0</td>
<td>7×10^{-2}</td>
<td>7×10^{-4}</td>
</tr>
<tr>
<td>res_1</td>
<td>5×10^{-4}</td>
<td>7×10^{-7}</td>
</tr>
<tr>
<td>res_2</td>
<td>3×10^{-5}</td>
<td>7×10^{-11}</td>
</tr>
<tr>
<td>res_3</td>
<td>6×10^{-7}</td>
<td></td>
</tr>
<tr>
<td>res_4</td>
<td>1×10^{-7}</td>
<td></td>
</tr>
<tr>
<td>res_5</td>
<td>1×10^{-9}</td>
<td></td>
</tr>
<tr>
<td>res_6</td>
<td>1×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>res_7</td>
<td>1×10^{-12}</td>
<td></td>
</tr>
<tr>
<td>Time (s)</td>
<td>$6.5 + 1$</td>
<td>$8 + 0.5$</td>
</tr>
</tbody>
</table>

\Rightarrow 15 seconds in double precision
1. Truncation methods for model reduction
2. Solution of Lyapunov equations
3. GPU implementation
 - Matrix inversion
4. Iterative refinement
5. Conclusions
Solution of (large) model reduction problems applying GPUs

Truncation Methods → Lyapunov equations

Hybrid approach for the Sign Function to solve Lyapunov equations

Iterative refinement approach to combine full-accuracy and high performance
Thank you!

More information...
- HPCA Group at University Jaume I (http://www.h pca.uji.es)
- {figual, quintana, remon}@icc.uji.es