
Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Harnessing CUDA Dynamic Parallelism for the
Solution of Sparse Linear Systems

José I. Aliaga1 Davor Davidović2 Joaquín Pérez1

Enrique S. Quintana-Ortí1

1Departamento de Ingeniería y Ciencia de los Computadores, Universitat Jaume I,
12.071–Castellón de la Plana, (Spain)

{aliaga,joaquin.perez,quintana}@uji.es

2Institut Rud̄er Bošković, Centar za Informatiku i Računarstvo - CIR,
Zagreb (Croatia)

davor.davidovic@irb.hr

September, 2015

CUDA Dynamic Parallelism for Sparse Linear Systems 1 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction

The discretization of PDE’s often leads to linear systems

Ax = b

where

A ∈ Rn,n is a large and sparse coefficient matrix

x ∈ Rn is the sought-after solution

b ∈ Rn is a given r.h.s. vector

Direct or iterative methods can be used to solve them

For 3D problems, iterative methods based on Krylov subspaces

The structure and numerical kernels are similar in all these ones

For the SPD case, the Conjugate Gradient (CG) should be applied

CUDA Dynamic Parallelism for Sparse Linear Systems 2 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction

The discretization of PDE’s often leads to linear systems

Ax = b

where

A ∈ Rn,n is a large and sparse coefficient matrix

x ∈ Rn is the sought-after solution

b ∈ Rn is a given r.h.s. vector

Direct or iterative methods can be used to solve them

For 3D problems, iterative methods based on Krylov subspaces

The structure and numerical kernels are similar in all these ones

For the SPD case, the Conjugate Gradient (CG) should be applied

CUDA Dynamic Parallelism for Sparse Linear Systems 2 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction
Conjugate Gradient Algorithm

Initialize r0, p0, x0, σ0, τ0; j := 0

while (τj > τmax) Loop for iterative CG solver

vj := Apj O1. SPMV

αj := σj/pT
j vj O2. DOT

xj+1 := xj + αjpj O3. AXPY

rj+1 := rj − αjvj O4. AXPY

ζj := rT
j+1rj+1 O5. DOT

βj := ζj/σj O6. Scalar op

σj+1 := ζj O7. Scalar op

pj+1 := rj+1 + βjpj O8. XPAY (AXPY-like)

τj+1 :=‖ rj+1 ‖2=
√
ζj O9. Vector 2-norm (in practice, sqrt)

j := j + 1

endwhile

CUDA Dynamic Parallelism for Sparse Linear Systems 2 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction

When we use a heterogeneous server (CPU + GPU)

The computations of CG rely on the GPU

A CPU thread is in charge of controlling the GPU

Aspects to consider in GPU computation,

The data communication via the slow PCI-e bus blurs the
computational cost

The invocation of fine-grain kernels prevents the CPU from
entering an energy-efficient C-state, increasing the energy
consumption

CUDA Dynamic Parallelism for Sparse Linear Systems 3 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction

When we use a heterogeneous server (CPU + GPU)

The computations of CG rely on the GPU

A CPU thread is in charge of controlling the GPU

Aspects to consider in GPU computation,

The data communication via the slow PCI-e bus blurs the
computational cost

The invocation of fine-grain kernels prevents the CPU from
entering an energy-efficient C-state, increasing the energy
consumption

CUDA Dynamic Parallelism for Sparse Linear Systems 3 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction
Conjugate Gradient Algorithm

Initialize r0, p0, x0, σ0, τ0; j := 0

while (τj > τmax) cuBLAS/cuSPARSE routines

vj := Apj cusparseScsrmv

αj := σj/pT
j vj cublasSdot + Scalar op

xj+1 := xj + αjpj cublasSaxpy

rj+1 := rj − αjvj cublasSaxpy

ζj := rT
j+1rj+1 cublasSdot

βj := ζj/σj Scalar op

σj+1 := ζj Scalar op

pj+1 := rj+1 + βjpj cublasSscal+cublasSaxpy

τj+1 :=‖ rj+1 ‖2=
√
ζj Vector 2-norm (in practice, sqrt)

j := j + 1

endwhile

CUDA Dynamic Parallelism for Sparse Linear Systems 3 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction

When we use a heterogeneous server (CPU + GPU)

The computations of CG rely on the GPU

A CPU thread is in charge of controlling the GPU

Aspects to consider in GPU computation,

The data communication via the slow PCI-e bus blurs the
computational cost
→ Store all data on the GPU memory

The invocation of fine-grain kernels prevents the CPU from
entering an energy-efficient C-state, increasing the energy
consumption

CUDA Dynamic Parallelism for Sparse Linear Systems 3 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction

When we use a heterogeneous server (CPU + GPU)

The computations of CG rely on the GPU

A CPU thread is in charge of controlling the GPU

Aspects to consider in GPU computation,

The data communication via the slow PCI-e bus blurs the
computational cost
→ Store all data on the GPU memory

The invocation of fine-grain kernels prevents the CPU from
entering an energy-efficient C-state, increasing the energy
consumption
→ Reduce the number of kernels
→ Grow the grain of the kernels

CUDA Dynamic Parallelism for Sparse Linear Systems 3 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction

The first solution was to fuse CUDA kernels
To develop specific CUDA kernels to solve any operation

Only a transfer to verify the loop condition

To merge CUDA kernels

Systematic Fusion of CUDA Kernels for Iterative Sparse Linear System
Solvers (EUROPAR’15)

Dynamic Parallelism (DP) is an alternative technique
A parent CUDA kernel can launch other child CUDA kernels

For the CG case: the CPU only launches a simple CUDA kernel,
which is in charge of launch other CUDA kernels

The CPU is completely idle during all the CG computations

The simple CUDA kernel can include fine-grain or merged kernels

Objective: Development of the DP version of CG
CUDA Dynamic Parallelism for Sparse Linear Systems 4 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction

The first solution was to fuse CUDA kernels
To develop specific CUDA kernels to solve any operation

Only a transfer to verify the loop condition

To merge CUDA kernels

Systematic Fusion of CUDA Kernels for Iterative Sparse Linear System
Solvers (EUROPAR’15)

Dynamic Parallelism (DP) is an alternative technique
A parent CUDA kernel can launch other child CUDA kernels

For the CG case: the CPU only launches a simple CUDA kernel,
which is in charge of launch other CUDA kernels

The CPU is completely idle during all the CG computations

The simple CUDA kernel can include fine-grain or merged kernels

Objective: Development of the DP version of CG
CUDA Dynamic Parallelism for Sparse Linear Systems 4 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction

The first solution was to fuse CUDA kernels
To develop specific CUDA kernels to solve any operation

Only a transfer to verify the loop condition

To merge CUDA kernels

Systematic Fusion of CUDA Kernels for Iterative Sparse Linear System
Solvers (EUROPAR’15)

Dynamic Parallelism (DP) is an alternative technique
A parent CUDA kernel can launch other child CUDA kernels

For the CG case: the CPU only launches a simple CUDA kernel,
which is in charge of launch other CUDA kernels

The CPU is completely idle during all the CG computations

The simple CUDA kernel can include fine-grain or merged kernels

Objective: Development of the DP version of CG
CUDA Dynamic Parallelism for Sparse Linear Systems 4 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Motivation and Introduction

The first solution was to fuse CUDA kernels
To develop specific CUDA kernels to solve any operation

Only a transfer to verify the loop condition

To merge CUDA kernels

Systematic Fusion of CUDA Kernels for Iterative Sparse Linear System
Solvers (EUROPAR’15)

Dynamic Parallelism (DP) is an alternative technique
A parent CUDA kernel can launch other child CUDA kernels

For the CG case: the CPU only launches a simple CUDA kernel,
which is in charge of launch other CUDA kernels

The CPU is completely idle during all the CG computations

The simple CUDA kernel can include fine-grain or merged kernels

Objective: Development of the DP version of CG
CUDA Dynamic Parallelism for Sparse Linear Systems 4 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Outline

1 Motivation and Introduction

2 Fusions in the CG Method
CUDA kernels of CG
How to merge CUDA kernels
Merging CUDA kernels on CG

3 Exploiting DP to Enhance CG
Features of Dynamic Parallelism
Improved CUDA kernels for DP
Dynamic Parallelism version of CG

4 Experimental Evaluation
Environment setup
Experimental results

5 Conclusions

CUDA Dynamic Parallelism for Sparse Linear Systems 5 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Outline

1 Motivation and Introduction

2 Fusions in the CG Method
CUDA kernels of CG
How to merge CUDA kernels
Merging CUDA kernels on CG

3 Exploiting DP to Enhance CG
Features of Dynamic Parallelism
Improved CUDA kernels for DP
Dynamic Parallelism version of CG

4 Experimental Evaluation
Environment setup
Experimental results

5 Conclusions

CUDA Dynamic Parallelism for Sparse Linear Systems 6 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

CUDA kernels of CG

Each CG operation can be implemented as a CUDA kernel

The scalar operations

The vector operations

The kernels of truly parallel operations are easily developed
→ axpy, axpy-like, scal, . . .

Other operations usually require a collaboration between threads
→ dot, . . .

For SPMV,

CSR format: spmv_csr_scalar_kernel, spmv_csr_vector_kernel

ELLPACK format: spmv_ell_kernel

CUDA Dynamic Parallelism for Sparse Linear Systems 7 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

CUDA kernels of CG

Each CG operation can be implemented as a CUDA kernel

The scalar operations can be made by a thread of a block

The vector operations

The kernels of truly parallel operations are easily developed
→ axpy, axpy-like, scal, . . .

Other operations usually require a collaboration between threads
→ dot, . . .

For SPMV,

CSR format: spmv_csr_scalar_kernel, spmv_csr_vector_kernel

ELLPACK format: spmv_ell_kernel

CUDA Dynamic Parallelism for Sparse Linear Systems 7 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

CUDA kernels of CG

Each CG operation can be implemented as a CUDA kernel

The scalar operations can be made by a thread of a block

The vector operations compute on complex grids ( Bs = 256 )

The kernels of truly parallel operations are easily developed
→ axpy, axpy-like, scal, . . .

Other operations usually require a collaboration between threads
→ dot, . . .

For SPMV,

CSR format: spmv_csr_scalar_kernel, spmv_csr_vector_kernel

ELLPACK format: spmv_ell_kernel

CUDA Dynamic Parallelism for Sparse Linear Systems 7 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSaxpy
1 __global__ void cudaSaxpy ( i n t n, f l o a t *alpha, f l o a t *x, f l o a t *y) {
2 unsigned i n t BlkSize = blockDim.x; // = 256
3 unsigned i n t tid = threadIdx.x;
4 unsigned i n t i = blockIdx.x * BlkSize + tid;
5
6 i f (i < n) {
7 y[i] += *alfa * x[i];
8 }
9 }

CUDA Dynamic Parallelism for Sparse Linear Systems 8 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

CUDA kernels of CG

Each CG operation can be implemented as a CUDA kernel

The scalar operations can be made by a thread of a block

The vector operations compute on complex grids ( Bs = 256 )

The kernels of truly parallel operations are easily developed
→ axpy, axpy-like, scal, . . .

Other operations usually require a collaboration between threads
→ dot, . . .

For SPMV,

CSR format: spmv_csr_scalar_kernel, spmv_csr_vector_kernel

ELLPACK format: spmv_ell_kernel

CUDA Dynamic Parallelism for Sparse Linear Systems 9 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSdot

The DOT can be decomposed into two operations:

Element-wise product (EWP): (z = x . ∗ y )

Reduction of the result (addition of its elements): (α =
∑

z)

An iterative process has to be implemented to reduce the vector

The kernels have an input vector (in) and an output vector (out)

One element of ini is assigned to a single thread

Each block computes the addition of the local values of in, storing
the result in the position of out related to the block id

The ratio of the sizes of the two vectors is equal to the block size

The process ends when the size of out is equal to 1

CUDA Dynamic Parallelism for Sparse Linear Systems 10 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSdot

The DOT can be decomposed into two operations:

Element-wise product (EWP): (z = x . ∗ y )

Reduction of the result (addition of its elements): (α =
∑

z)

An iterative process has to be implemented to reduce the vector

The kernels have an input vector (in) and an output vector (out)

One element of ini is assigned to a single thread

Each block computes the addition of the local values of in, storing
the result in the position of out related to the block id

The use of shared memory accelerates the computation

Block level synchronizations are required to avoid errors

The ratio of the sizes of the two vectors is equal to the block size

The process ends when the size of out is equal to 1

CUDA Dynamic Parallelism for Sparse Linear Systems 10 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSdot

1 __global__ void cudaSreduce ( i n t n, f l o a t *in, f l o a t *out) {
2 extern __shared__ f l o a t vtmp[];
3
4 // Each thread loads one element from global to shared mem
5 unsigned i n t BlkSize = blockDim.x; // = 256
6 unsigned i n t tid = threadIdx.x; // block thread index
7 unsigned i n t i = blockIdx.x * BlkSize + tid;
8
9 vtmp[tid] = ( i < n ) ? in[i] : 0; __syncthreads();

10
11 // Reduce from BlkSize=256 elements to 128, 64, 32, 16, 8, 2 and 1
12 i f (tid < 128) { vtmp[tid] += vtmp[tid + 128]; } __syncthreads();
13 i f (tid < 64) { vtmp[tid] += vtmp[tid + 64 ]; } __syncthreads();
14 i f (tid < 32) {
15 v o l a t i l e f l o a t *vtmp2 = vtmp;
16 vtmp2[tid] += vtmp2[tid + 32]; vtmp2[tid] += vtmp2[tid + 16];
17 vtmp2[tid] += vtmp2[tid + 8 ]; vtmp2[tid] += vtmp2[tid + 4 ];
18 vtmp2[tid] += vtmp2[tid + 2 ]; vtmp2[tid] += vtmp2[tid + 1 ];
19 }
20
21 // Write result for this block to global mem
22 i f (tid == 0) out[blockIdx.x] = vtmp[0];
23 }

CUDA Dynamic Parallelism for Sparse Linear Systems 10 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSdot

The DOT can be decomposed into two operations:

Element-wise product (EWP): (z = x . ∗ y )

Reduction of the result (addition of its elements): (α =
∑

z)

An iterative process has to be implemented to reduce the vector

The kernels have an input vector (in) and an output vector (out)

One element of ini is assigned to a single thread

Each block computes the addition of the local values of in, storing
the result in the position of out related to the block id

The use of shared memory accelerates the computation

Block level synchronizations are required to avoid errors

The ratio of the sizes of the two vectors is equal to the block size

The process ends when the size of out is equal to 1

CUDA Dynamic Parallelism for Sparse Linear Systems 10 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSdot

1 void cudaSreduction ( i n t Gs, i n t Bs, i n t Ms,
2 i n t n, f l o a t z[],
3 f l o a t vtmp[] , f l o a t vtmp2[] ) {
4
5 f l o a t *aux1 = vtmp, *aux2 = vtmp2;
6 i n t b = 1, Gs_next;
7
8
9

10 // reduce blocks
11 cudaSreduce <<< Gs, Bs, Ms >>> ( n, z , aux1 );
12
13 while( Gs > 1 ){
14 Gs_next = ( unsigned i n t ) ceil( ( f l o a t ) Gs / Bs );
15 // reduce blocks
16 cudaSreduce <<< Gs_next, Bs, Ms >>> ( Gs, aux1, aux2 );
17 Gs = Gs_next;
18 b = 1 - b;
19 i f ( b ){ aux1 = vtmp; aux2 = vtmp2; }
20 else { aux2 = vtmp; aux1 = vtmp2; }
21 }
22
23 // Write result
24 i f ( b == 0 )
25 cudaMemcpy( vtmp, aux1, sizeof( f l o a t ), cudaMemcpyDeviceToDevice );
26 }

CUDA Dynamic Parallelism for Sparse Linear Systems 10 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSdot

1 void cudaSdot ( i n t Gs, i n t Bs, i n t Ms,
2 i n t n, f l o a t x[], f l o a t y[],
3 f l o a t vtmp[] , f l o a t vtmp2[] ) {
4
5 f l o a t *aux1 = vtmp, *aux2 = vtmp2;
6 i n t b = 1, Gs_next;
7
8 // element-wise product
9 cudaSewp (n, alpha, x, y, aux2);

10 // reduce blocks
11 cudaSreduce <<< Gs, Bs, Ms >>> ( n, aux2, aux1 );
12
13 while( Gs > 1 ){
14 Gs_next = ( unsigned i n t ) ceil( ( f l o a t ) Gs / Bs );
15 // reduce blocks
16 cudaSreduce <<< Gs_next, Bs, Ms >>> ( Gs, aux1, aux2 );
17 Gs = Gs_next;
18 b = 1 - b;
19 i f ( b ){ aux1 = vtmp; aux2 = vtmp2; }
20 else { aux2 = vtmp; aux1 = vtmp2; }
21 }
22
23 // Write result
24 i f ( b == 0 )
25 cudaMemcpy( vtmp, aux1, sizeof( f l o a t ), cudaMemcpyDeviceToDevice );
26 }

CUDA Dynamic Parallelism for Sparse Linear Systems 10 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSdot

1 void cudaSdot ( i n t Gs, i n t Bs, i n t Ms,
2 i n t n, f l o a t x[], f l o a t y[],
3 f l o a t vtmp[] , f l o a t vtmp2[] ) {
4
5 f l o a t *aux1 = vtmp, *aux2 = vtmp2;
6 i n t b = 1, Gs_next;
7
8
9 // element-wise product and reduce blocks

10 cudaSewp_reduce (n, alpha, x, y, aux1);
11
12
13 while( Gs > 1 ){
14 Gs_next = ( unsigned i n t ) ceil( ( f l o a t ) Gs / Bs );
15 // reduce blocks
16 cudaSreduce <<< Gs_next, Bs, Ms >>> ( Gs, aux1, aux2 );
17 Gs = Gs_next;
18 b = 1 - b;
19 i f ( b ){ aux1 = vtmp; aux2 = vtmp2; }
20 else { aux2 = vtmp; aux1 = vtmp2; }
21 }
22
23 // Write result
24 i f ( b == 0 )
25 cudaMemcpy( vtmp, aux1, sizeof( f l o a t ), cudaMemcpyDeviceToDevice );
26 }

CUDA Dynamic Parallelism for Sparse Linear Systems 10 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSdot

cudaSewp_reduce

CUDA Dynamic Parallelism for Sparse Linear Systems 10 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSdot

cudaSreduce

CUDA Dynamic Parallelism for Sparse Linear Systems 10 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSdot

cudaSreduce

CUDA Dynamic Parallelism for Sparse Linear Systems 10 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

CUDA kernels of CG

Each CG operation can be implemented as a CUDA kernel

The scalar operations can be made by a thread of a block

The vector operations compute on complex grids ( Bs = 256 )

The kernels of truly parallel operations are easily developed
→ axpy, axpy-like, scal, . . .

Other operations usually require a collaboration between threads
→ dot, . . .

For SPMV, we use three kernels defined by N. Bell and M.
Garland in NVR-2008-004

CSR format: spmv_csr_scalar_kernel, spmv_csr_vector_kernel

ELLPACK format: spmv_ell_kernel

CUDA Dynamic Parallelism for Sparse Linear Systems 11 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSspmv

Sparse Matrix Formats

5 2 4 2 5 0 0 0 
3 7 2 0 0 0 0 0
7 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 

  

5 2 4 0 0 2 0 5 
3 7 2 0 0 0 0 0
0 0 7 0 0 0 0 5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0

  

5 2 4 2 5 0 0 0 
3 7 2 0 0 0 0 0
7 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 

  
5 2 4 2 5 
3 7 2 0 0
7 5 0 0 0
0 0 0 0 0
0 0 0 0 0
8 0 0 0 0
3 0 0 0 0

  

0 1 2 5 7 
0 1 2 X X
2 7 X X X
X X X X X
X X X X X
0 X X X X
6 X X X X

  

CSR format

5 2 4 2 5 3 7 2 7 5 8 3

0 1 2 5 7 0 1 2 2 7 0 6 

0 5 8 10 10 10 11

values

colind

rowptr

points to first element in row

0

1

2

 3

4

5

6

7

7
col-index

r
o
w
-
i
n
d
e
x

6543210

values colind

Sparse 
storage formats

ELLPACK format

CUDA Dynamic Parallelism for Sparse Linear Systems 12 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSspmv

spmv_csr_scalar_kernel
A thread of a block computes one element of the result

Each thread works without any collaboration

The maximum dimension for a 1D Grid is

65, 535 ∗ Bs = 65, 535 ∗ 256 = 16, 776, 960

spmv_csr_vector_kernel
Each element of the result is computed by a warp (32 threads)

The final value requires a reduction step into a warp

The maximum dimension for a 1D Grid is

65, 535 ∗Bs/32 = 65, 535 ∗ 256/32 = 16, 776, 960/32 = 524, 280

spmv_ell_kernel
The same features as spmv_csr_scalar_kernel

The coalescent data access reduces the execution time

CUDA Dynamic Parallelism for Sparse Linear Systems 12 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSspmv

spmv_csr_scalar_kernel
A thread of a block computes one element of the result

Each thread works without any collaboration

The maximum dimension for a 1D Grid is

65, 535 ∗ Bs = 65, 535 ∗ 256 = 16, 776, 960

spmv_csr_vector_kernel
Each element of the result is computed by a warp (32 threads)

The final value requires a reduction step into a warp

The maximum dimension for a 1D Grid is

65, 535 ∗Bs/32 = 65, 535 ∗ 256/32 = 16, 776, 960/32 = 524, 280

spmv_ell_kernel
The same features as spmv_csr_scalar_kernel

The coalescent data access reduces the execution time

CUDA Dynamic Parallelism for Sparse Linear Systems 12 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSspmv
1 __global__ void spmv_csr_vector_kernel ( i n t num_rows, i n t *ptr, i n t *indices,
2 f l o a t *data, f l o a t *x, f l o a t *y ) {
3 __shared__ f l o a t vals[]; // shared memory values
4 i n t tid = threadIdx.x; // block thread index
5 i n t BlkSize = blockDim.x; // = 256
6
7 i n t thread_id = blockIdx.x * BlkSize + tid; // global thread index
8 i n t warp_id = thread_id / 32; // global warp index
9 i n t lane = thread_id & (32 - 1); // thread index within

the warp
10
11 // one warp per row
12 i n t row = warp_id;
13
14 i f (row < num_rows){
15 i n t row_start = ptr[row], row_end = ptr[row+1];
16
17 // compute running sum per thread
18 vals[tid] = 0;
19 for( i n t jj = row_start + lane; jj < row_end; jj += 32)
20 vals[tid] += data[jj] * x[indices[jj]];
21
22 // parallel reduction in shared memory
23 i f (lane < 16) vals[tid] += vals[tid+16];
24 i f (lane < 8) vals[tid] += vals[tid+8]; i f (lane < 4) vals[tid] += vals[tid+4];
25 i f (lane < 2) vals[tid] += vals[tid+2]; i f (lane < 1) vals[tid] += vals[tid+1];
26
27 // first thread writes the result
28 i f (lane == 0) y[row] += vals[tid];
29 }
30 }

CUDA Dynamic Parallelism for Sparse Linear Systems 12 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSspmv
1 __global__ void spmv_csr_vector_kernel_2D ( i n t num_rows, i n t *ptr, i n t *indices,
2 f l o a t *data, f l o a t *x, f l o a t *y ) {
3 __shared__ f l o a t vals[]; // shared memory values
4 i n t tid = threadIdx.x; // block thread index
5 i n t colG = blockIdx.x * blockDim.x + tid;
6 i n t rowG = blockIdx.y * blockDim.y;
7 i n t thread_id = ( blockDim.x * gridDim.x * rowG ) + colG ; // global thread index
8 i n t warp_id = thread_id / 32; // global warp index
9 i n t lane = thread_id & (32 - 1); // thread index within

the warp
10
11 // one warp per row
12 i n t row = warp_id;
13
14 i f (row < num_rows){
15 i n t row_start = ptr[row], row_end = ptr[row+1];
16
17 // compute running sum per thread
18 vals[tid] = 0;
19 for( i n t jj = row_start + lane; jj < row_end; jj += 32)
20 vals[tid] += data[jj] * x[indices[jj]];
21
22 // parallel reduction in shared memory
23 i f (lane < 16) vals[tid] += vals[tid+16];
24 i f (lane < 8) vals[tid] += vals[tid+8]; i f (lane < 4) vals[tid] += vals[tid+4];
25 i f (lane < 2) vals[tid] += vals[tid+2]; i f (lane < 1) vals[tid] += vals[tid+1];
26
27 // first thread writes the result
28 i f (lane == 0) y[row] += vals[tid];
29 }
30 }

CUDA Dynamic Parallelism for Sparse Linear Systems 12 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

cudaSspmv

spmv_csr_scalar_kernel
A thread of a block computes one element of the result

Each thread works without any collaboration

The maximum dimension for a 1D Grid is

65, 535 ∗ Bs = 65, 535 ∗ 256 = 16, 776, 960

spmv_csr_vector_kernel
Each element of the result is computed by a warp (32 threads)

The final value requires a reduction step into a warp

The maximum dimension for a 1D Grid is

65, 535 ∗Bs/32 = 65, 535 ∗ 256/32 = 16, 776, 960/32 = 524, 280

spmv_ell_kernel
The same features as spmv_csr_scalar_kernel

The coalescent data access reduces the execution time

CUDA Dynamic Parallelism for Sparse Linear Systems 12 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Methodology to merge CUDA kernels

Independent CUDA kernels can always be merged

Two CUDA kernels related by a RAW dependency,

K1
v−→ K2, v ∈ <n

can be merged if

Both kernels apply the same mapping of threads to the elements
of v shared (exchanged) via register

Both kernels apply the same mapping of threads blocks to the
vector elements shared (exchanged) via shared memory

A global barrier is not necessary between the two kernels

If the kernels K1 and K2 can be merged, the grid definition of
both kernels should be adjusted

CUDA Dynamic Parallelism for Sparse Linear Systems 13 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Methodology to merge CUDA kernels

1 __global__ void cudaSaxpy ( i n t n, f l o a t *alpha, f l o a t *x, f l o a t *y) {
2 unsigned i n t BlkSize = blockDim.x;
3 unsigned i n t i = blockIdx.x * BlkSize + threadIdx.x;
4
5 i f (i < n) {
6 y[i] += *alfa * x[i];
7 }
8 }
9

10 __global__ void cudaSaxpy_1 ( i n t n, f l o a t *alpha1, f l o a t *x, f l o a t *y,
11 f l o a t *alpha2, f l o a t *z) {
12 unsigned i n t BlkSize = blockDim.x;
13 unsigned i n t i = blockIdx.x * BlkSize + threadIdx.x;
14
15 i f (i < n) {
16 y[i] += *alfa1 * x[i];
17 z[i] += *alfa2 * x[i];
18 }
19 }
20
21 // INDEPENDENT KERNELS
22 cudaSaxpy << Gs, Bs >> (n, &alpha1, x, y); // y = y + alpha1 * x
23 cudaSaxpy << Gs, Bs >> (n, &alpha2, x, z); // z = z + alpha2 * x
24
25 // NEW KERNEL
26 cudaSaxpy_1 << Gs, Bs >> (n, &alpha1, &alpha2, x, y, z);

CUDA Dynamic Parallelism for Sparse Linear Systems 13 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Methodology to merge CUDA kernels

Independent CUDA kernels can always be merged

Two CUDA kernels related by a RAW dependency,

K1
v−→ K2, v ∈ <n

can be merged if

Both kernels apply the same mapping of threads to the elements
of v shared (exchanged) via register

Both kernels apply the same mapping of threads blocks to the
vector elements shared (exchanged) via shared memory

A global barrier is not necessary between the two kernels

If the kernels K1 and K2 can be merged, the grid definition of
both kernels should be adjusted

CUDA Dynamic Parallelism for Sparse Linear Systems 13 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Methodology to merge CUDA kernels

1 __global__ void cudaSaxpy ( i n t n, f l o a t *alpha, f l o a t *x, f l o a t *y) {
2 unsigned i n t BlkSize = blockDim.x;
3 unsigned i n t i = blockIdx.x * BlkSize + threadIdx.x;
4
5 i f (i < n) {
6 y[i] += *alfa * x[i];
7 }
8 }
9

10 __global__ void cudaSaxpy_2 ( i n t n, f l o a t *alpha1, f l o a t *x, f l o a t *y,
11 f l o a t *alpha2, f l o a t *z) {
12 unsigned i n t BlkSize = blockDim.x;
13 unsigned i n t i = blockIdx.x * BlkSize + threadIdx.x;
14
15 i f (i < n) {
16 y[i] += *alfa1 * x[i];
17 z[i] += *alfa2 * y[i];
18 }
19 }
20
21 // DEPENDENT KERNELS
22 cudaSaxpy << Gs, Bs >> (n, &alpha1, x, y); // y = y + alpha1 * x
23 cudaSaxpy << Gs, Bs >> (n, &alpha2, y, z); // z = z + alpha2 * y
24
25 // NEW KERNEL
26 cudaSaxpy_2 << Gs, Bs >> (n, &alpha1, &alpha2, x, y, z);

CUDA Dynamic Parallelism for Sparse Linear Systems 13 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Methodology to merge CUDA kernels

1 __global__ void cudaSewp_reduce ( i n t n, f l o a t *x, f l o a t *y, f l o a t *out) {
2 extern __shared__ f l o a t vtmp[];
3
4 // Each thread loads one element from global to shared mem
5 unsigned i n t BlkSize = blockDim.x; // = 256
6 unsigned i n t tid = threadIdx.x; // block thread index
7 unsigned i n t i = blockIdx.x * BlkSize + tid;
8
9 vtmp[tid] = ( i < n ) ? x[i] * y[i] : 0; __syncthreads();

10
11 // Reduce from BlkSize=256 elements to 128, 64, 32, 16, 8, 2 and 1
12 i f (tid < 128) { vtmp[tid] += vtmp[tid + 128]; } __syncthreads();
13 i f (tid < 64) { vtmp[tid] += vtmp[tid + 64 ]; } __syncthreads();
14 i f (tid < 32) {
15 v o l a t i l e f l o a t *vtmp2 = vtmp;
16 vtmp2[tid] += vtmp2[tid + 32]; vtmp2[tid] += vtmp2[tid + 16];
17 vtmp2[tid] += vtmp2[tid + 8 ]; vtmp2[tid] += vtmp2[tid + 4 ];
18 vtmp2[tid] += vtmp2[tid + 2 ]; vtmp2[tid] += vtmp2[tid + 1 ];
19 }
20
21 // Write result for this block to global mem
22 i f (tid == 0) out[blockIdx.x] = vtmp[0];
23 }

CUDA Dynamic Parallelism for Sparse Linear Systems 13 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Methodology to merge CUDA kernels

Independent CUDA kernels can always be merged

Two CUDA kernels related by a RAW dependency,

K1
v−→ K2, v ∈ <n

can be merged if

Both kernels apply the same mapping of threads to the elements
of v shared (exchanged) via register

Both kernels apply the same mapping of threads blocks to the
vector elements shared (exchanged) via shared memory

A global barrier is not necessary between the two kernels

If the kernels K1 and K2 can be merged, the grid definition of
both kernels should be adjusted

CUDA Dynamic Parallelism for Sparse Linear Systems 13 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Conjugate Gradient Algorithm

Initialize r0, p0, x0, σ0, τ0; j := 0

while (τj > τmax) Loop for iterative CG solver

vj := Apj O1. SPMV

αj := σj/pT
j vj O2. DOT

xj+1 := xj + αjpj O3. AXPY

rj+1 := rj − αjvj O4. AXPY

ζj := rT
j+1rj+1 O5. DOT

βj := ζj/σj O6. Scalar op

σj+1 := ζj O7. Scalar op

pj+1 := rj+1 + βjpj O8. XPAY (AXPY-like)

τj+1 :=‖ rj+1 ‖2=
√
ζj O9. Vector 2-norm (in practice, sqrt)

j := j + 1

endwhile

CUDA Dynamic Parallelism for Sparse Linear Systems 14 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Dependency Graph of CG

Initialize r0, p0, x0, σ0, τ0; j := 0

while (τj > τmax)

O1. SPMV

O2. DOT

O3. AXPY

O4. AXPY

O5. DOTproduct

O6. Scalar op

O7. Scalar op

O8. XPAY (AXPY-like)

O9. Vector 2-norm (sqrt)

j := j + 1

endwhile

CUDA Dynamic Parallelism for Sparse Linear Systems 15 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Dependendy Graph of CG for CUDA kernels

Initialize r0, p0, x0, σ0, τ0; j := 0

while (τj > τmax)

O1. SPMV

O2. DOT

O3. AXPY

O4. AXPY

O5. DOTproduct

O6. Scalar op

O7. Scalar op

O8. XPAY (AXPY-like)

O9. Vector 2-norm (sqrt)

j := j + 1

endwhile

CUDA Dynamic Parallelism for Sparse Linear Systems 15 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Fusion of CUDA kernels for CSR scalar and ELL

Initialize r0, p0, x0, σ0, τ0; j := 0

while (τj > τmax)

O1. SPMV

O2. DOT

O3. AXPY

O4. AXPY

O5. DOTproduct

O6. Scalar op

O7. Scalar op

O8. XPAY (AXPY-like)

O9. Vector 2-norm (sqrt)

j := j + 1

endwhile

CUDA Dynamic Parallelism for Sparse Linear Systems 15 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

CUDA kernels of CG How to merge CUDA kernels Merging CUDA kernels on CG

Fusion of CUDA kernels for CSR vector

Initialize r0, p0, x0, σ0, τ0; j := 0

while (τj > τmax)

O1. SPMV

O2. DOT

O3. AXPY

O4. AXPY

O5. DOTproduct

O6. Scalar op

O7. Scalar op

O8. XPAY (AXPY-like)

O9. Vector 2-norm (sqrt)

j := j + 1

endwhile

CUDA Dynamic Parallelism for Sparse Linear Systems 15 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

Outline

1 Motivation and Introduction

2 Fusions in the CG Method
CUDA kernels of CG
How to merge CUDA kernels
Merging CUDA kernels on CG

3 Exploiting DP to Enhance CG
Features of Dynamic Parallelism
Improved CUDA kernels for DP
Dynamic Parallelism version of CG

4 Experimental Evaluation
Environment setup
Experimental results

5 Conclusions

CUDA Dynamic Parallelism for Sparse Linear Systems 16 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

Dynamic Parallelism

Development of Dynamic Parallelism
Technology recently introduced in the CUDA programming mode

Available for NVIDIA devices with compute capability 3.5 or higher

Main features of Dynamic Parallelism
Allows CUDA kernels (parent) to launch new kernels (child)

The recursion is enabled

Useful to adapt the grid size at execution time

The synchronization between parent and child kernels occurs
Implicitly, at the end of the parent kernel

Explicitly, by using cudaDeviceSynchronize

Given the current DP limits, it is advisable
Reduce the depth of the call tree

Use iterative before recursive implementations

CUDA Dynamic Parallelism for Sparse Linear Systems 17 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

Dynamic Parallelism

Development of Dynamic Parallelism
Technology recently introduced in the CUDA programming mode

Available for NVIDIA devices with compute capability 3.5 or higher

Main features of Dynamic Parallelism
Allows CUDA kernels (parent) to launch new kernels (child)

The recursion is enabled

Useful to adapt the grid size at execution time

The synchronization between parent and child kernels occurs
Implicitly, at the end of the parent kernel

Explicitly, by using cudaDeviceSynchronize

Given the current DP limits, it is advisable
Reduce the depth of the call tree

Use iterative before recursive implementations

CUDA Dynamic Parallelism for Sparse Linear Systems 17 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

Dynamic Parallelism

Development of Dynamic Parallelism
Technology recently introduced in the CUDA programming mode

Available for NVIDIA devices with compute capability 3.5 or higher

Main features of Dynamic Parallelism
Allows CUDA kernels (parent) to launch new kernels (child)

The recursion is enabled

Useful to adapt the grid size at execution time

The synchronization between parent and child kernels occurs
Implicitly, at the end of the parent kernel

Explicitly, by using cudaDeviceSynchronize

Given the current DP limits, it is advisable
Reduce the depth of the call tree

Use iterative before recursive implementations

CUDA Dynamic Parallelism for Sparse Linear Systems 17 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

Dynamic Parallelism

Development of Dynamic Parallelism
Technology recently introduced in the CUDA programming mode

Available for NVIDIA devices with compute capability 3.5 or higher

Main features of Dynamic Parallelism
Allows CUDA kernels (parent) to launch new kernels (child)

The recursion is enabled

Useful to adapt the grid size at execution time

The synchronization between parent and child kernels occurs
Implicitly, at the end of the parent kernel

Explicitly, by using cudaDeviceSynchronize

Given the current DP limits, it is advisable
Reduce the depth of the call tree

Use iterative before recursive implementations

CUDA Dynamic Parallelism for Sparse Linear Systems 17 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSdot_DP

The definition of cudaSdot includes a routine (loop of kernels),
according to the implementation of cudaSreduction

The cudaSreduction implementation should be modified

The loop of kernels should be changed by a kernel with a loop

The final value has to written by a kernel with one block

There is no sense this kernel computes all the reduction

An alternative is to use two kernels:
Kernel with several blocks, which executes a reduction loop

Kernel with one block to compute the last reduction

An additional optimization:
Double the size of the consecutive data processed by a block

The coalescent access is maintained into the block

CUDA Dynamic Parallelism for Sparse Linear Systems 18 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSdot_DP

The definition of cudaSdot includes a routine (loop of kernels),
according to the implementation of cudaSreduction

The cudaSreduction implementation should be modified

The loop of kernels should be changed by a kernel with a loop

The final value has to written by a kernel with one block

There is no sense this kernel computes all the reduction

An alternative is to use two kernels:
Kernel with several blocks, which executes a reduction loop

Kernel with one block to compute the last reduction

An additional optimization:
Double the size of the consecutive data processed by a block

The coalescent access is maintained into the block

CUDA Dynamic Parallelism for Sparse Linear Systems 18 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSdot_DP

The definition of cudaSdot includes a routine (loop of kernels),
according to the implementation of cudaSreduction

The cudaSreduction implementation should be modified

The loop of kernels should be changed by a kernel with a loop

The final value has to written by a kernel with one block

There is no sense this kernel computes all the reduction

An alternative is to use two kernels:
Kernel with several blocks, which executes a reduction loop

Kernel with one block to compute the last reduction

An additional optimization:
Double the size of the consecutive data processed by a block

The coalescent access is maintained into the block

CUDA Dynamic Parallelism for Sparse Linear Systems 18 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSdot_DP

The definition of cudaSdot includes a routine (loop of kernels),
according to the implementation of cudaSreduction

The cudaSreduction implementation should be modified
The loop of kernels should be changed by a kernel with a loop

The final value has to written by a kernel with one block

There is no sense this kernel computes all the reduction

An alternative is to use two kernels:
Kernel with several blocks, which executes a reduction loop
⇒ 256 blocks each with 192 threads

Kernel with one block to compute the last reduction
⇒ 1 block with 256 threads

An additional optimization:
Double the size of the consecutive data processed by a block

The coalescent access is maintained into the block

CUDA Dynamic Parallelism for Sparse Linear Systems 18 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSdot_DP
1 __global__ void cudaSreduction_DP_loop ( i n t n, f l o a t *in, f l o a t *out) {
2 extern __shared__ f l o a t vtmp[];
3 // Each thread loads two elements from each chunk
4 // from global to shared memory
5 unsigned i n t tid = threadIdx.x; // block thread index
6 unsigned i n t NumBlk = gridDim.x; // = 256
7 unsigned i n t BlkSize = blockDim.x; // = 192
8 unsigned i n t Chunk = NumBlk * BlkSize; // Size of the grid data
9 unsigned i n t i = blockIdx.x * BlkSize + tid;

10
11 // Reduce from n to NumBlk * BlkSize elements. Each thread
12 // operates with two elements of each chunk
13 vtmp[tid] = 0;
14 while (i < n) {
15 vtmp[tid] += in[i];
16
17 i += Chunk;
18 } __syncthreads();
19
20 // Reduce from BlkSize=192 elements to 96, 48, 24, 12, 6, 3 and 1
21 i f (tid < 96) { vtmp[tid] += vtmp[tid + 96]; } __syncthreads();
22 i f (tid < 48) { vtmp[tid] += vtmp[tid + 48]; } __syncthreads();
23 i f (tid < 24) {
24 v o l a t i l e f l o a t *vtmp2 = vtmp;
25 vtmp2[tid] += vtmp2[tid + 24]; vtmp2[tid] += vtmp2[tid + 12];
26 vtmp2[tid] += vtmp2[tid + 6 ]; vtmp2[tid] += vtmp2[tid + 3 ];
27 }
28
29 // Write result for this block to global mem
30 i f (tid == 0) out[blockIdx.x] = vtmp[0] + vtmp[1] + vtmp[2];
31 }

CUDA Dynamic Parallelism for Sparse Linear Systems 18 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSdot_DP

1 __global__ void cudaSreduction_DP_final ( f l o a t *in_out) {
2 extern __shared__ f l o a t vtmp[];
3
4 // Each thread loads one element from global to shared mem
5 unsigned i n t tid = threadIdx.x;
6 v o l a t i l e f l o a t *vtmp2 = vtmp;
7
8 vtmp[tid] = in_out[tid]; __syncthreads();
9

10 // Reduce from 256 elements to 128, 64, 32, 16, 8, 2 and 1
11 i f (tid < 128) { vtmp[tid] += vtmp[tid + 128]; } __syncthreads();
12 i f (tid < 64) { vtmp[tid] += vtmp[tid + 64 ]; } __syncthreads();
13 i f (tid < 32) {
14 vtmp2[tid] += vtmp2[tid + 32]; vtmp2[tid] += vtmp2[tid + 16];
15 vtmp2[tid] += vtmp2[tid + 8 ]; vtmp2[tid] += vtmp2[tid + 4 ];
16 vtmp2[tid] += vtmp2[tid + 2 ]; vtmp2[tid] += vtmp2[tid + 1 ];
17 }
18
19 // Write result for this block to global mem
20 i f (tid == 0) in_out[blockIdx.x] = *vtmp;
21 }

CUDA Dynamic Parallelism for Sparse Linear Systems 18 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSdot_DP

The definition of cudaSdot includes a routine (loop of kernels),
according to the implementation of cudaSreduction

The cudaSreduction implementation should be modified

The loop of kernels should be changed by a kernel with a loop

The final value has to written by a kernel with one block

There is no sense this kernel computes all the reduction

An alternative is to use two kernels:
Kernel with several blocks, which executes a reduction loop

Kernel with one block to compute the last reduction

An additional optimization:
Double the size of the consecutive data processed by a block

The coalescent access is maintained into the block

CUDA Dynamic Parallelism for Sparse Linear Systems 18 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSdot_DP
1 __global__ void cudaSreduction_DP_loop_opt ( i n t n, f l o a t *in, f l o a t *out) {
2 extern __shared__ f l o a t vtmp[];
3 // Each thread loads two elements from each chunk
4 // from global to shared memory
5 unsigned i n t tid = threadIdx.x; // block thread index
6 unsigned i n t NumBlk = gridDim.x; // = 256
7 unsigned i n t BlkSize = blockDim.x; // = 192
8 unsigned i n t Chunk = NumBlk * (2 * BlkSize); // Size of the grid data
9 unsigned i n t i = blockIdx.x * (2 * BlkSize) + tid;

10
11 // Reduce from n to NumBlk * BlkSize elements. Each thread
12 // operates with two elements of each chunk
13 vtmp[tid] = 0;
14 while (i < n) {
15 vtmp[tid] += in[i];
16 vtmp[tid] += (i+BlkSize < n) ? (in[i+BlkSize]): 0;
17 i += Chunk;
18 } __syncthreads();
19
20 // Reduce from BlkSize=192 elements to 96, 48, 24, 12, 6, 3 and 1
21 i f (tid < 96) { vtmp[tid] += vtmp[tid + 96]; } __syncthreads();
22 i f (tid < 48) { vtmp[tid] += vtmp[tid + 48]; } __syncthreads();
23 i f (tid < 24) {
24 v o l a t i l e f l o a t *vtmp2 = vtmp;
25 vtmp2[tid] += vtmp2[tid + 24]; vtmp2[tid] += vtmp2[tid + 12];
26 vtmp2[tid] += vtmp2[tid + 6 ]; vtmp2[tid] += vtmp2[tid + 3 ];
27 }
28
29 // Write result for this block to global mem
30 i f (tid == 0) out[blockIdx.x] = vtmp[0] + vtmp[1] + vtmp[2];
31 }

CUDA Dynamic Parallelism for Sparse Linear Systems 18 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSdot_DP
1 __global__ void cudaSdot_DP_loop_opt ( i n t n, f l o a t *x, , f l o a t *y, f l o a t *out) {
2 extern __shared__ f l o a t vtmp[];
3 // Each thread loads two elements from each chunk
4 // from global to shared memory
5 unsigned i n t tid = threadIdx.x; // block thread index
6 unsigned i n t NumBlk = gridDim.x; // = 256
7 unsigned i n t BlkSize = blockDim.x; // = 192
8 unsigned i n t Chunk = NumBlk * (2 * BlkSize); // Size of the grid data
9 unsigned i n t i = blockIdx.x * (2 * BlkSize) + tid;

10
11 // Reduce from n to NumBlk * BlkSize elements. Each thread
12 // operates with two elements of each chunk
13 vtmp[tid] = 0;
14 while (i < n) {
15 vtmp[tid] += x[i]*y[i];
16 vtmp[tid] += (i+BlkSize < n) ? (x[i+BlkSize]*y[i+BlkSize]): 0;
17 i += Chunk;
18 } __syncthreads();
19
20 // Reduce from BlkSize=192 elements to 96, 48, 24, 12, 6, 3 and 1
21 i f (tid < 96) { vtmp[tid] += vtmp[tid + 96]; } __syncthreads();
22 i f (tid < 48) { vtmp[tid] += vtmp[tid + 48]; } __syncthreads();
23 i f (tid < 24) {
24 v o l a t i l e f l o a t *vtmp2 = vtmp;
25 vtmp2[tid] += vtmp2[tid + 24]; vtmp2[tid] += vtmp2[tid + 12];
26 vtmp2[tid] += vtmp2[tid + 6 ]; vtmp2[tid] += vtmp2[tid + 3 ];
27 }
28
29 // Write result for this block to global mem
30 i f (tid == 0) out[blockIdx.x] = vtmp[0] + vtmp[1] + vtmp[2];
31 }

CUDA Dynamic Parallelism for Sparse Linear Systems 18 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSdot_DP

cudaSdot_DP_loop

CUDA Dynamic Parallelism for Sparse Linear Systems 18 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSaxpy_DP

The changes in cudaSdot can also be applied on cudaSaxpy

To use a loop to reduce the number of blocks into the grid

Double the size of the consecutive data processed by a block

The optimal results are obtained when a thread processes two
elements

1 __global__ void cudaSaxpy_DP ( i n t n, f l o a t *alpha, f l o a t *x, f l o a t *y) {
2 i n t NumBlk = gridDim.x; // = ceil (n / 256)
3 i n t BlkSize = blockDim.x; // = 128
4 i n t i = blockIdx.x * (2 * BlkSize) + threadIdx.x;
5 i n t Chunk = 2 * NumBlk * BlkSize;
6
7 while (i < n) {
8 y[i] += *alfa * x[i];
9 i f (i + BlkSize < n) y[i + BlkSize] += *alfa * x[i + BlkSize];

10 i += Chunk;
11 }
12 }

CUDA Dynamic Parallelism for Sparse Linear Systems 19 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

cudaSaxpy_DP

The changes in cudaSdot can also be applied on cudaSaxpy

To use a loop to reduce the number of blocks into the grid

Double the size of the consecutive data processed by a block

The optimal results are obtained when a thread processes two
elements

1 __global__ void cudaSaxpy_DP ( i n t n, f l o a t *alpha, f l o a t *x, f l o a t *y) {
2 i n t NumBlk = gridDim.x; // = ceil (n / 256)
3 i n t BlkSize = blockDim.x; // = 128
4 i n t i = blockIdx.x * (2 * BlkSize) + threadIdx.x;
5 i n t Chunk = 2 * NumBlk * BlkSize;
6
7 while (i < n) {
8 y[i] += *alfa * x[i];
9 i f (i + BlkSize < n) y[i + BlkSize] += *alfa * x[i + BlkSize];

10 i += Chunk;
11 }
12 }

CUDA Dynamic Parallelism for Sparse Linear Systems 19 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

CG algorithm for Dynamic Parallelism

Initialize r0, p0, x0, σ0, τ0; j := 0

while (τj > τmax)

O1. SPMV

O2. DOT

O3. AXPY

O4. AXPY

O5. DOTproduct

O6. Scalar op

O7. Scalar op

O8. XPAY (AXPY-like)

O9. Vector 2-norm (sqrt)

j := j + 1

cudaDeviceSynchronize

endwhile

CUDA Dynamic Parallelism for Sparse Linear Systems 20 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

Dependendy Graph for DP CUDA kernels of CG

Initialize r0, p0, x0, σ0, τ0; j := 0

while (τj > τmax)

O1. SPMV

O2. DOT

O3. AXPY

O4. AXPY

O5. DOTproduct

O6. Scalar op

O7. Scalar op

O8. XPAY (AXPY-like)

O9. Vector 2-norm (sqrt)

j := j + 1

cudaDeviceSynchronize

endwhile

CUDA Dynamic Parallelism for Sparse Linear Systems 20 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

Fusion of DP CUDA kernels for CSR scalar and ELL

Initialize r0, p0, x0, σ0, τ0; j := 0

while (τj > τmax)

O1. SPMV

O2. DOT

O3. AXPY

O4. AXPY

O5. DOTproduct

O6. Scalar op

O7. Scalar op

O8. XPAY (AXPY-like)

O9. Vector 2-norm (sqrt)

j := j + 1

cudaDeviceSynchronize

endwhile

CUDA Dynamic Parallelism for Sparse Linear Systems 20 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Features of Dynamic Parallelism Improved CUDA kernels for DP Dynamic Parallelism version of CG

Fusion of DP CUDA kernels for CSR vector

Initialize r0, p0, x0, σ0, τ0; j := 0

while (τj > τmax)

O1. SPMV

O2. DOT

O3. AXPY

O4. AXPY

O5. DOTproduct

O6. Scalar op

O7. Scalar op

O8. XPAY (AXPY-like)

O9. Vector 2-norm (sqrt)

j := j + 1

cudaDeviceSynchronize

endwhile

CUDA Dynamic Parallelism for Sparse Linear Systems 20 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Outline

1 Motivation and Introduction

2 Fusions in the CG Method
CUDA kernels of CG
How to merge CUDA kernels
Merging CUDA kernels on CG

3 Exploiting DP to Enhance CG
Features of Dynamic Parallelism
Improved CUDA kernels for DP
Dynamic Parallelism version of CG

4 Experimental Evaluation
Environment setup
Experimental results

5 Conclusions

CUDA Dynamic Parallelism for Sparse Linear Systems 21 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Hardware Platform

Target Platform
CentOS release 6.2 with kernel 2.6.32 with CUDA v5.5.0

Intel Core i7-3770K CPU (3.5 GHz, four cores) and 16 Gbytes of
DDR3 RAM

NVIDIA “Kepler” K20c GPU (C.C. 3.5, 706 MHz, 2,496 CUDA
cores) with 5 GB of DDR5 RAM

CPU-GPU connection via a PCI-e 2.0 bus

How to trace the power consumption?
Using a National Instruments data acquisition system

NI9205 modules and NIcDAQ-9178 chassis

Lines that connect the PSU with motherboard and GPU.

The sampling frequency was 1MHz

The samples was processed by the power tracing server

CUDA Dynamic Parallelism for Sparse Linear Systems 22 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Hardware Platform

Power Tracing Environment

CUDA Dynamic Parallelism for Sparse Linear Systems 22 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Hardware Platform

Target Platform
CentOS release 6.2 with kernel 2.6.32 with CUDA v5.5.0

Intel Core i7-3770K CPU (3.5 GHz, four cores) and 16 Gbytes of
DDR3 RAM

NVIDIA “Kepler” K20c GPU (C.C. 3.5, 706 MHz, 2,496 CUDA
cores) with 5 GB of DDR5 RAM

CPU-GPU connection via a PCI-e 2.0 bus

How to trace the power consumption?
Using a National Instruments data acquisition system

NI9205 modules and NIcDAQ-9178 chassis

Lines that connect the PSU with motherboard and GPU.

The sampling frequency was 1MHz

The samples was processed by the power tracing server

CUDA Dynamic Parallelism for Sparse Linear Systems 22 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Arithmetics

CG Implementations
x0 = 0, b = A ∗ ones(n, 1),maxiter = 1000

IEEE single precision arithmetic (ε = 10−5)
On GPUs, mixed SP-DP with iterative refinement improves
execution time and energy consumption

SP is the computational key of mixed SP-DP

Benchmark Matrices

Matrix Acronym nz n nz/n

U
FM

C

BMWCRA1_1 bmw 10,641,602 148,770 71.53
CRANKSEG_2 crank 14,148,858 63,838 221.63
F1 F1 26,837,113 343,791 78.06
INLINE_1 inline 38,816,170 503,712 77.06
LDOOR ldoor 42,493,817 952,203 44.62
AUDIKW_1 audi 77,651,847 943,645 82.28
A252 A252 111,640,032 16,003,001 6.94

CUDA Dynamic Parallelism for Sparse Linear Systems 23 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Arithmetics

CG Implementations
x0 = 0, b = A ∗ ones(n, 1),maxiter = 1000

IEEE single precision arithmetic (ε = 10−5)
On GPUs, mixed SP-DP with iterative refinement improves
execution time and energy consumption

SP is the computational key of mixed SP-DP

Benchmark Matrices

Matrix Acronym nz n nz/n

U
FM

C

BMWCRA1_1 bmw 10,641,602 148,770 71.53
CRANKSEG_2 crank 14,148,858 63,838 221.63
F1 F1 26,837,113 343,791 78.06
INLINE_1 inline 38,816,170 503,712 77.06
LDOOR ldoor 42,493,817 952,203 44.62
AUDIKW_1 audi 77,651,847 943,645 82.28
A252 A252 111,640,032 16,003,001 6.94

CUDA Dynamic Parallelism for Sparse Linear Systems 23 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Implementations of the CG solver

For SPMV, we have tested the three described CUDA kernels

CUBLASL, uses the legacy programming interface of CUBLAS
The scalars are stored in CPU (some transfers are required)

The vector operations are performed by using CUBLAS kernels

CUDA replaces CUBLAS kernels by CUDA kernels
The scalars are stored in GPU

The vector operations are performed by CUDA kernels

MERGE applies the fusions defined on the dependency graph
New CUDA kernels implement the kernel fusion

DYNAMIC applied the fusions defined on the dependency graph
The CG CUDA kernels are launched from a CUDA kernel

CUDA Dynamic Parallelism for Sparse Linear Systems 24 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Results for the CSR-vector kernel

matrix
bmw crank F1 inline ldoor audi A252

V
ar

ia
tio

n 
w

.r.
t. 

C
U

B
LA

S
L 

po
lli

ng
 (i

n 
%

)

-6

-4

-2

0

2

4

6

8

10

12

14
CG Time Analysis for Polling Mode

CUDA
MERGE
DYNAMIC

CUDA Dynamic Parallelism for Sparse Linear Systems 25 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Results for the CSR-vector kernel

matrix
bmw crank F1 inline ldoor audi A252

V
ar

ia
tio

n 
w

.r.
t. 

C
U

B
LA

S
L 

po
lli

ng
 (i

n 
%

)

-15

-10

-5

0

5

10
CG Energy Analysis for Polling Mode

CUDA
MERGE
DYNAMIC

CUDA Dynamic Parallelism for Sparse Linear Systems 25 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Results for the CSR-vector kernel

matrix
bmw crank F1 inline ldoor audi A252

V
ar

ia
tio

n 
w

.r.
t. 

C
U

B
LA

S
L 

po
lli

ng
 (i

n 
%

)

-6

-4

-2

0

2

4

6

8

10

12

14
CG Time Analysis for Blocking Mode

CUBLASL
CUDA
MERGE
DYNAMIC

CUDA Dynamic Parallelism for Sparse Linear Systems 25 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Results for the CSR-vector kernel

matrix
bmw crank F1 inline ldoor audi A252

Va
ria

tio
n 

w
.r.

t. 
C

U
BL

AS
L 

po
llin

g 
(in

 %
)

-15

-10

-5

0

5

10
CG Energy Analysis for Blocking Mode

CUBLASL
CUDA
MERGE
DYNAMIC

CUDA Dynamic Parallelism for Sparse Linear Systems 25 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Results for the CSR-vector kernel

matrix
bmw crank F1 inline ldoor audi A252

V
ar

ia
tio

n 
w

.r.
t. 

C
U

B
LA

S
L 

po
lli

ng
 (i

n 
%

)

-6

-4

-2

0

2

4

6

8

10

12

14
CG Time Analysis for Polling Mode

CUDA
MERGE
DYNAMIC

matrix
bmw crank F1 inline ldoor audi A252

V
ar

ia
tio

n 
w

.r.
t. 

C
U

B
LA

S
L 

po
lli

ng
 (i

n 
%

)

-15

-10

-5

0

5

10
CG Energy Analysis for Polling Mode

CUDA
MERGE
DYNAMIC

matrix
bmw crank F1 inline ldoor audi A252

V
ar

ia
tio

n 
w

.r.
t. 

C
U

B
LA

S
L 

po
lli

ng
 (i

n 
%

)

-6

-4

-2

0

2

4

6

8

10

12

14
CG Time Analysis for Blocking Mode

CUBLASL
CUDA
MERGE
DYNAMIC

matrix
bmw crank F1 inline ldoor audi A252

Va
ria

tio
n 

w
.r.

t. 
C

U
BL

AS
L 

po
llin

g 
(in

 %
)

-15

-10

-5

0

5

10
CG Energy Analysis for Blocking Mode

CUBLASL
CUDA
MERGE
DYNAMIC

CUDA Dynamic Parallelism for Sparse Linear Systems 25 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Environment setup Experimental results

Results for the CSR-vector kernel

Summary of the variations (in %) w.r.t. CUBLASL-polling

CUDA CG solver Time Energy

mode Implement. Min Max Avg. Min Max Avg.

Polling

CUBLASL 0.00 0.00 0.00 0.00 0.00 0.00

CUDA 0.08 0.41 0.21 0.23 7.94 1.79

MERGE -3.07 -0.89 -1.71 -1.42 5.03 0.62

DYNAMIC -4.76 -1.54 -3.65 -3.32 -1.17 -2.58

Blocking

CUBLASL 0.62 12.88 7.16 -3.30 -13.48 -10.85

CUDA 0.78 9.39 4.74 -12.62 -4.45 -10.70

MERGE -1.70 -0.59 -1.06 -13.96 -8.31 -12.47

DYNAMIC -4.71 -1.54 -3.65 -14.50 -13.74 -14.23

CUDA Dynamic Parallelism for Sparse Linear Systems 26 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Conclusions and Future Work

We have exploited DP to implement a CUDA-CG solver

The CPU only launches a simple CUDA kernel

The GPU is in charge of executing the complete solver

The CPU can execute other tasks or be simply put to sleep

We have redesigned two CUDA kernels

cudaSdot_DP reduces the depth of the call tree

cudaSaxpy_DP improves the performances of the cudaSaxpy

Evaluation of the DP version of the CUDA-CG solver:
Reduce the execution time by 3.65% in both CUDA modes

Reduce the energy consumption by 14.23% in blocking mode

Future Work: Extent the DP to more complex solvers (PCG,
BiCG, . . . )

CUDA Dynamic Parallelism for Sparse Linear Systems 27 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Conclusions and Future Work

We have exploited DP to implement a CUDA-CG solver

The CPU only launches a simple CUDA kernel

The GPU is in charge of executing the complete solver

The CPU can execute other tasks or be simply put to sleep

We have redesigned two CUDA kernels

cudaSdot_DP reduces the depth of the call tree

cudaSaxpy_DP improves the performances of the cudaSaxpy

Evaluation of the DP version of the CUDA-CG solver:
Reduce the execution time by 3.65% in both CUDA modes

Reduce the energy consumption by 14.23% in blocking mode

Future Work: Extent the DP to more complex solvers (PCG,
BiCG, . . . )

CUDA Dynamic Parallelism for Sparse Linear Systems 27 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Conclusions and Future Work

We have exploited DP to implement a CUDA-CG solver

The CPU only launches a simple CUDA kernel

The GPU is in charge of executing the complete solver

The CPU can execute other tasks or be simply put to sleep

We have redesigned two CUDA kernels

cudaSdot_DP reduces the depth of the call tree

cudaSaxpy_DP improves the performances of the cudaSaxpy

Evaluation of the DP version of the CUDA-CG solver:
Reduce the execution time by 3.65% in both CUDA modes

Reduce the energy consumption by 14.23% in blocking mode

Future Work: Extent the DP to more complex solvers (PCG,
BiCG, . . . )

CUDA Dynamic Parallelism for Sparse Linear Systems 27 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Conclusions and Future Work

We have exploited DP to implement a CUDA-CG solver

The CPU only launches a simple CUDA kernel

The GPU is in charge of executing the complete solver

The CPU can execute other tasks or be simply put to sleep

We have redesigned two CUDA kernels

cudaSdot_DP reduces the depth of the call tree

cudaSaxpy_DP improves the performances of the cudaSaxpy

Evaluation of the DP version of the CUDA-CG solver:
Reduce the execution time by 3.65% in both CUDA modes

Reduce the energy consumption by 14.23% in blocking mode

Future Work: Extent the DP to more complex solvers (PCG,
BiCG, . . . )

CUDA Dynamic Parallelism for Sparse Linear Systems 27 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí



Motivation Fusions in the CG Method Exploiting DP to Enhance CG Experimental Evaluation Conclusions

Thanks for your attention !

Questions ?

CUDA Dynamic Parallelism for Sparse Linear Systems 28 J.I. Aliaga, D. Davidović, J. Pérez, E.S. Quintana-Ortí


	Motivation and Introduction
	Fusions in the CG Method
	CUDA kernels of CG
	How to merge CUDA kernels
	Merging CUDA kernels on CG

	Exploiting DP to Enhance CG 
	Features of Dynamic Parallelism 
	Improved CUDA kernels for DP
	Dynamic Parallelism version of CG

	Experimental Evaluation 
	Environment setup
	Experimental results

	Conclusions

