

Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners

José I. Aliaga

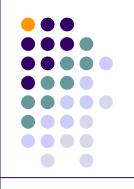
Leveraging task-parallelism in energy-efficient ILU preconditioners

- Universidad Jaime I (Castellón, Spain)
 - José I. Aliaga
 - Manuel F. Dolz
 - Rafael Mayo
 - Enrique S. Quintana-Ortí
- CIMNE (Barcelona, Spain)
 - Alberto F. Martín

2010 PFLOPS (10¹⁵ flops/sec.)

2010 JUGENE

- 10⁹ core level (PowerPC 450, 850MHz → 3.4 GFLOPS)
- 10¹ node level


(Quad-Core)

10⁵ cluster level

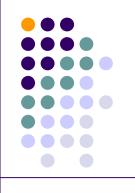
(73.728 nodes)

2010 PFLOPS (10¹⁵ flops/sec.)

2010 JUGENE

- 10⁹ core level (PowerPC 450, 850MHz → 3.4 GFLOPS)
- 10¹ node level

(Quad-Core)

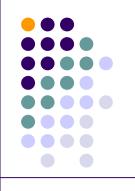

10⁵ cluster level

(73.728 nodes)

2020 EFLOPS (10¹⁸ flops/sec.)

- 10^{9.5} core level
- 10³ node level!
- 10^{5.5} cluster level

Green500 (November 2011*)


Rank	Site, Computer	#Cores	MFLOPS/W	LINPACK (TFLOPS)	MW to EXAFLOPS?
Green/Top				(20. 3)	
1/29	IBM Rochester – BlueGene/Q, Power BQC 16C 1.60 GHz	32.768	2.026.48	339,83	493,47
32/1	RIKEN AICS K Computer– Sparc64 VIIIfx (8-core)	705.024	830,18	10.510,00	1.204,60

Most powerful reactor under construction in France Flamanville (EDF, 2017 for US \$9 billion): 1,630 MWe

*Green500 June 2012 to be released today

Green500/Top500 (June 2012)

Rank	Site , Computer	#Cores	MFLOPS/W	LINPACK (TFLOPS)	MW to EXAFLOPS?
Green/1	ор			(11 231 3)	277 ti 201 0 .
1/252	DOE/NNSA/LLNL BlueGene/Q, Power BQC 16C 1.6GHz		2,100'88	86,35	475,99
20/1	DOE/NNSA/LLNL BlueGene/Q, Power BQC 16C 1.6GHz		2,069'04	16,324,75	483,31

Most powerful reactor under construction in France Flamanville (EDF, 2017 for US \$9 billion): 1,630 MWe

Reduce energy consumption!

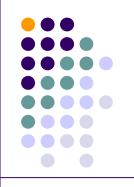
- Costs over lifetime of an HPC facility often exceed acquisition costs
- Carbon dioxide is a hazard for health and environment
- Heat reduces hw reliability

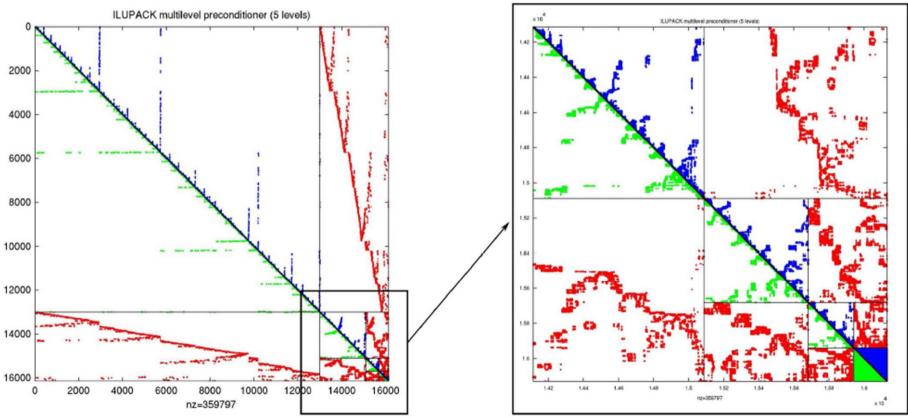
Personal view

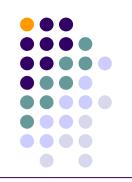
- Hardware features energy saving mechanism
- Scientific apps are in general energy oblivious

Outline

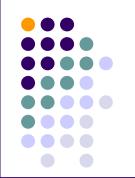
- Introduction
- ILUPACK
- Experimental setup
- Power model
 - Leveraging P-states
 - Leveraging C-states
- Conclusions

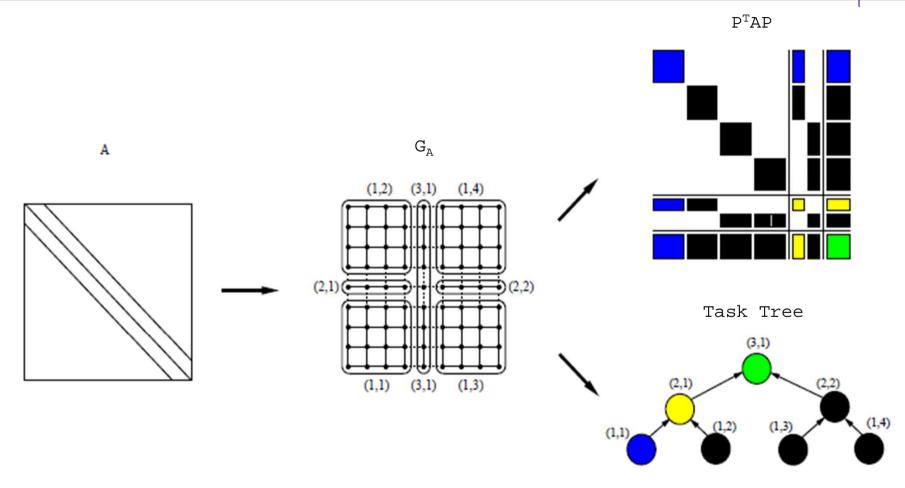

ILUPACK


- Incomplete LU Package (http://ilupack.tu-bs.de)
 - Numerical solution of large sparse linear systems (Ax=b)
 - Iterative Krylov subspace methods (CG, GMRES)
 - Multilevel ILU preconditioners for general/symmetric/Hermitian positive definite systems
 - Incorporate the inverse-based approach to the factorization, to control the growth of inverse triangular factors
 - Specially competitive for linear systems from 3D PDEs


ILUPACK

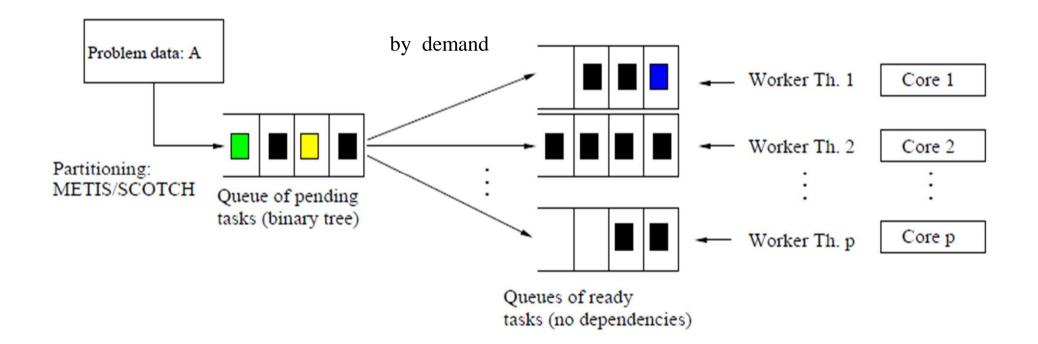
Factorization of a five-point matrix arising from Laplace PDE discretization.


ILUPACK Multi-threaded version (task parallelism)

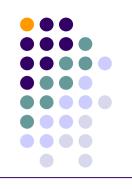


- Real s.p.d. systems
- Construction of preconditioner and PCG solver
- Algebraic parallelization based on a task tree
- Leverage task parallelism of the tree
- Dynamic scheduling via runtime (OpenMP)
 - "Exploiting thread-Level parallelism in the iterative solution of sparse linear systems". J. I. Aliaga, M. Bollhöfer, A. F. Martín, E. S. Quintana-Ortí. Parallel Computing, 2011

ILUPACK Multi-threaded version (task parallelism)



ILUPACK Multi-threaded version (task parallelism)



Run-time in charge of scheduling

Experimental setup

- 2 AMD Opteron 6128 processors (16 cores)
- 48 GB of RAM
- DVFS enabled per core (P-states)

P-state P_i	VCC_i	$ f_i $
P_0	1.23	2.00
P_1	1.17	1.50
P_2	1.12	1.20
P_3	1.09	1.00
P_4	1.06	0.80

C-states:

- C0: normal operation mode
- C1, C1E: disable core components (L1/L2 caches), clock signal, mem.
 controller,... increases energy savings at the expense of recovery time

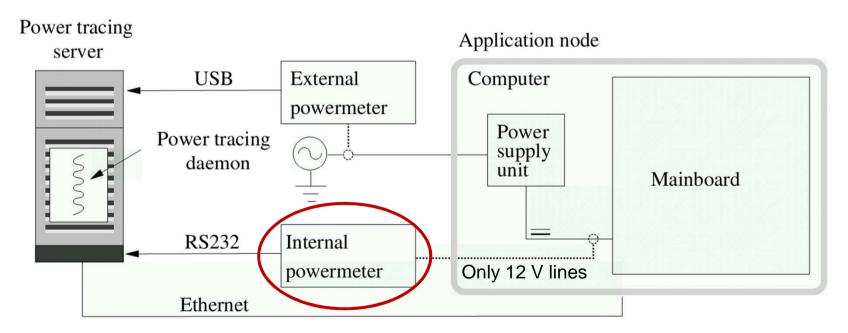
Experimental setup

Sparse linear system benchmark

Laplacian PDE equation

$$-\Delta u = f$$

in a 3D unit cube $\Omega = [0,1]^3$ with Dirichlet boundary conditions u = g on $\partial\Omega$.


- For the discretization,
 - $_{\circ}$ Ω replaced by NxNxN uniform grid
 - $_{\circ}$ Δu approximated by centered finite differences
- Linear system Au = b with $A \rightarrow n \times n$,
 - ∘ N = 252, $n = 252^3 \approx 16$ million unknowns
 - 111 millions of nonzero entries

Cost of energy Setup

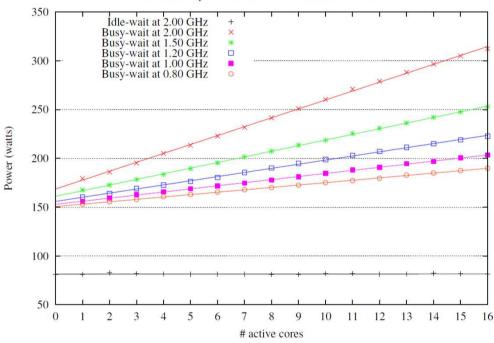
- DC powermeter with sampling freq. = 25 Hz
 - LEM HXS 20-NP transductors with PIC microcontroller
 - RS232 serial port

$$P^{T(otal)} = P^{(S)Y(stem)} + P^{C(PU)} = P^{Y} + P^{S(tatic)} + P^{D(ynamic)}$$

- P^{C} is the power dissipated by CPU (socket): $P^{S} + P^{D}$
- P^S is the static power
- P^D is dynamic power
- P^Y is the power of remaining components (e.g., RAM)

Considerations:

- P^D changes with the number of active cores
- P^{Y} and P^{S} are constants (though P^{S} grows with temperature)
- Hot system


System power:

Estimated as *idle* power

Due to off-chip components:
e.g., RAM (only mainboard)

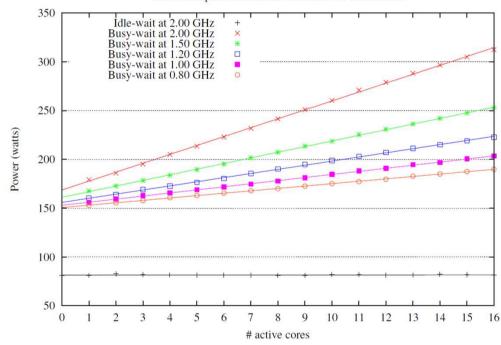
$$P = P^Y + P^S + P^D$$

Power dissipated as function of number of active cores

$$P^{Y} \approx P^{I} = 80.15 \text{ W}$$

CPU power:

- Busy-wait loops
- For each P-state and c
- Linear regression

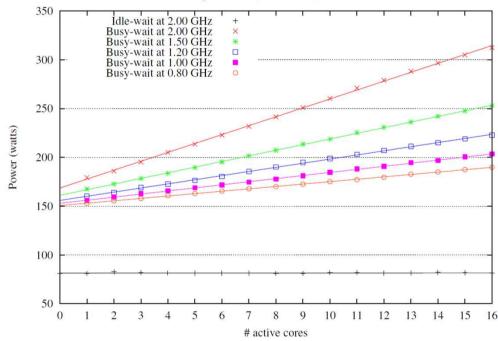

$$P = \alpha + \beta \cdot c$$

where

$$\alpha = P^Y + P^S$$
$$\beta \cdot c = P^D$$

$$P = P^Y + P^S + P^D$$

Power dissipated as function of number of active cores



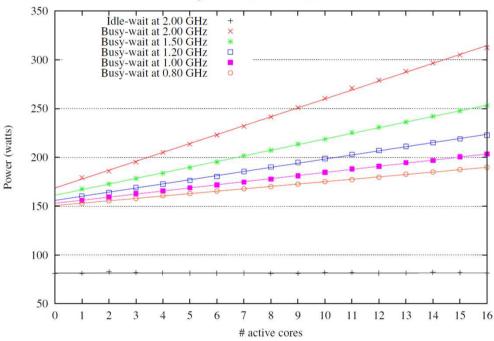
Static power:

$$P = P^Y + P^S + P^D$$

Power dissipated as function of number of active cores

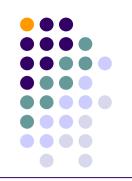
$$P_0^T(c) = \alpha_0 + \beta_0 \cdot c = 168.59 + 9.12 \cdot c \text{ W}$$

 $P_0^S(c) \approx \alpha_0 - P_0^T(c) = 168.59 - 80.15 = 88.44 \text{ W}$



Dynamic power:

$$P = P^Y + P^S + P^D$$


Power dissipated as function of number of active cores

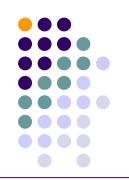
$$P_0^T(c) = \alpha_0 + \beta_0 c = 168.59 + 9.12 \cdot c \text{ W}$$

Busy-wait: $P_0^D \approx \beta_0 c = 9.12 \cdot c \text{ W}$

P-state P _i	V cc $_i$	fi	α_i	β_i	ΔP_i^S	ΔP_i^D
P_0	1.23	2.00	168.59	9.12	_	_
P_1	1.17	1.50	161.10	5.77	-9.52	-32.14
P_2	1.12	1.20	155.90	4.23	-17.09	-50.25
P_3	1.09	1.00	152.94	3.15	-21.47	-60.73
P_4	1.06	0.80	150.61	2.44	-25.73	-70.30

- To analyze the goodness of the α and β values we made an additional analysis.
- The static and dynamic power satisfied that $P^{S} \approx Vcc^{2}$, $P^{D} \approx Vcc^{2} \cdot f \cdot c$
- We have defined the variation operator as

$$\Delta x_i = (x_i - x_0)/x_0$$



P-state P _i	V cc $_i$	fi	α_i	β_i	ΔP_i^S	ΔP_i^D
P_0	1.23	2.00	168.59	9.12	_	-
P_1	1.17	1.50	161.10	5.77	-9.52	-32.14
P_2	1.12	1.20	155.90	4.23	-17.09	-50.25
P_3	1.09	1.00	152.94	3.15	-21.47	-60.73
P_4	1.06	0.80	150.61	2.44	-25.73	-70.30

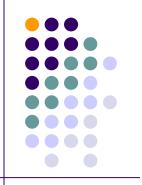
- Remember, $P^Y \approx P^I$ is constant
- Thus, e.g., moving all cores from P_0 to P_1 $P_1^T(16) = P_1^Y + P_0^S(1-0.0952) + P_0^D(16)(1-0.3214)$ = 259.19 W
- These values agree within 2.5% with the linear regression models

Power model Leveraging P-states

P-state P _i	V cc $_i$	f_i	α_i	β_i	ΔP_i^S	ΔP_i^D
P_0	1.23	2.00	168.59	9.12	_	-
P_1	1.17	1.50	161.10	5.77	-9.52	-32.14
P_2	1.12	1.20	155.90	4.23	-17.09	-50.25
P_3	1.09	1.00	152.94	3.15	-21.47	-60.73
P_4	1.06	0.80	150.61	2.44	-25.73	-70.30

- DVFS = P-states (see ACPI standard)
- Moving to a more power-friendly state results in ↓power
- ↓power = \puergy?
- For a compute-bounded operation, f_i is linear to performance and time⁻¹
- In principle, for a memory-bounded operation (ILUPACK), decreasing f_i should not affect time!

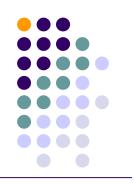
Power model Leveraging P-states


1st attempt: Dynamic Static voltage-frequency scaling

P-state P_i	T_i	\bar{P}_i^T	Ei	ΔT_i	$\Delta \bar{P}_{i}^{T}$	ΔE_i
P_0	34.06	282.87	9,634.78	_	_	_
P_1	43.57	235.64	10,267.72	21.88	-16.69	6.53
P_2	54.48	210.86	11.478.79	59.91	-25.45	19.20
P_3	61.58	197.01	12.132.79	80.73	-30.35	25.87
P_4	76.50	186.86	14,295.18	124.47	-33.94	48.28

Why?

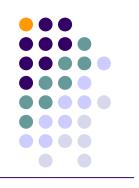
Power model Leveraging P-states


1st attempt: Dynamic Static voltage-frequency scaling

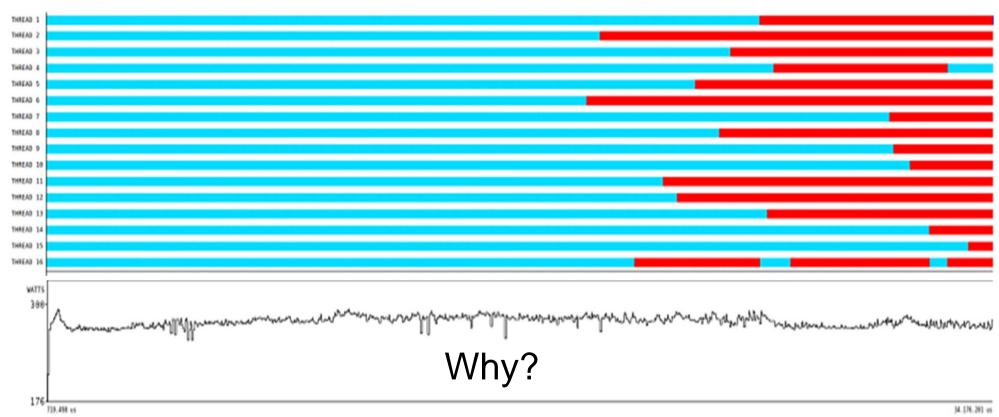
P-state P_i	Vcc _i	f_i	T_i	ΔT_i	BW_i	ΔBW_i
P_0	1.23	2.00	34.06	_	30.29	-
P_1	1.17	1.50	43.57	21.88	24.63	-18.67
P_2	1.12	1.20	54.48	59.91	20.46	-32.44
P_3	1.09	1.00	61.58	80.73	17.48	-42.30
P ₄	1.06	0.80	76.50	124.47	14.00	-53.77

Combined effect of linear decrease of CPU performance and memory bandwidth!

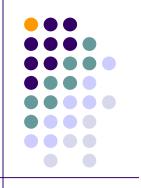
Power model Leveraging P-states



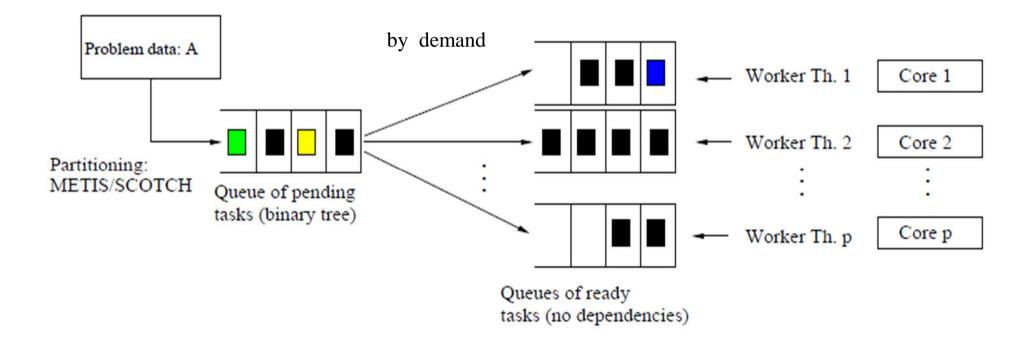
2nd attempt: DVFS during idle periods



Power model Leveraging P-states

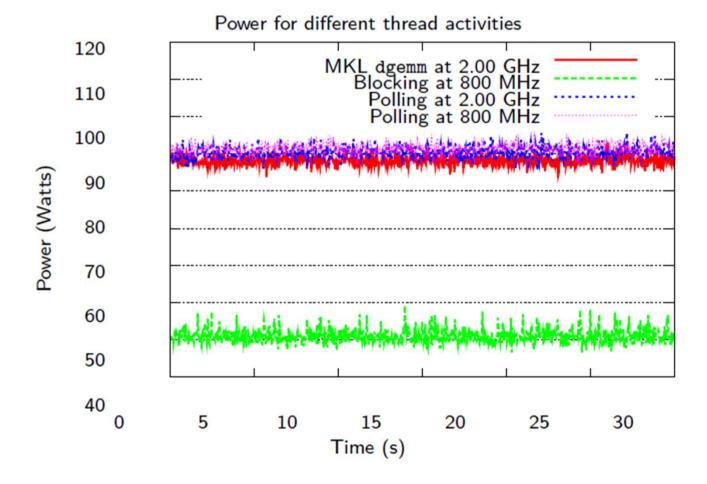


2nd attempt: DVFS during idle periods

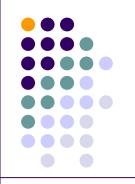


Power model Levaraging P-states

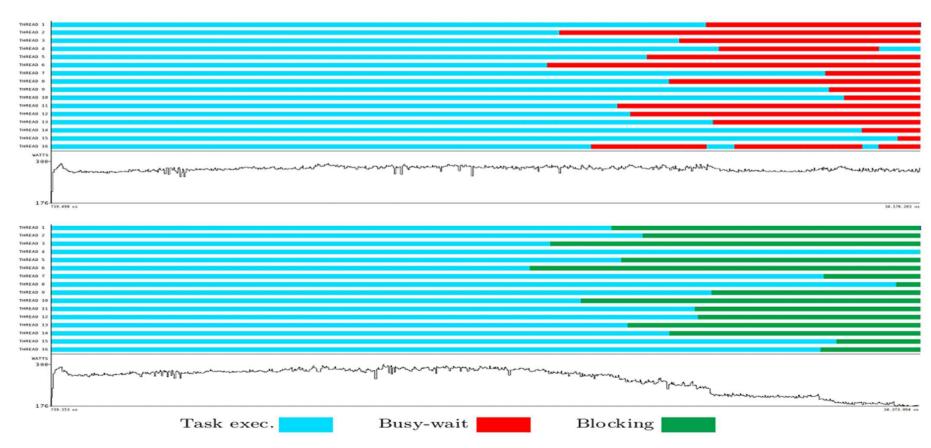
2nd attempt DVFS during idle periods



Power model Leveraging P-states



Active polling for work...



Power model Leveraging P- and C-states

3rd attempt: DVFS and idle-wait

Power model Leveraging P- and C-states

- 3rd attempt: DVFS and idle-wait:
 - Savings of 6.92% of total energy
 - Negligible impact on execution time
- ...but take into account that
 - Idle time: 23.70%
 - Dynamic power: 39.32%
 - Upper bound of savings: 39.32 · 0.2370 = 9.32%

Performance and energy consumption Summary

- A battle to be won in the core arena
 - More concurrency
 - Heterogeneous designs
- A related battle to be won in the power arena
 - "Do nothing, efficiently..." (V. Pallipadi, A. Belay) or "Doing nothing well" (D. E. Culler)
 - Don't forget the cost of system+static power

More information

- "Energy-aware dense and sparse linear algebra", P. Alonso, M.F.
 Dolz, R. Mayo, E.S. Quintana. PMAA 2012. London (UK)
- "Modeling power and energy of the task-parallel Cholesky factorization on multicore processors", P. Alonso, M. F. Dolz, R. Mayo, E. S. Quintana-Ortí. EnaHPC 2012. Hamburg (Germany)
- "Energy-efficient execution of dense linear algebra algorithms on multicore processors". P. Alonso, M. F. Dolz, R. Mayo, E. S. Quintana-Ortí. Cluster Computing, 2012

Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners

Thanks for your attention!

Any question?

