Parallel Solution of Large-Scale and Sparse Generalized algebraic Riccati Equations

J.M. Badía, R. Mayo & E.S. Quintana

Univ. Jaime I, Castellón

P. Benner

Technische Universität Chemnitz

Contents

1	Introduction	3	
2	Newton's method	6	
3	Low Rank Solution of Lyapunov Equations	g	
4	Parallel Solution	13	
5	Experimental Results	18	
6	Conclusions	21	

1 Introduction

Algebraic Riccati Equation (ARE)

$$0=A^TXE+E^TXA-E^TXBR^{-1}B^TXE+C^TQC=:\mathcal{R}(X)$$

$$A,\ E\in\mathbb{R}^{n\times n},\ B\in\mathbb{R}^{n\times m},\ C\in\mathbb{R}^{p\times n},$$

$$R\in\mathbb{R}^{m\times m} \text{ symmetric positive definite, and }$$

$$Q\in\mathbb{R}^{p\times p} \text{ symmetric positive semidefinite.}$$

Applications

- Model reduction,
- Filtering,
- Design of dynamical linear systems, ...

1 Introduction (II)

- Many methods for solving small dense AREs.
 - \triangleright Computational cost: $O(n^3)$.
 - \Rightarrow Spatial cost: $O(n^2)$.
- **Problem:** What about large equations?
 - n = 100,000
 - \triangleright Computations cost: $O(10^{15}) flops \approx 250 hours at 1 GFLOPs!!!$
 - \Rightarrow Spatial cost: $O(10^{10})$ bytes ≈ 80 GBytes!!!

1 Introduction (III)

The problem of the scale

- $> O(10^2)$:
 - MATLAB toolboxes.
 - sequential libraries, i.e. SLICOT.
- \triangleright $O(10^3)$:
 - parallel libraries for dense AREs, i.e. PLiCOC.
- $ightharpoonup O(10^4) O(10^5)$: We need new methods that,
 - exploit the sparsity (or band) of the matrices,
 - use parallel architectures.

2 Newton's method

Newton's method for AREs, [Kleinman'68, Penzl'00]

- 1) Compute the Cholesky factorization $Q=ar{Q}ar{Q}^T$
- 2) Compute the Cholesky factorization $R = \bar{R}\bar{R}^T$
- 3) $\bar{C} := \bar{Q}^T C$
- 4) $\bar{B} := E^{-1}BR^{-1} = ((E^{-1}B)\bar{R}^{-T})\bar{R}^{-1}$

repeat with $j := 0, 1, 2, \dots$

- 5) $K_j := E^T X_j B R^{-1} = E^T X_j E \bar{B}$
- 6) $\hat{C}_j := \left[egin{array}{c} ar{C} \ ar{R}^T K_j^T \end{array}
 ight]$
- 7) Solve for X_{j+1} :

$$0 = (A - BK_j^T)^T X_{j+1} E + E^T X_{j+1} (A - BK_j^T) + \hat{C}_j^T \hat{C}_j$$

until $||X_j - X_{j-1}|| < \tau ||X_j||$

2 Newton's method (II)

- ➤ If $(A BR^{-1}B^TX_0, E)$ is a stable matrix pair \Rightarrow The method converges quadratically to the solution X.
- ➤ Usually A, E are sparse, and m, $p \ll n$.
- **Problem:** *X* is dense.
- \triangleright Solution: Exploit that X is often of low-numerical rank.
 - \Rightarrow Approximate $X \approx \hat{R}\hat{R}^T$, $\hat{R} \in \mathbb{R}^{n \times r}$, with $r \ll n$.
- ightharpoonup Modify Newton's method to iterate on $\hat{R}_j \hat{R}_j^T$ instead of X_j .

2 Newton's method (III)

Basic operations and Computational cost

- 1) Cholesky factorization
- 2) Cholesky factorization
- 3) Dense matrix product
- 4) Dense/Sparse systems (with B/E) repeat with j := 0, 1, 2, ...
 - 5) 2 matrix products
 - 6) matrix product
- 7) Lyapunov equation until $||X_i X_{i-1}|| < \tau ||X_i||$

$$p^3/3$$

 $m^3/3$
 n^2p
 $2m^2n$ + Sparse solve (E)

$$4r_jmn, r_j \ll n$$
 $2m^2n$ see later

3 Low Rank Solution of Lyapunov Equations

Lyapunov equation to solve on each iteration of Newton's method

$$0 = (A - BK^T)^T Y E + E^T Y (A - BK^T) + \hat{C}^T \hat{C}$$

$$A,~E\in\mathbb{R}^{n imes n},~B,K\in\mathbb{R}^{n imes m}$$
, and $\hat{C}\in\mathbb{R}^{(p+m) imes n}$

- We are interested on computing a full-rank factor $S \in \mathbb{R}^{n \times s}$, with $s \ll n$, such that $SS^T \approx Y$.
- > Method:

Low-Rank Alternating Direction Implicit iteration (LR-ADI). [Penzl'00, LiW'02]

3 Low Rank Solution of Lyapunov Equations (II)

LR-ADI iteration

- 1) $V_0 := ((A BK^T)^T + \sigma_1 E^T)^{-1} \hat{C}^T$
- 2) $S_0 := \sqrt{-2 \alpha_1} V_0$

repeat with $l := 0, 1, 2, \dots$

- 3) $V_{l+1} := V_l \delta_l ((A BK^T)^T + \sigma_{l+1}E^T)^{-1}V_l$
- 4) $S_{l+1} := [S_l, \gamma_l V_{l+1}]$

until $\|\gamma_l V_l\|_1 < \tau \|S_l\|_1$

- $ightharpoonup \{\sigma_1, \sigma_2, \ldots\}$, is a cyclic set of (possibly complex) shift parameters (that is, $\sigma_l = \sigma_{l+t}$ for a given period t).
- The convergence rate depends on the shift parameters. Super-linear at best.
- At each iteration the dimension of S increases by (p+m) columns $\Rightarrow S_{\bar{l}} \in \mathbb{R}^{n \times \bar{l}(p+m)}$.

3 Low Rank Solution of Lyapunov Equations (III)

Main step of the LR-ADI iteration:

Solution of the linear system
$$((A - BK^T)^T + \sigma E^T)V = W$$

- ➤ **Problem:** even if *A* and *E* are sparse, the coefficient matrix is not necessarily sparse.
- > Solution: Apply the Sherman-Morrison-Woodbury (SMW) formula:

$$(\bar{A} - BK^T)^{-1} = \bar{A}^{-1} + \bar{A}^{-1}B(I_m - K^T\bar{A}^{-1}B)^{-1}K^T\bar{A}^{-1}.$$

3 Low Rank Solution of Lyapunov Equations (IV)

Application of the SMW formula.

- 1) $V := \bar{A}^{-T}W$
- 2) $T := \bar{A}^{-T}K$
- 3) $F := I_m B^T T$
- 4) $T := TF^{-1}$
- 5) $V := V + T(B^T V)$
- > Steps 1 and 2 require the solution of two sparse linear systems.
- > Steps 3, 4 and 5 operate with small dense matrices, $F \in \mathbb{R}^{m \times m}$, $T \in \mathbb{R}^{n \times m}$.
 - \Rightarrow Step 3, $2m^2n$ flops.
 - \Rightarrow Step 4, $2m^3/3 + m^2n$ flops.
 - \Rightarrow Step 5, 4mn(m+p) flops.

4 Parallel Solution

- Basic linear algebra operations:
 - Cholesky factorization.
 - Matrix product.
 - Linear system solution (dense, sparse and band).
- ➤ Main idea: Combine and exploit sequential and parallel libraries and tools.

4 Parallel Solution (II)

Multilayered architecture of the ARE solver

Parallel model reduction library

Sparse linear algebra

Parallel dense/banded linear algebra libraries

Communication and dense/banded linear algebra libraries

4 Parallel Solution (III)

Newton's method						
Step Operation		Matrices	Parallel lib.	Routine		
1	Factorize Q	All dense	ScaLAPACK	p_potrf		
2	Factorize R	All dense	ScaLAPACK	p_potrf		
3	Compute $ar{\mathcal{Q}}^T C$	All dense	PBLAS	p_gemm		
4.1	Solve $E^{-1}B$	Sparse E/	MUMPS or	_mumps_c or		
		dense (BR^{-1})	ScaLAPACK	p_gbsv		
4.2	Solve $((E^{-1}B)\bar{R}^{-T})\bar{R}^{-1}$	All dense	PBLAS	p_trsm $ imes 2$		
5	Compute $\hat{R}_j(\hat{R}_j^Tar{B})$	All dense	PBLAS	p_gemm $ imes 2$		
6	Compute $ar{R}^T K_j^T$	All dense	PBLAS	p_gemm		
7	Solve Lyapunov eq.	Sparse $E,A/$	SpaRed	LR-ADI iter.		
		dense B, K_j				

4 Parallel Solution (IV)

LR-ADI iteration					
Step	Operation	Matrices	Parallel lib.	Routine	
1	Compute V_0	Sparse $E,A/$	SpaRed	SMW formula	
		dense B,K,\hat{C}			
3	Compute V_{l+1}	Sparse $E,A/$	SpaRed	SMW formula	
		dense B, K, V_l			

4 Parallel Solution (V)

SMW formula						
Step	Operation	Matrices	Matrices Parallel lib.			
1	Solve $ar{A}^{-T}W$	Sparse $ar{A}/$	MUMPS or	_mumps_c		
		dense W	ScaLAPACK	p_gbsv		
2	Solve $ar{A}^{-T}K$	Sparse $ar{A}$ /	MUMPS or	_mumps_c		
		dense K	ScaLAPACK	p_gbsv		
3	Compute $I_m - B^T T$	All dense	PBLAS	p_gemm		
4	Solve TF^{-1}	All dense	ScaLAPACK	p_gesv		
5	Compute $V + T(B^T V)$	All dense	PBLAS	p_gemm $ imes 2$		

5 Experimental Results

Experimental environment

- > ra: cluster with 34 nodes
- ➤ Node:
 - Intel Xeon Processor@2.4 GHz
 - ⇒ 1GByte RAM, 512 KByte L2 cache
- Myrinet network (2Gbps)
- Software:
 - Intel Compilers v.9
 - ➡ MPI v.1.2.5. dev: ch_gm

5 Experimental Results (II)

Matrices examples

Example 1:

- Origin: Finite difference discretization.
- Equation: 2-D heat equation.
- \Rightarrow Size: variable (i.e. n = 160,000).
- \Rightarrow SISO system, m = p = 1.

Example 2:

- Application: Manufacturing steel profiles with moderate temperature gradients.
- Equation: 2-D heat equation.
- \Rightarrow Size: n = 79,841.
- $\Rightarrow m = 7, p = 6.$

5 Experimental Results (III)

Execution times of the ARE solver

 \blacktriangleright 16 processors (4 × 4 ScaLAPACK grid, block size nb : 32).

	n	#iter.	#shifts	Avg. #iter.	r	Ex. time
		Newton	LR-ADI	LR-ADI		
Example 1	160,000	11	10	80	160	1h 25m 5s
Example 2	79,841	5	20	100	1300	1h 4m 30s

- The main factor is the memory space. Virtual memory needed with less processors.
- The parallel performance strongly depends on
 - the sparse system solver,
 - \Rightarrow the sparsity pattern of the matrix pair (A, E).

6 Conclusions

- \blacktriangleright Large sparse AREs $O(10^5)$ can be solved,
 - Exploiting the sparsity of the matrices,
 - Using parallel architectures to increase,
 - the computational power,
 - the memory size.
- > A new parallel solver has been implemented: SpaRed . Main features:
 - Newton's iteration exploiting the low rank of the solution.
 - LR-ADI iteration to solve a Lyapunov equation on each Newton's iteration.
 - SMV formula to exploit the sparsity of the matrices on the LR-ADI iteration.
 - Combination and explotation of different parallel libraries: PBLAS, ScaLAPACK, MUMPS, ...

