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Linear Systems

Generalized linear time-invariant systems:
Ei(t) = Ax(t)+ Bu(t), t>0, z(0)=a2a",
y(t) = Cx(t) + Du(t), t>0,
e 1 state-space variables, i.e., n is the order of the system;
e m Inputs,
® p outputs,
o 1A is c-stable.

Corresponding TFM:
G(s)=C(sE—A)"'B+D.
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Model Reduction: Purpose

Given

Ex(t) = Ax(t) + Bu(t), t>0, z(0)=2",
y(t) = Czx(t)+ Du(t), t>0,
find a reduced model
E.2.(t) = Az (t)+ Bu(t), t>0, x2.0)=a2a
yr(t) = Crx.(t) + Dyu(t), t>0,
of order » << n and output error
y—1y=Gu—Gu=(G—-Gu
such that

ly — y.|| and |G — G,|| are “small”!
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Model Reduction: MEMS Example

e Co-integration of solid fuel with
silicon pi-machined system.

e Used for “nano-satellites” and gas
generation.

e Design problem: reach the ignition
temperature within the fuel without
reaching the critical temperature at
the neighbour {i-thrusters
(boundary).

n = 79,171 states, m = 1 input, p = 7 outputs.
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Outline

e Methods for model reduction: SRBT.

e Parallel solution of large-scale Lyapunov equations and other kernels.
e Analysis.

e Experimental results.

e Conclusions and future work.
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Methods for Model Reduction

(Antoulas'02):

e Krylov-based approximation methods.
— Numerically efficient and applicable to large-scale (sparse) systems.
e SVD-based approximation methods.

— Preserve of stability.
— Provide a global error bound on |G — G,||.

— Numerically efficient but applicable to large-scale (sparse) systems?
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Balanced Truncation (Moore, 81)

Procedure composed of three steps:

1. Solve the “coupled” generalized Lyapunov matrix equations

AW.ET + EW.AT + BBT = 0,
A"TW.E+ ETW,A+CTC = 0,

for S, R such that W, = STS, W, = ETW,E = RTR.

2. Compute
T
SR =Uxv! =[U, U,] [21 S ] [vlTla
2

with ¥y € R™" ¥, € R(=r)x(n—r)
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Balanced Truncation (Cont. I)

3. In the square-root method (Heath et al, 87; Tombs, Postlethwaite'87):
T, =5 "VT'R and T, =STUn; "2,
and (ET7 AT? BT7 C?“? DT) — (CFZECFH CZ}ATT) Y}Ba CT’H D)

e The Hankel singular values, ¥ = diag(oy, ..., 0,), provide a computable
error bound:

|G — Grlle <2 Zzzrﬂ k-

This allows and adaptive choice of r.
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Balanced Truncation (Cont. II)

Given (E, A, B,C, D) with E and A (sparse and) large, and m,p < n...

How do we solve/parallelize the previous numerical problems?
1. Coupled Lyapunov equations.
2. SVD of matrix product.

3. Application of the SR formulae to obtain the reduced-order model.
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1. Solution of Coupled Lyapunov Equations

Generalization of the LR-ADI iteration in (Penzl, 98; Li, White, 99-02):
U = Y1 (A—I—TlE)_lB,

Y1 = Uy,

repeat 7 =2,3,...
Uj = 7 (Uj_l — (Tj —|—m><A —|-TjE)_1EUj_1) ,
Y; = [Yj—hUj]v

where v; = \/Re(7;11)/Re(T;).

o7 ={7,T,...,Ts} are the “shifts".
e Stop when contribution of U, to Y; is “small”.

e Super-linear convergence.

o After [ iterations, W, = STS ~ V}Y}!, with ¥; € R™(m),
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1. Solution of Coupled Lyapunov equations (Cont. |)

Implementation:

e Set 7 must be closed under complex conjugate computed by means of
Arnoldi/Lanczos iterations.

e The LR-ADI iteration requires the solution of (sparse) linear systems
with coefficient matrix £//A and matrix-vector product involving F//A.

e The iteration is applied cyclically: 7,4 = 7
— reuse factorization (A + 7,E) = L;U; if available.

e Simplified formulation for symmetric definite pencils (E, A).
e Convergence criterion can be efficiently computed.

e Compression via RRQR possible.
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1. Solution of Coupled Lyapunov equations (Cont. Il)

Parallelization:
e Perform [ iterations
Ui =j (Uj-1 = (1 + Tm)(A+ ,E) " EUj)
with s different shifts.
e There is little parallelism in solving each one of the systems in parallel.

e Given that [ is usually of O(10) and s < [ a coarse-grain approach is
feasible
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1. Solution of Coupled Lyapunov equations (Cont. IlI)

Consider two different classes of tasks:
o [}: Factorize (A+ 1. E), k=1,2,...,s.
e 5. Solve (A + TkE>_1(EUk_1), k=12 ...,1.

The data dependencies graph (for s = 5 factorizations) is:
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1. Solution of Coupled Lyapunov equations (Cont. V)

Two different coarse-grain parallel algorithmic schemes:

Heterogeneous scheme Homogeneous scheme

e Heterogeneous (HT) scheme: All factorization pass through P; allowing
a producers/consumer (P2,P3,P4/P1) scheme.

e Homogeneous (HM) scheme: Solutions move among processors resulting
in an homogeneous role for all computational resources.

75
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1. Solution of Coupled Lyapunov equations (Cont. V)

Two different coarse-grain parallel implementations:

e Multithreaded (MT) implementation. One thread per processor.
All data must be shared.

e Multiprocess (MP) implementation. One process per processor:
message-passing.
Data is communicated via MPI or shared-memory zones.

Efficiency of solutions HT-MT, HT-MP, HM-MT, HM-MP depends on:
e Values of s (selected by user) and [ (not known a priori).

e Ratio of factorization vs. solution execution times.

e Number of resources.

e Performance of communication mechanism.
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2. SVD of Matrix Product

Replace the Cholesky factors by their low-rank approximations in

SRT ~ STR, =UxVT.

Implementation:

e The product S/ R; is of order (I-m) x (I - p), m, p < n,
— use dense LA methods.

e Accuracy can be enhanced by computing the SVD without computing
explicitly the product, but it is difficult to parallelize.

Parallelization:

e ScaLAPACK.
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3. Application of SRBT Formulae

Implementation:
e Computation of the projection matrices
T, = %, PVIR],
T, = SU%,
only requires dense LA methods.

e Computation of the reduced-order matrices

b, = 1T1ET, = Ira Ar — EATra
B, = TlBa CT — CTT?

can be easily done exploiting any sparsity/pattern in A, B, or C'.
Parallelization:

e Parallel implementation of sparse matrix product.
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Summary of model reduction procedure

Lyapunov SR
equations SVD method
Comput. _ Comp. Comp.
shifts LR=ADI projectors model

i i i i

M-V product M-V product Matrix product Matrix product Matrix produc
Linear systems Linear systems SVD

sparse/banded dense sparse/banded

The main computational cost is in the LR-ADI iteration!
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Analysis

e Given factorization and solution times T'» and T, resp., the sequential
time is
TSGQZTF'S—FTS'Z
e At best, all factorizations but the first can be overlapped with the
(sequential) solutions:

Toar =17 +Tg -1




6ara|le| Model Reduction of Sparse Systems PMAA'06 - September 20(h

Analysis (Cont. I)

e Heterogeneous scheme:

1 1 2 3 4 5
2 3 4 S 6

THE =T 4+ max(0, T — Ts(n, — 1)) ([s/n,] — 1)

par

e Homogeneous scheme:

gap gap
<> <>
1 1 3 3 5 6
2 4 4 6

THM — T 4+max(0, [(s—n,)/(n,—1)] -max(0, Tr — Ts(n,—1)) —Ts)
with the minimum attained for n, > (?—?1 + 1 in both schemes.
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Experimental Results

Computing facility:

e SGI Altix 350: 7 nodes x 2 Intel
ltanium2 processors@1.5GHz, with
30 GB of shared RAM connected via
a SGI NUMAIlink

e IEEE double precision arithmetic.
e LAPACK and BLAS in MKL 8.1
e Sparse solver in MUMPS 4.6.2
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Experimental Results (Cont. 1)

Testbed: Oberwolfach model reduction benchmark collection
(http://www.imtek.uni-freiburg.de/simulation/benchmark/)

e Convective thermal flow problems: chip vO.
e Micropyros thruster: t3d1.

e Semi-discretized heat transfer problem for optimal cooling of steel
profiles: rail 202009.
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Experimental Results (Cont. Il)

Comparison of theoretical versus experimental data

chip—vO; HT-MT
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Experimental Results (Cont. Ill)

Comparison of theoretical versus experimental data

chip—v0; HM-MT
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Experimental Results (Cont. 1V)

Comparison of theoretical versus experimental data

t3dl; HM—-MP
60 T T T T T T T T
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Experimental Results (Cont. V)

Comparison of theoretical versus experimental data
Heterogeneous scheme and multiprocess implementation?

Requires passing of data structures corresponding to (sparse) factorizations
between processes — hidden under sparse solver
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Experimental Results (Cont. V)

Comparison of HM versus HT schemes

chip—v0; HT and HM-MT
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Experimental Results (Cont. VI)

What can be expected for the speed-up of HT?

PMAA'06 - September 20(h

Example | s | Tp | | | Ts | Tyeq |min(7p,,) | max(S,)

chip vO |20 1.10| 59|0.06 25.74| 485 | 529

t3dl 2911.49/140|0.07|52.75| 10.94 4.82
rail 20209|25/0.35 78 0.09  5.88 7.60 2.09
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Experimental Results (Cont. VII)

Speed-up of HM-MP
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Concluding Remarks

e Parallel SRBT algorithms in SpaRed allow reduction of sparse systems
with O(10°) states.

e Coarse-grain parallelization is possible, in general with better

performances than using parallel implementations of sparse linear system
solvers (MUMPS, SuperLU, etc.)

e Two schemes and two implementations — four variants.
e Theoretical models match experimental results with high accuracy.

e Parallel performance strongly depends on the problem. Different cases
present extreme dissimilar values for T'r, T, [, s,...

e HM is better than HT when n, is small. As n, increases, the efficacy of
both models tends to be equal.
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Future Work

e Improve serial codes for factorization and solution: band codes in
LAPACK. Sparse matrix-vector product.

e Combine MP and MT in a hybrid algorithm: Several threads to solve
concurrently the triangular linear systems (the bottleneck of the parallel
algorithm).

e Experiment with other sparse solvers: WSMP, UMFPACK, etc.
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Thank you for your attention

Questions?
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