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Linear Systems

Generalized linear time-invariant systems:

Eẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) + Du(t), t ≥ 0,

• n state-space variables, i.e., n is the order of the system;

• m inputs,

• p outputs,

• E−1A is c-stable.

Corresponding TFM:

G(s) = C(sE − A)−1B + D.
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Model Reduction: Purpose

Given
Eẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) + Du(t), t ≥ 0,

find a reduced model

Erẋr(t) = Arxr(t) + Bru(t), t > 0, xr(0) = x0
r,

yr(t) = Crxr(t) + Dru(t), t ≥ 0,

of order r � n and output error

y − yr = Gu−Gru = (G−Gr)u

such that

‖y − yr‖ and ‖G−Gr‖ are “small”!
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Model Reduction: MEMS Example

• Co-integration of solid fuel with
silicon µ-machined system.

• Used for “nano-satellites” and gas
generation.

• Design problem: reach the ignition
temperature within the fuel without
reaching the critical temperature at
the neighbour µ-thrusters
(boundary).

n = 79,171 states, m = 1 input, p = 7 outputs.
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Outline

• Methods for model reduction: SRBT.

• Parallel solution of large-scale Lyapunov equations and other kernels.

• Analysis.

• Experimental results.

• Conclusions and future work.
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Methods for Model Reduction

(Antoulas’02):

• Krylov-based approximation methods.

– Numerically efficient and applicable to large-scale (sparse) systems.

• SVD-based approximation methods.

– Preserve of stability.

– Provide a global error bound on ‖G−Gr‖.
– Numerically efficient but applicable to large-scale (sparse) systems?
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Balanced Truncation (Moore, 81)

Procedure composed of three steps:

1. Solve the “coupled” generalized Lyapunov matrix equations

AWcE
T + EWcA

T + BBT = 0,

ATŴoE + ETŴoA + CTC = 0,

for S, R such that Wc = STS, Wo = ETŴoE = RTR.

2. Compute

SRT = UΣV T = [ U1 U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
,

with Σ1 ∈ Rr×r, Σ2 ∈ R(n−r)×(n−r).
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Balanced Truncation (Cont. I)

3. In the square-root method (Heath et al, 87; Tombs, Postlethwaite’87):

Tl = Σ
−1/2
1 V T

1 R and Tr = STU1Σ
−1/2
1 ,

and (Er, Ar, Br, Cr, Dr) = (TlETr, TlATr, TlB, CTr, D).

• The Hankel singular values, Σ = diag(σ1, . . . , σn), provide a computable
error bound:

‖G−Gr‖∞ ≤ 2
∑n

k=r+1 σk.

This allows and adaptive choice of r.
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Balanced Truncation (Cont. II)

Given (E, A, B, C,D) with E and A (sparse and) large, and m, p � n. . .

How do we solve/parallelize the previous numerical problems?

1. Coupled Lyapunov equations.

2. SVD of matrix product.

3. Application of the SR formulae to obtain the reduced-order model.
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1. Solution of Coupled Lyapunov Equations

Generalization of the LR-ADI iteration in (Penzl, 98; Li, White, 99-02):

U1 = γ1 (A + τ1E)−1B,
Y1 = U1,
repeat j = 2, 3, . . .

Uj = γj

(
Uj−1 − (τj + τj−1)(A + τjE)−1EUj−1

)
,

Yj = [Yj−1, Uj] ,

where γj =
√

Re(τj+1)/Re(τj).

• τ = {τ1, τ2, . . . , τs} are the “shifts”.

• Stop when contribution of Uj to Yj is “small”.

• Super-linear convergence.

• After l iterations, Wc = STS ≈ YlY
T
l , with Yl ∈ Rn×(l·m).
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1. Solution of Coupled Lyapunov equations (Cont. I)

Implementation:

• Set τ must be closed under complex conjugate computed by means of
Arnoldi/Lanczos iterations.

• The LR-ADI iteration requires the solution of (sparse) linear systems
with coefficient matrix E/A and matrix-vector product involving E/A.

• The iteration is applied cyclically: τj+s = τl

→ reuse factorization (A + τjE) = LjUj if available.

• Simplified formulation for symmetric definite pencils (E, A).

• Convergence criterion can be efficiently computed.

• Compression via RRQR possible.
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1. Solution of Coupled Lyapunov equations (Cont. II)

Parallelization:

• Perform l iterations

Uj = γj

(
Uj−1 − (τj + τj−1)(A + τjE)−1EUj−1

)
,

with s different shifts.

• There is little parallelism in solving each one of the systems in parallel.

• Given that l is usually of O(10) and s � l a coarse-grain approach is
feasible
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1. Solution of Coupled Lyapunov equations (Cont. III)

Consider two different classes of tasks:

• Fk: Factorize (A + τkE), k = 1, 2, . . . , s.

• Sk: Solve (A + τkE)−1(EUk−1), k = 1, 2, . . . , l.

The data dependencies graph (for s = 5 factorizations) is:

F1

F2

F3

F4

F5

S2

S1

S3

S4

S5 S6 S7 ...
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1. Solution of Coupled Lyapunov equations (Cont. IV)

Two different coarse-grain parallel algorithmic schemes:
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F7
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...
...

F8

S5

S6

Heterogeneous scheme Homogeneous scheme

P2

P3

P4

P1 F1

F2

F3

F4

F5

• Heterogeneous (HT) scheme: All factorization pass through P1 allowing
a producers/consumer (P2,P3,P4/P1) scheme.

• Homogeneous (HM) scheme: Solutions move among processors resulting
in an homogeneous role for all computational resources.
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1. Solution of Coupled Lyapunov equations (Cont. V)

Two different coarse-grain parallel implementations:

• Multithreaded (MT) implementation. One thread per processor.
All data must be shared.

• Multiprocess (MP) implementation. One process per processor:
message-passing.
Data is communicated via MPI or shared-memory zones.

Efficiency of solutions HT-MT, HT-MP, HM-MT, HM-MP depends on:

• Values of s (selected by user) and l (not known a priori).

• Ratio of factorization vs. solution execution times.

• Number of resources.

• Performance of communication mechanism.
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2. SVD of Matrix Product

Replace the Cholesky factors by their low-rank approximations in

SRT ≈ ŜT
l R̂l = UΣV T .

Implementation:

• The product ŜT
l R̂l is of order (l ·m)× (l · p), m, p � n,

→ use dense LA methods.

• Accuracy can be enhanced by computing the SVD without computing
explicitly the product, but it is difficult to parallelize.

Parallelization:

• ScaLAPACK.
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3. Application of SRBT Formulae

Implementation:

• Computation of the projection matrices

Tl = Σ
−1/2
1 V T

1 R̂T
k ,

Tr = ŜkU1Σ
−1/2
1 ,

only requires dense LA methods.

• Computation of the reduced-order matrices

Er = TlETr = Ir, Ar = TlATr,
Br = TlB, Cr = CTr,

can be easily done exploiting any sparsity/pattern in A, B, or C.

Parallelization:

• Parallel implementation of sparse matrix product.
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Summary of model reduction procedure

Comput.
shifts LR−ADI

Lyapunov
equations SVD SR

method

Linear systems
Eigenvalues

SVD
Matrix product

Comp.
projectors

Comp.
model

Matrix product Matrix productM−V product

dense

Linear systems
M−V product

sparse/bandedsparse/banded

The main computational cost is in the LR-ADI iteration!
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Analysis

• Given factorization and solution times TF and TS, resp., the sequential
time is

Tseq = TF · s + TS · l

• At best, all factorizations but the first can be overlapped with the
(sequential) solutions:

P2

P3

P4

P1 F1

F2

F3
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...S1 S2 S3 S4
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...

S

...

l

Fs

Tpar = TF + TS · l
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Analysis (Cont. I)

• Heterogeneous scheme:

1
2

1
3
2 3

4
4

5
5

6

gap gapgap

THT
par = Tpar + max(0, TF − TS(np − 1)) (ds/npe − 1)

• Homogeneous scheme:

1
2

1 3
2

gap gap

3
4

6
4

5
6

THM
par = Tpar+max(0, d(s−np)/(np−1)e·max(0, TF−TS(np−1))−TS)

with the minimum attained for np ≥ dTF
TS
e + 1 in both schemes.
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Experimental Results

Computing facility:

• SGI Altix 350: 7 nodes × 2 Intel
Itanium2 processors@1.5GHz, with
30 GB of shared RAM connected via
a SGI NUMAlink

• ieee double precision arithmetic.

• LAPACK and BLAS in MKL 8.1

• Sparse solver in MUMPS 4.6.2
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Experimental Results (Cont. I)

Testbed: Oberwolfach model reduction benchmark collection
(http://www.imtek.uni-freiburg.de/simulation/benchmark/)

• Convective thermal flow problems: chip v0.

• Micropyros thruster: t3dl.

• Semi-discretized heat transfer problem for optimal cooling of steel
profiles: rail 20209.
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Experimental Results (Cont. II)

Comparison of theoretical versus experimental data
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Experimental Results (Cont. III)

Comparison of theoretical versus experimental data
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Experimental Results (Cont. IV)

Comparison of theoretical versus experimental data
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Experimental Results (Cont. V)

Comparison of theoretical versus experimental data

Heterogeneous scheme and multiprocess implementation?

Requires passing of data structures corresponding to (sparse) factorizations
between processes → hidden under sparse solver
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Experimental Results (Cont. V)

Comparison of HM versus HT schemes
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Experimental Results (Cont. VI)

What can be expected for the speed-up of HT?

Example s TF l TS Tseq min(Tpar) max(Sp)

chip v0 20 1.10 59 0.06 25.74 4.85 5.29
t3dl 29 1.49 140 0.07 52.75 10.94 4.82

rail 20209 25 0.35 78 0.09 5.88 7.60 2.09
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Experimental Results (Cont. VII)

Speed-up of HM-MP
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Concluding Remarks

• Parallel SRBT algorithms in SpaRed allow reduction of sparse systems
with O(105) states.

• Coarse-grain parallelization is possible, in general with better
performances than using parallel implementations of sparse linear system
solvers (MUMPS, SuperLU, etc.)

• Two schemes and two implementations → four variants.

• Theoretical models match experimental results with high accuracy.

• Parallel performance strongly depends on the problem. Different cases
present extreme dissimilar values for TF , TS, l, s,. . .

• HM is better than HT when np is small. As np increases, the efficacy of
both models tends to be equal.
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Future Work

• Improve serial codes for factorization and solution: band codes in
LAPACK. Sparse matrix-vector product.

• Combine MP and MT in a hybrid algorithm: Several threads to solve
concurrently the triangular linear systems (the bottleneck of the parallel
algorithm).

• Experiment with other sparse solvers: WSMP, UMFPACK, etc.

30& %



' $
Parallel Model Reduction of Sparse Systems PMAA’06 - September 2006

Thank you for your attention

Questions?
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