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In this talk I will describe two parallel algorithms implemented using n hybrid MPI plus

OpenMP programming model.

I will compare these algorithms with their versions implemented using a pure

message-passing model.
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Definition

Parallel architecture that combines distributed memory between different nodes with

shared memory within each node.

ä Mail Goal

Searching scalability with the available technology and programming models

ä Examples

í Clusters of Symmetric Multiprocessors (SMP)

í Large supercomputers: Earth Simulator, Mare Nostrum, etc.
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I will use the following simple definition of hybrid parallel architecture. "A hybrid parallel

architecture combines distributed memory between different nodes with shared

memory within each node."

The main goal of using this kind of architectures is try to obtain the maximum scalability

by using the available technology and programming models.

The number of hybrid architectures is clearly increasing, and they include an important

part of the current clusters of personal computers in which each node contains more

than one processor.

Hybrid architectures also include many of the larger supercomputers, like the Earth

simulator or the Mare Nostrum supercomputers.
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Programming Models

ä Data Parallelism: HPF

ä Message Passing Model: Pure MPI

ä Hybrid Model: Message Passing + Shared Memory

í Message passing between nodes: MPI

í Shared memory within node: OpenMP
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We can use different programming models to program hybrid architectures:

For example, we can use some compiler based on a data parallelism model, like for

example High Performance Fortran.

We can program hybrid architectures using a pure message-passing model and

considering all the processors at the same level.

However, the most natural way to program a hybrid architecture seems to use a hybrid

programming model. In this case a message-passing model is applied between the

different nodes, and a shared memory model is applied within each node.

Trying to exploit the current standards, we have used MPI to apply the

message-passing model and OpenMP to apply the shared memory model.
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First Approach

ä Parallelization of two simple algorithms:

í Sparse matrix-vector product

í Dynamic programming problem

ä Two schemes of parallelism

í Embarrasingly parallel computation: Single computation step + single

communication step

í Synchronous computation: Multiple computation +

communication/synchronisation step



Notes

I testtesttesttesttestParallelization of GSL on Clusters of Symmetric Multiprocessors – 4.1 / 24

In our first approach to apply the hybrid programming model we have solved two simple

problems: the sparse matrix-vector product and the dynamic programming problem.

Each of these problems uses a different scheme of parallelism:

The sparse matrix-vector product uses what we can call embarrasingly parallel

computation. In this case the parallel solution includes a first step of fully parallel

computation without communications and a second step of communications.

On the other hand, the solution of the dynamic programming problem uses what is

called a synchronous computation. In this case the parallel algorithm performs several

iterations. Each iteration includes a computation step and a synchronization step based

on collective communications.

Next I will describe now the parallelization of these two problems.
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Basic sparse linear algebra operation arising in multiple areas: structural analysis,

pattern matching, control of processes, tomography, etc.
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The sparse matrix-vector product is a well know operation that arises in multiple areas,

including for example structural analysis, pattern matching, control of processes and

many others.

In this problem, a sparse matrix A is multiplied by a dense vector x, and the solution is

stored in another dense vector y.
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Rowwise parallelization. Pure MPI version
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There are different parallel implementations of the sparse matrix-vector product. We

have implemented a rowwise parallelization. In this algorithm we exploit the fact that

different elements of the solution vector can be computed fully in parallel as dot

products of different rows of the matrix and the vector x.

In a Pure MPI version of the product we can distribute different blocks of rows of the

matrix to different MPI processes and duplicate the vector x on each process.

Each process computes fully in parallel a block of the solution vector. If we want to

duplicate all the solution in all the processes, once the computations are finished we

have to perform an allgather operation.

This version of the product can be executed on a distributed memory architecture with

one processor per node or in a hybrid architecture with several processors per node. In

the hybrid case, we can exploit the hybrid architecture by using an specific version of

the MPI library that performs the communication among the processes using the

communication network between the nodes or the shared memory within each node.
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Pure MPI code

for ( i = 0 ; i < l oca l_s i ze1 ; i ++) { / / l o c a l dot products

pos = rowpt r [ i ] ; / / f i r s t element i n row i

k = row_index ( pos ) ;

temp = 0 . 0 ;

for ( j = 0 ; j < nz_in_row ( i ) ; j ++) {

temp += va lue_ in ( pos ) ∗ x [ k ] ;

i nc_coord ina te ( pos ) ;

}

y [ k ] += alpha ∗ temp ;

}

MPI_Al lgather ( . . . ) ; / / Resul t ga ther ing



Notes

I testtesttesttesttestParallelization of GSL on Clusters of Symmetric Multiprocessors – 7.1 / 24

In this slide you can see the code of the Pure MPI version of the algorithm executed on

each process.

We can see the two basic steps of the algorithm.

During the first step, in the for loop, the different MPI processes perform fully in parallel

their local dot products and compute a block of the solution vector.

The second step includes the communication operation that gathers the solution vector

in all the processes.
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Hybrid MPI + OpenMP version
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In order to implement the hybrid version of the algorithm we exploit the same kind of

parallelism than before at two different levels.

In the first level we distribute different blocks of rows of the matrix to different MPI

processes. For example two processes like in the slide. Each process is executed in a

different node.

In the second level, each MPI process distributes the computation of its local dot

products to different OpenMP threads. In the example, each MPI process executes 2

OpenMP threads. Each thread is executed in a processor of the node exploiting its

shared memory architecture.
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Hybrid MPI + OpenMP code

#pragma omp parallel for private (pos, k, temp, j) schedule(...)

for ( i = 0 ; i < l oca l_s i ze1 ; i ++) { / / l o c a l dot products

pos = rowpt r [ i ] ; / / f i r s t element i n row i

k = row_index ( pos ) ;

temp = 0 . 0 ;

for ( j = 0 ; j < nz_in_row ( i ) ; j ++) {

temp += va lue_ in ( pos ) ∗ x [ k ] ;

i nc_coord ina te ( pos ) ;

}

y [ k ] += alpha ∗ temp ;

} / / end of #pragma

MPI_Al lgather ( . . . ) ; / / Resul t ga ther ing
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The hybrid code of the sparse matrix-vector product is basically the same that the code

of the Pure MPI version.

The only modification introduced in the code is the addition of a OpenMP pragma

directive that distributes the computation of the for loop on each MPI process to

different threads.

We can see that this directive affects only to the computation step of the algorithm.

Once the for loop finishes in all the threads, only the master thread on each MPI

process executes the collective communication operation.
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Experimental environment

ä ra: cluster with 34 dual-SMP nodes

ä Node:

í Two Intel Xeon Processors. 2.4 GHz

í 1GByte RAM, 512 KByte L2 cache

ä Myrinet network (2Gbps)

ä Software:

í Intel Compilers v.7.1. OpenMP

í MPI v.1.2.5. dev: ch_gm
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Now I will show the experimental results that we have obtained with different versions of

the sparse matrix-vector product.

We performed the first experiments on a cluster of personal computers called ra.

This cluster contains 34 dual nodes.

Each node contains 2 Intel Xeon Processors with 1 gygabyte of memory.

All the nodes are connected through a Myrinet network.
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Experimental tests

ä Uniprocessor: One MPI process per node

ä Hybrid OpenMP+MPI: One MPI process per node with two OpenMP threads: one

per processor

ä Pure MPI: Two MPI processes per node ≡ one per processor
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Our experimental tests compare three different versions of the algorithm.

A uniprocessor version that sees the cluster as a cluster of uniprocessors and executes

one MPI process on each node.

A hybrid version that executes a MPI process per node that runs two OpenMP threads,

one per processor.

Finally, we test a Pure MPI version that executes 2 MPI processes per node, one per

processor. This processes combine the communication through the network between

the nodes and the communication using the shared memory within each node.
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Experimental Results in ra
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In this figure we can see the speed-ups obtained with the three previous versions of the

parallel product. We are performing a product with a sparse matrix with thirty thousand

rows and an sparsity of 2 percent.

The first thing that we can see is that the speedups are far from the maximum. This is a

logical result if we have into account that we are dealing with sparse matrices with a

few nonzero elements. In this case, the cost of the communications has a big effect on

the performance of the parallel algorithm.

The second thing that we can see is that, given a number of processors, the best

results are obtained with the uniprocessor version of the algorithm. This also seems a

logical result because in the other two versions of the algorithm different processes or

threads are sharing the resources of each node, for example, the memory or the

network bandwidth.
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.
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A third aspect to point out is that the hybrid version improves the results of the

uniprocessor version when we increase the number of processors and exploit the two

processors on each node. However, in this application and with this machine the

improvement obtained with this version is very small.

Finally, we can see that the Pure MPI version exploiting the two processors on each

node offers always worse results than the hybrid version and it never improves the

results obtained with the uniprocessor version, even if we use twice as much

processors.
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Node Speedup: Time with 1 processors per node / Time with 2 processor per node.
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In order to evaluate how the hybrid and pure mpi algorithms use the two processors on

each node we have used the node speedup. This parameter is computed as the result

of dividing the time spent by the algorithm that uses one processor per node and the

algorithm using the two processors of each node.Theoretically the maximum value of

this parameter is two if we are perfectly exploiting the two processors on each node.

In this slide we can see the node speedup of the algorithms with matrices of sizes 20

thousand and 30 thousand.

We can see that the node speedups obtained with the hybrid and with the Pure MPI

versions are not very good and they tend decrease as we increase the number of

nodes.

Besides, the Pure MPI version only obtains node speedups greater than one with few

nodes. That means that with more than four processors it is slower than the

uniprocessor version using the same number of nodes and two times more processors.
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Experimental environment

ä cat: 4-way SMP cluster with 9 nodes.

ä Node:

í 4 Itanium-2 processors. 1.5 Ghz.

í 4GByte RAM, 4 MByte L3 cache.

ä Infiniband network

ä Software:

í Intel Compilers v.8.1. OpenMP

í MPI v. 1.2.5. dev: vapi
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We were quite surprised by the bad behaviour of the hybrid and pure MPI versions of

the algorithm with this cluster and we decided to test it in another cluster of personal

computers called cat.

This is a cluster with 9 nodes.

Each node contains 4 itanum-2 processors with 4 Gigabytes of memory.

The communication network is a infiniband network and we have used a version of the

MPI library specific to this kind of network and the OpenMP included in the Intel C

compiler.
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In this slide we compare the speedups obtained by the three versions of the parallel

algorithm in the two clusters.

We can see that the speedups obtained with the second cluster are quite better than

the speedups obtained by the first cluster.

However, the most important difference between the results in both clusters is the very

different behavior of the algorithms using two processors per node. In the second

cluster, the hybrid and pure mpi algorithms obtain speedups very similar to the

uniprocessor algorithm with few processors, and both algorithms clearly improve the

results obtained with the uniprocessor version when we increase the number of

processors by using two processors per node.
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The much better behaviour of the algorithms in the second cluster can be better seen if

we compare the node speedups obtained in both clusters.

We can see that in the second cluster the node speedups of the hybrid and pure mpi

versions of the product are quite close to 2 and they are only slightly reduced when we

increase the number of nodes.

Therefore, we can conclude that the behaviour of the parallel versions of the product

clearly depends on the machine, and mainly on the size of the memory in the nodes

and on the behaviour of the network.
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Example: Single Resource Allocation Problem

Allocate M units of indivisible resource to N tasks maximizing the effectiveness:

max z =
N

∑
j=1

f j(x j) subject to
N

∑
j=1

x j = M,

G[i][x] optimal benefit considering the first i tasks and x units of resource:

Dynamic programming recurrence equations:

G[i][x] = max{G[i−1][x− j]+ fi( j) : 0 < j ≤ x}, i = 2, ...,N,

G[1][x] = f1(x), 0 < x ≤M, and G[i][x] = 0, i = 1, ...,N; x = 0.

G[N][M]: total income of the optimization problem.
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In order to test if the behavior of the hybrid versions of the algorithm also depend on the

application, we have implemented the hybrid solution of a different problem: The

dynamic programming problem.

This is a very important problem solving technique that arises in multiple applications,

like for example the single resource allocation problem.

In this problem we have to allocate M units of indivisible resource to N task maximizing

the effectiveness.

To solve this problem we compute all the elements of a matrix G with M rows and N

columns. The element i, x of the matrix represents the optimal benefit obtained taking

into account the first i tasks and x units of resource.

Once computed the different values of the matrix, the value in the last position will give

us the total income of the optimization problem.
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Data dependences
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The following slides will show the dependence of the different elements of the matrix.

The different rows of the matrix are computed sequentially.

First, all the elements of the first row can be computed in parallel.

Then, we compute the first element of the second row, that depends on the first

element of the previous row.

Next, we compute the second element of the second row, that depends on the first two

elements of the previous row. Similarly, the third element of the second row depends on

the first three elements of the first row, and so on.

We apply the same process to the different rows of the matrix until we have computed

all its elements. Then the last element of the matrix gives us the optimal solution of the

problem.
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Data distribution: Decreasing blocks of columns
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We have seen that the different rows of the matrix have to be computed sequentially,

but once computed each row we can compute in parallel all the elements of the next

row.

We have also seen that each element of each row depends on a different number of

elements of the previous row.

Therefore, in order to balance the computations on each process we distribute the

elements of the matrix by blocks of columns with decreasing size, as we can see in the

slide.
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Pure MPI code

for ( i = 0 ; i <= N_TASKS; i ++) {

for (x = displs[myid]; x < displs[myid + 1]; x++) {

G[ i ] [ x ] = (∗ f ) ( i , 0 ) ;

for ( j = 0 ; j <= x ; j ++) {

f i x = G[ i − 1 ] [ x − j ] + (∗ f ) ( i , j ) ;

i f (G[ i ] [ x ] > f i x )

G[ i ] [ x ] = f i x ;

}

}

MPI_Al lgatherv (&G[ i ] [ d i s p l s [ myid ] ] , . . . ) ;

}
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In this slide we can see the pure mpi version of the code of the parallel solution of the

dynamic programming problem. This code is executed by each MPI process.

The external loop is associated with the sequential computation of the successive rows

of the matrix.

On each iteration of the loop we can see the two main steps of the algorithm.

During the first step all the process compute their columns and during the second step,

the algorithm performs an allgather communication so that all the processes have all

the elements of the row.

The indexes of the columns that have to be computed by each process are stored on a

vector and used in the x for loop.
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Hybrid MPI + OpenMP code

#pragma omp parallel private(...)

{

for ( i = 0 ; i <= N_TASKS; i ++) {

for ( x = t h _ d i s p l s [ t h_ i d ] ; x < t h _ d i s p l s [ t h_ i d + 1 ] ; x++) {

/ / idem than i n the Pure MPI vers ion

}

#pragma omp barrier

#pragma omp master

MPI_Al lgatherv (&G[ i ] [ t h _ d i s p l s [ t h_ i d ] ] , . . . ) ;

} \ \ end of i loop

}
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The hybrid version of the code applies the same kind of parallelism at two levels.

On each MPI process the computation of the different columns is distributed among

several threads by using a OpenMP parallel directive.

On each iteration of the external loop all the threads are synchronized after finishing

their computations by means of a barrier directive.

Finally, the master directive is used so that only the master thread on each MPI process

participates on the collective communication step.
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Experimental Results in ra
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We have tested the behaviour of the same three versions of the algorithm than in the

case of the sparse product.

The slide shows the results obtained when solving the problem with three thousand

units of resource and three thousand tasks.

In this case the results on the first cluster of dual nodes are very good. We obtain

speedups very close to the maximum even using all the processors of the cluster.

In some cases we obtain even superspeedups.
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We can also see that the node speedups of the hybrid and the pure mpi algorithms are

very good. And in this application the hybrid version of the algorithm obtains even node

speedups larger than 2.
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ä Hybrid programming seems a natural, efficient and portable approach to program

hybrid architectures.

ä Performance of hybrid vs. pure MPI approaches depends on multiple factors at

different levels:

í The application and its parallelization scheme

í The Operating System management of processes, threads, memory access,

etc.

í Architecture:

ß Memory size, hierarchy and performance

ß Network latency and bandwidth

ß Communication vs. computation cost

ä There is much work to do related with hybrid programming.
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This final slide shows the main conclusions of our research. First, the hybrid

programming model seems a natural, efficient and portable approach to programming

hybrid architectures.

The performance of the hybrid and the pure mpi approaches depend on multiple factors

at different levels. We can point out for example the following factors:

* The application and its parallelization scheme.

* How the Operating system manages the processes, threads, memory accesses, etc.

* The results also depend on the architecture of the machine. For example, they can

depend on the memory size and its performance, on the network latency and

bandwidth and on the relation between the communication and the computation cost.

After implementing and testing two different problems on two different clusters we can

conclude that there is still much work to do analyzing the influence of the different

factors that can justify the behaviour of the hybrid algorithms.
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