# Performance analysis for clusters of symmetric multiprocesors

#### F. Almeida<sup>1</sup> J.A. Gómez<sup>1</sup> J.M. Badía<sup>2</sup>

<sup>1</sup>Depto. Estadística, Investigación Operativa y Computación Univ. La Laguna, España.

> <sup>2</sup>Depto. Ingeniería y Ciencia de Computadores Univ. Jaume I, España.

Parallel, Distributed and Network-based Processing, 2007



A (1) > A (2) > A

#### Introduction

Experimental setup Analysis of the communications Testing the model Conclusions





- 2 Experimental setup
- 3 Analysis of the communications
- 4 Testing the model
- 5 Conclusions



э

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Widespread of parallel computers



## Taking profit of the new architectures

- New programming models: Hybrid models (MPI + OpenMP).
- New debugging and profiling tools.
- New models of performance analysis.
- . . .



- **→** → **→** 

#### What have we done?

#### Analysis and modeling of the performance of clusters of SMPs

- Analysis of the point-to-point communications.
- Development of a communication model adapted to the architecture.
- Test of the model with three different applications.



Introduction

Experimental setup Analysis of the communications Testing the model Conclusions





- 2 Experimental setup
- 3 Analysis of the communications
- 4 Testing the model





I ≡ ▶ < </p>





- 2 Experimental setup
- 3 Analysis of the communications
- 4 Testing the model
- 5 Conclusions



э

伺 ト イヨト イヨト

## Hardware environment: Cluster cat

- 9 nodes
- Each node:
  - 4 1.5GHz. Itanium-2 processors
  - 4 GBytes of RAM
  - 4 MBytes of L3 cache
- 2 networks
  - FastEthernet (control)
  - Infiniband (applications)



< ∃ >



#### Software environment

- Linux Redhat 3, update 6. Kernel: 2.4.21-37 SMP.
- Intel icc compiler, version 9.
- MPICH v. 1.2.5
  - VAPI device.
  - Exploits the shared memory and the Infiniband network.



**□ > < = > <** 





- 2 Experimental setup
- 3 Analysis of the communications
- 4 Testing the model
- 5 Conclusions



э

伺 ト イヨト イヨト

## Basic communication model

## $\beta + \mathbf{n}\tau$

- $\beta$ : Latency
- $\tau$ : time to send one byte
- *n*: size of the message

#### ping-pong method



perftest [Gropp & Lusk,99]



## Parameters of the analysis

- Three mechanisms of communication:
  - interinf: Infiniband between different nodes.
  - intrainf: Infiniband into the nodes.
  - intrashm: Shared memory into the nodes.
- Two size ranges:
  - Short messages: < 1Kbyte.
  - Long messages: 1 Kbyte 1 Mbyte.



#### Short messages



F. Almeida, J.A. Gómez, J.M. Badía Performance analysis for clusters of SMPs

## Switching of mechanism of communication



#### Long messages



NIVERSITO

#### Adjustment to the model



F. Almeida, J.A. Gómez, <u>J.M. Badía</u> Performance analysis for clusters of SMPs

#### Values of the parameters of the model

| Test     | Size        | Adjustment $\beta$ ( $	au$ ) | Error |
|----------|-------------|------------------------------|-------|
| Interinf | Short       | 8.3714 (0.0049)              | 4.49  |
|          | Long        | 35.363 (0.0017)              | 7.71  |
| Intrainf | Short       | 8.5970 (0.0050)              | 5.08  |
|          | Long        | 26.2649 (0.0026)             | 7.15  |
| Hybrid   | Short       | 2.8622 (0.0017)              | 4.26  |
|          | Long (<32K) | 0.9252 (0.0022)              | 5.90  |
|          | Long (>32K) | 33.1205 (0.0026)             | 4.90  |

Table: Adjustments ( $\mu sec$ ) and Errors (%).

伺 ト く ヨ ト く ヨ ト





- 2 Experimental setup
- 3 Analysis of the communications
- 4 Testing the model

#### 5 Conclusions



э

伺 ト イヨト イヨト

## Testing the model

- Two models:
  - Homogeneous: Cluster of uniprocessors connected with Infiniband.
  - Heterogeneous:  $\tau$  and  $\beta$  depend on:
    - The location of the sender and receiver: mechanism of communication.
    - The size of the message.
- Three applications. Three communication schemes.
- Using only point-to-point communications.
- Applications:
  - Matrix product. Pipeline.
  - Matrix-vector product. Master-slave.
  - Heat diffusion. Synchronous iteration.

#### Pipeline matrix product



• Parallel scheme. Pipeline sequence of matrix-vector products:

$$C(:,k) = A * B(:,k)$$



▲ 同 ▶ ▲ 三 ▶

## Parallel matrix product algorithm

```
if P_0
  for (pr=1; pr<numprocs; pr++)
    send block of A to P_{pr}
else
  Receive block of A to P_0
for (k=0; k<n; k++) {
  if P_0
    Send column k of B to P_1
  else if pr < numprocs - 1
    Receive column k from P_{ant}
    Send column k to P_{sig}
  else
    Receive column k from P_{ant}
  Calculate local block C(:,k) = A * B(:,k)
}
```



#### Matrix A distribution adjustment

#### Homogeneous model

#### Heterogeneous model

-



## Pipeline computation modeling



Global adjustment of the matrix product (n = 1280)

$$T = T_A + T_{startup} + N * T_{comput} + (N - 1) * (gap + T_B)$$

|       |           | Homogeneous |       | Heterogeneous |       |
|-------|-----------|-------------|-------|---------------|-------|
| Proc. | Real time | Model time  | Error | Model time    | Error |
| 2     | 43.394    | 42.241      | 2.66  | 41.303        | 5.06  |
| 4     | 19.174    | 20.784      | 8.39  | 20.416        | 6.01  |
| 8     | 18.419    | 10.047      | 19.35 | 8.973         | 6.17  |
| 16    | 4.170     | 4.680       | 12.24 | 4.451         | 6.33  |
| 24    | 2.753     | 2.891       | 5.00  | 2.851         | 3.45  |
| 32    | 2.162     | 1.996       | 7.67  | 2.142         | 0.95  |

Table: Time (sec) and Errors (%).



▲ □ ▶ ▲ □ ▶ ▲

3 N

#### Matrix-vector product



• Master-slave scheme by blocks of rows

Process 0 broadcasts x and scatters blocks of A Parallel computation of blocks of y Process 0 gathers blocks of y

#### Global matrix-vector adjustment

#### Homogeneous model

#### Heterogeneous model



#### Heat diffusion





・ロト ・日 ・ ・ ヨ ・ ・

### Synchronous iteration

for (it =0; it < numiter; it ++) Send local upper edge to  $P_{ant}$ Receive upper edge from  $P_{sig}$ Send local lower edge to  $P_{sig}$ Receive lower edge from  $P_{ant}$ Update the values of the local block



## Heat diffusion global adjustment (n = 480, it = 100)

|       |           | Homogeneous |       | Heterogeneous |       |
|-------|-----------|-------------|-------|---------------|-------|
| Proc. | Real time | Model time  | Error | Model time    | Error |
| 2     | 0.949     | 0.948       | 0.13  | 0.952         | 0.27  |
| 4     | 0.480     | 0.474       | 1.15  | 0.482         | 0.45  |
| 8     | 0.246     | 0.237       | 3.67  | 0.245         | 0.43  |
| 16    | 0.128     | 0.119       | 7.77  | 0.127         | 1.24  |
| 24    | 0.091     | 0.080       | 13.93 | 0.087         | 3.91  |
| 32    | 0.070     | 0.060       | 16.35 | 0.068         | 3.12  |

Table: Time (sec) and Errors (%).





#### Introduction

- 2 Experimental setup
- 3 Analysis of the communications
- 4 Testing the model





э

・ 同 ト ・ ヨ ト ・ ヨ ト

## Conclusions

- New performance models should have into account the heterogeneity of the architectures.
- Improved fitting of the theoretical communication model and the experimental results if we have into account:
  - The location of the sender and receiver, and then
  - the communication mechanism: shared memory or interconnection network.
- The heterogeneous model improves the adjustment of the theoretical and experimental results on different parallel applications.

