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Motivation

High performance computing:

Optimization of algorithms applied to solve complex problems

Technological advance ⇒ improve performance:

Processors works at higher frequencies
Higher number of cores per socket (processor)

Large number of processors and cores ⇒ High energy consumption

Methods, algorithms and techniques to reduce energy consumption
applied to high performance computing.

Reduce the frequency of processors with DVFS technique
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Introduction

Scheduling tasks of dense linear algebra algorithms

Examples: Cholesky, QR and LU factorizations

Energy saving tools available for multi-core processors

Example: Dynamic Voltage and Frequency Scaling (DVFS)

Scheduling tasks + DVFS

⇓
Power-aware scheduling on multi-core processors

Our strategy: Reduce the frequency of cores that will execute non-critical
tasks to decrease idle times without sacrifying total performance of the
algorithm

⇓
Energy saving
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The Critical Path Method
Application to dense linear algebra algorithms

The Critical Path Method

1 2

Suceso precedente Suceso posterior

Actividad (Coste)

j
LFjESj

i
LFiESi

Cij

ESi=max(ESk + Cki)

Sij

LFj=min(LFk + Cjk)

Sij=ESj  ESi  CijConcepts:

DAG of dependencies

Nodes ⇒ Temporal events
Edges ⇒ Tasks

Times

Early and latest times to start and finalize execution of tasks

Total slack:

Amount of time that a task can be delayed without increasing the total execution
time of the algorithm

Critical path:

Formed by a succession of tasks, from initial to final node of the graph, with total
slack = 0.
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Application to dense linear algebra algorithms

Objective ⇒ obtain the dependency graph corresponding to the computation
of a dense linear algebra algorithm, apply the Critical Path Method to analize
slacks and reducing them with our Slack Reduction Algorithm

Example: Cholesky factorization of a matrix consisting of 3× 3 blocks

for k = 1, 2, . . . , s do

Akk = LkkL
T
kk Cholesky factorization b3

3 flops  0,33 u.t.

for i = k + 1, k + 2, . . . , s do

Aik ← AikL
−T
kk Triangular system solve b3 flops  1 u.t.

end for
for i = k + 1, k + 2, . . . , s do

for j = k + 1, k + 2, . . . , i − 1 do

Aij ← Aij − AikA
T
jk Matrix-matrix product 2b3 flops  2 u.t.

end for

Aii ← Aii − AikA
T
ik Symmetric rank-b update b3 flops  1 u.t.

end for
end for
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The Critical Path Method
Application to dense linear algebra algorithms

Application to dense linear algebra algorithms

Taks-node DAG capturing the data dependencies in the computation of
the Cholesky factorization of a matrix consisting of 3× 3 blocks
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Application to dense linear algebra algorithms

Application of CPM to the task-edge DAG of the Cholesky factorization of a
matrix consisting of 3× 3 blocks

Task i − j Ci,j ESi LFj Si,j

P 111 0-1 0.33 0 0.33 0

T 211 1-8 1 0.33 1.33 0

T 311 1-2 1 0.33 1.33 0

NULL 2-3 0 1.33 1.33 0

S 221 8-9 1 1.33 3 0.67

G 321 3-4 2 1.33 3.33 0

S 331 2-5 1 1.33 4.33 2

P 222 9-4 0.33 2.33 3.33 0.67

T 322 4-5 1 3.33 4.33 0

S 332 5-6 1 4.33 5.33 0

P 333 6-7 0.33 5.33 5.67 0

NULL 8-3 0 1.33 1.33 0

Critical path:
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S 221(1)

T 311(1)

T 211(1)
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S 331(1)

G 321(2)

Objective: tune the slack of those tasks with Si,j > 0, reducing its execution
frequency and yielding low power usage → Slack Reduction Algorithm
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Previous steps
Slack reduction
Simulator

Slack reduction

Slack reduction algorithm

1 Frequency assignment

2 Critical subpath extraction

3 Slack reduction

1 Frequency assignment

Example: Cholesky factorization of 3×3 blocks:
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Discrete collection of frequencies: {2.27, 2.13, 2.00, 1.87, 1.73, 1.60} GHz

The execution time of tasks increase inversely proportional as its frequency decreases!
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Previous steps
Slack reduction
Simulator

Critical subpath extraction

2 Critical subpath extraction
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Previous steps
Slack reduction
Simulator

Slack Reduction Algorithm (I)

Iteration 1

Process critical subpath CP1 = {1, 2, 5}:
1 Checks for tasks of CP1 with a nonzero slack: only task S 331

2 Slack is reduced by reducing execution frequency of task:

S 331: 2.27 GHz ⇒ 1.60 GHz; 1 u.t. ⇒ 1.42 u.t.; Slack 2 u.t.⇒ 0.58 u.t.
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Previous steps
Slack reduction
Simulator

Slack Reduction Algorithm (II)

Iteration 1

Process critical subpath CP1 = {1, 2, 5}:
1 Checks for tasks of CP1 with a nonzero slack: only task S 331

2 Slack is reduced by reducing execution frequency of task:

S 331: 2.27 GHz ⇒ 1.60 GHz; 1 u.t. ⇒ 1.42 u.t.; Slack 2 u.t.⇒ 0.58 u.t.
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Previous steps
Slack reduction
Simulator

Slack Reduction Algorithm (III)

Iteration 2

Process of critical subpath CP2 = {8, 9, 4}:
1 Checks for tasks of CP2 with a nonzero slack: tasks S 221 and P 222

2 Slack is equaly splitted in both tasks:

S 221: 2.27 GHz ⇒ 1.73 GHz; 1 u.t. ⇒ 1.31 u.t.; Slack 0.67 u.t.⇒ 0 u.t.
P 222: 2.27 GHz ⇒ 1.73 GHz; 0.33 u.t. ⇒ 0.44 u.t.; Slack 0.67 u.t.⇒ 0 u.t.
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Previous steps
Slack reduction
Simulator

Slack Reduction Algorithm (V)

Iteration 3

Process of critical subpath CP2 = {2, 3}:
1 Requires no processing: subpath only contains a NULL task

Frequency assignment and cost of the task-edge DAG of dependencies of
Cholesky algorithm consisting of a matrix 3× 3:
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Previous steps
Slack reduction
Simulator

Simulator (I)

Simulator to evaluate the performance of our strategy

Input parameters:

DAG capturing tasks and dependencies of a blocked algorithm and
frequencies recommended by Slack Reduction Algorithm

A simple description of the target architecture:

Number of sockets (physical processors)
Number of cores per socket

Discrete range of frequencies and its associated voltages

The cost (overhead) required to perform frequency changes

Static priority list scheduler:

Duration of tasks is known in advance

Tasks that lie on critical path must be prioritized
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Description
Cholesky factorization
QR factorization

Benchmark algorithms

Blocked algorithms: Cholesky and QR with incremental pivoting

Block size: b = 192
Matrix size varies from 576 to 2,112

Target architecture

Four quad-core sockets (a total of 16 cores)
Discrete range of frequencies: {2.27, 2.13, 2.00, 1.87, 1.73, 1.60} GHz
Associated voltages vary from 0.75 to 1.35 V (linear relation between voltage and the
frequency)
Frequency change latency: 0.1 u.t.
Representative values from Intel Xeon 5520 processor

Metrics:

Execution time (u.t.)

TSRAPolicy

TNopolicy

Impact of SRA on time

%TSRA =
TSRAPolicy
TNopolicy

· 100

Consumption (u.c.)

CSRAPolicy =
∑n

i=1 v2
i T(fi ) + v2 ∗ T(fmax )

CNoPolicy = v2 T(fmax )

Impact of SRA on consumption

%CSRA =
CSRAPolicy
CNoPolicy

· 100
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Cholesky factorization
QR factorization

Cholesky factorization

Impact of the SRA on energy and time for the Cholesky factorization:
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Matrix size (n)

Cholesky factorization

Impact on consumption; excess ratio=1.00
Impact on consumption; excess ratio=1.50

Impact on time; excess ratio=1.00
Impact on time; excess ratio=1.50

Excess ratio (e=1): Time is not compromised in some cases and increases consumption with
matrix size

Excess ratio (e=1.5): Time is compromised in most cases but there is less consumption than
with e = 1
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Description
Cholesky factorization
QR factorization

QR Factorization

Impact of the SRA on energy and time for the QR factorization:
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QR factorization

Impact on consumption; excess ratio=1.00
Impact on consumption; excess ratio=1.50

Impact on time; excess ratio=1.00
Impact on time; excess ratio=1.50

Excess ratio=1: Time is not compromised in some cases but consumption increases with
matrix size

Excess ratio=1.5: Time is compromised in most cases but there is less consumption than
Excess ratio=1
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Conclusions
Future work

Conclusions

Idea: exploit task-level parallelism to reduce energy consumption

Objective: to reduce idle times by reducing execution frequency of tasks

Slack Reduction Algorithm

Tasks with slack are executed at a minor frequency

Theoretical results of dense linear algorithms

Cholesky and QR (with incremental pivoting) factorizations

Significant reduction in power consumption under realistic conditions

A higher ratio between number of computational resources and number of
tasks yields a more reduced power consumption

LU factorization show similar behaviour to that of QR factorization.
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Conclusions
Future work

Future work

Some improvements:

Slack Reduction Algorithm is a static strategy but... it has an implicit cost!

We are working in dynamic strategies to work at run-time for adapt frequency and
reduce slacks

Future work:

We plan to integrate these theoretical study into a real run-time scheduler, e.g.,
SuperMatrix as part of libflame
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Thanks for your attention!

Questions?
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