

EnergySaving Cluster experience in CETA-CIEMAT

Manuel F. Dolz, Juan C. Fernández, Sergio Iserte, Rafael Mayo, Enrique S. Quintana, Manuel E. Cotallo, and Guillermo Díaz

June 8–10, 2011, Santander (Spain)

Motivation

High Performance Computing Clusters in the Grid Infrastructure:

- Normally composed by a high number of nodes
- Multi-processors/multi-cores nodes at high frequencies
- Infrastructure requires big cooling systems

- High power consumption
- Environmental impact and high economic cost

Power-aware techniques and tools to reduce negative effects

Outline

- Objectives
- 2 Description
 - Architecture
 - Daemons
- Installation on CETA-CIEMAT
 - Installation
 - User tests
- 4 Integration in gLite's middleware
- 5 Estimation of energy savings
 - Configuration
 - Benchmark and experimental results
- 6 Summary and conclusions

Objectives

 Development of a middleware that implements energy saving policies to turn on/off nodes of a clusters taking into consideration past and future computational load

Find a solution!

EnergySaving Cluster

 Evaluate the performance of this middleware to the CETA-CIEMAT Grid Computing Center

Middleware architecture

System architecture

The module includes the following components:

- Three daemons to manage the database, collect statistics and execute the commands that power on/off the nodes
- The database stores all necessary information to make decisions
- The web interface to configure and administer users' groups and set the threshold to define the power saving policy

Daemon for activation/deactivation actions

Installation and compatibility issues

CETA-CIEMAT is the first grid-computing center where EnergySaving Cluster (ESC) middleware has been installed and tested by Jaume I University developers

Installation and tuning issues:

- Compatibility:
 - Computing node hardware issues
 - WOL capability is required in computing nodes
 - Network concerns
 - Nodes must be contained in the same layer 2 subnetwork, as well as, node hosting daemons

Installation and compatibility issues

- Adaptation for datacenter architecture and SGE's own configuration:
 - Web frontend, database and daemons running in the same node
 - Use TCP sockets instead of UNIX sockets to host modules in different machines
 - ESC daemons run in the same SGE master node
 - Adapt daemons to connect remotely to SGE for issuing q-commands
 - Adapt system to use remotely SGE's accounting logs
 - There is not a notion of isolated cluster queues with dedicated computing resources
 - ESC involves the whole SGE system, and, currently, do not work with a grouped resources infrastructure

Testing environment

In order to verify that a correct ESC deployment was made in CETA-CIEMAT, the following testing environment was set as follows:

- Web frontend/ESC daemons machine/MySQL machine:
 - Hosted in the same VMWare virtual machine, 1 processor, 1GB RAM, CentOS 5.3
- Subclusters "A" and "B":
 - 5 machines each, Bull Novascale, 2 Intel 5230 quad-core processors, 16GB RAM, Scientific Linux 5.3
- → ESC database was modified to collect data about power of Bull's Novascale chassis

User tests

Established test plan in CETA-CIEMAT's environment

- Minimal functional tests
 - Loop simulating arrival of sequential/parallel jobs with no processing (sleeping 30 sec.)
- Stress tests
 - Bursts of ultra-short jobs (1 s), CPU intensive (99 %)
 - Bursts of short jobs (1 h), CPU intensive (99%), with a period of 1 hour between bursts
- Performance tests
 - Some performance data were gathered during strees tests to taken into account for simulation purposes

Integration within gLite (I)

- Tight integration is not possible right now. Why?
 - How would information systems show CPU resources when "asleep"? \rightarrow As not available.
 - Statistics of availability and reliability of affected sites
- Future: Information System's schemas needs a change to reflect different:
 - CPU states (available, offline, asleep)
 - QoS of resources (quick-online, slower-asleep)

Integration within gLite (II)

- Batch Queue information providers for information systems need to be modified accordingly
 - Sun Grid Engine can reflect asleep nodes? \rightarrow No, but, maybe "a" state of node queues can be used.
- Should GLUE Schema for Information Systems be changed?
 - Sure, not just due to ESC, but for any power saving schema that needs to stop nodes.

Configuration

- We have configured a simulator of ESC with power consumption parameters of nodes int the CETA-CIEMAT:
 - 16 nodes with 8 cores per node
 - Power real data

Benchmark and experimental results

- We have used the following of synthetic workloads form the Paraellel Workloads Archive:
 - OSC: OSC Linux Cluster, a workload composed of 80,714 jobs
 - NASA: NASA Ames iPSC/860 is a set of 42,264 jobs
- From our simulation we have obtained the following table wich displays the energy savings:

Workload	Time (days, hours, minutes, seconds)	Energy (MWh)
OSC without ESC	677 d, 2 h, 55 m, 51 s	40.42 MWh
OSC with ESC	868 d, 20 h, 50 m, 39 s	12.87 MWh
NASA without ESC	92 d, 0 h, 3 m, 43 s	6.72 MWh
NASA with ESC	92 d, 0 h, 12 m, 59 s	4.79 MWh

Experimental results

 From our simulation we have obtained the following table wich displays the energy savings:

Workload	Time (days, hours, minutes, seconds)	Energy (MWh)
OSC without ESC	677 d, 2 h, 55 m, 51 s	40.42 MWh
OSC with ESC	868 d, 20 h, 50 m, 39 s	12.87 MWh
NASA without ESC	92 d, 0 h, 3 m, 43 s	6.72 MWh
NASA with ESC	92 d, 0 h, 12 m, 59 s	4.79 MWh

Conclusions of these results:

- It is possible to obtain an important level on energy savings with ESC.
- Depending on the load, the throughtput can be lowered (e.g. OSC load).

Experimental results

 From our simulation we have obtained the following table wich displays the energy savings:

Workload	Time (days, hours, minutes, seconds)	Energy (MWh)
OSC without ESC	677 d, 2 h, 55 m, 51 s	40.42 MWh
OSC with ESC	868 d, 20 h, 50 m, 39 s	12.87 MWh
NASA without ESC	92 d, 0 h, 3 m, 43 s	6.72 MWh
NASA with ESC	92 d, 0 h, 12 m, 59 s	4.79 MWh

Conclusions for the OSC load:

- The time to process all the jobs is increased by a factor of 28 %
- Energy consumption with ESC is reduced by a factor of 68 %

Experimental results

 From our simulation we have obtained the following table wich displays the energy savings:

Workload	Time (days, hours, minutes, seconds)	Energy (MWh)
OSC without ESC	677 d, 2 h, 55 m, 51 s	40.42 MWh
OSC with ESC	868 d, 20 h, 50 m, 39 s	12.87 MWh
NASA without ESC	92 d, 0 h, 3 m, 43 s	6.72 MWh
NASA with ESC	92 d, 0 h, 12 m, 59 s	4.79 MWh

Conclusions for the NASA load:

- The time to process all the jobs is increased by a factor of 0.000069 %
- Energy consumption with ESC is reduced by a factor of 29 %.

Summary and conclusions

Conclusions:

- EnergySaving Cluster middleware implements a power-on/power-off policy so that, at any moment only the necessary computational resources are actuve, and those that are not needed remain powered off
- Modular design: enables integration with different queue systems, e.g. Sun Grid Engine, Portable Bath System/Torque or SLURM
- We have developed a simulator in order to evaluate the energy savings produced by our middleware in a production environment:
 - Usefulness to evaluate how affects the productivity and performance on the system
 - Predict the potential energy savings
- We have also discussed how to integrate the middleware into gLite environment and SGE queue system

Objectives
Description
Installation on CETA-CIEMAT
Integration in gLite's middleware
Estimation of energy savings
Summary and conclusions

Thanks for your attention!

Questions?