
The 41st International Conference
on Parallel Processing

Tools for Power and Energy Analysis of
Parallel Scientific Applications

Pedro Alonso1, Rosa M. Badia2, Jesús Labarta2, Maŕıa Barreda3, Manuel F. Dolz3,
Rafael Mayo3, Enrique S. Quintana-Ort́ı3 and Ruymán Reyes3

1 2 3

September 10–13, 2012, Pittsburgh, PA

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Motivation

Understanding power usage in parallel workloads is crucial to develop the
energy–aware software that will run in future Exascale systems.

An integrated framework to profile, monitor, model and analyze power
dissipation in parallel MPI and multi-threaded scientific applications.

The framework includes

an own–designed device to measure internal DC power consumption,
a package offering a simple interface to interact with this design
(Extrae+Paraver).

The result: a useful environment to identify sources of power
inefficiency directly in the source application code.

In the case of task–parallel codes: statistical software module which
inspects the execution trace to calculate the parameters of an accurate
model for the global energy consumption.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Outline

1 Introduction: The integrated framework

2 Tools and APIs for Performance–Power Tracing
The Extrae+Paraver framework
The powermeter (pm) framework

3 Visualizing the Performance-Power Interaction
Example: LAPACK dpotrf routine
Example: LAPACK LUPP routine
Example: ScaLAPACK pdpotrf routine

4 Analysis of Task–Parallel Applications
Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

5 Conclusions

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Introduction: The integrated framework

An internal DC powermeter microcontroller-based design: samples the
nodal power dissipated by the system mainboard. Rates: 25 to 100 Hz.

A simple API to interact with a number of power measurement devices:
commercial external AC meters like WattsUp? Pro .Net and our own
internal powermeters.

The associated pm library and drivers which allow to capture the power
dissipated during the execution of an application in a separate system.

Integration with the Extrae+Paraver packages which allows interactive
analysis of a graphical trace relating the power dissipation per node/core
and information per core activity.

Task–parallel applications: a statistical analysis module and an energy
model which utilizes the information contained in the power–performance
traces to correlate the average power–energy of each task type and the
power dissipation per core.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Introduction: The integrated framework

An internal DC powermeter microcontroller-based design: samples the
nodal power dissipated by the system mainboard. Rates: 25 to 100 Hz.

A simple API to interact with a number of power measurement devices:
commercial external AC meters like WattsUp? Pro .Net and our own
internal powermeters.

The associated pm library and drivers which allow to capture the power
dissipated during the execution of an application in a separate system.

Integration with the Extrae+Paraver packages which allows interactive
analysis of a graphical trace relating the power dissipation per node/core
and information per core activity.

Task–parallel applications: a statistical analysis module and an energy
model which utilizes the information contained in the power–performance
traces to correlate the average power–energy of each task type and the
power dissipation per core.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Introduction: The integrated framework

An internal DC powermeter microcontroller-based design: samples the
nodal power dissipated by the system mainboard. Rates: 25 to 100 Hz.

A simple API to interact with a number of power measurement devices:
commercial external AC meters like WattsUp? Pro .Net and our own
internal powermeters.

The associated pm library and drivers which allow to capture the power
dissipated during the execution of an application in a separate system.

Integration with the Extrae+Paraver packages which allows interactive
analysis of a graphical trace relating the power dissipation per node/core
and information per core activity.

Task–parallel applications: a statistical analysis module and an energy
model which utilizes the information contained in the power–performance
traces to correlate the average power–energy of each task type and the
power dissipation per core.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Introduction: The integrated framework

An internal DC powermeter microcontroller-based design: samples the
nodal power dissipated by the system mainboard. Rates: 25 to 100 Hz.

A simple API to interact with a number of power measurement devices:
commercial external AC meters like WattsUp? Pro .Net and our own
internal powermeters.

The associated pm library and drivers which allow to capture the power
dissipated during the execution of an application in a separate system.

Integration with the Extrae+Paraver packages which allows interactive
analysis of a graphical trace relating the power dissipation per node/core
and information per core activity.

Task–parallel applications: a statistical analysis module and an energy
model which utilizes the information contained in the power–performance
traces to correlate the average power–energy of each task type and the
power dissipation per core.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Introduction: The integrated framework

An internal DC powermeter microcontroller-based design: samples the
nodal power dissipated by the system mainboard. Rates: 25 to 100 Hz.

A simple API to interact with a number of power measurement devices:
commercial external AC meters like WattsUp? Pro .Net and our own
internal powermeters.

The associated pm library and drivers which allow to capture the power
dissipated during the execution of an application in a separate system.

Integration with the Extrae+Paraver packages which allows interactive
analysis of a graphical trace relating the power dissipation per node/core
and information per core activity.

Task–parallel applications: a statistical analysis module and an energy
model which utilizes the information contained in the power–performance
traces to correlate the average power–energy of each task type and the
power dissipation per core.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

The Extrae+Paraver framework
The powermeter (pm) framework

Tools for performance and power tracing

Extrae library

Other libraries:

Computational

Communication
...

pm library

 ...

Extrae API :

 Extrae_init()

 Extrae_fini()

 pm_stop()

 ...

 pm_start()

pm API :
 app.c app’.c app.x

 Executable

MPI/Multi−threaded

 Scientific Application Scientific ApplicatonScientific Application

 Annotations
 +

MPI/Multi−threaded MPI/Multi−threaded

 Compiler+linker

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

The Extrae+Paraver framework
The powermeter (pm) framework

Extrae and Paraver summary

Extrae: instrumentation and measurement package of BSC (Barcelona
Supercomputing Center):

Intercept calls to MPI, OpenMP, PThreads

Records relevant information: time stamped events, hardware counter values, etc.

Dumps all information into a single trace file.

Paraver: graphical interface tool from BSC to analyze/visualize trace files:

Inspection of parallelism and scalability

High number of metrics to characterize the program and performance application

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

The Extrae+Paraver framework
The powermeter (pm) framework

Instrumented code with Extrae

Guiding example: Cholesky factorization. A = UTU, U is upper triangular.

1 #define A_ref(i,j) A[((j)-1)* Alda +((i)-1)]

2 void dpotrf(int n, int nb, double *A, int Alda , int *info){

3 // Declaration of variables ...

4 pm_start_counter (& pm_ctr);

5 Extrae_init ();

6 for (k=1; k<=n; k+=nb) {

7 // Factor current diagonal block

8 Extrae_event (500000001 ,1);

9 dpotf2(nb , &A_ref(k,k), Alda , info);

10 Extrae_event (500000001 ,0);

11
12 if(k+nb <= n) {

13 // Triangular solve

14 Extrae_event (500000001 ,2);

15 dtrsm("L", "U", "T", "N", nb, n-k-nb+1, &done , &A_ref(k, k), Alda ,

16 &A_ref(k, k+nb), Alda);

17 Extrae_event (500000001 ,0);

18
19 }

20 // ... More code ...

21 }

22 Extrae_fini ();

23 pm_stop_counter (& pm_ctr);

24 }

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

The Extrae+Paraver framework
The powermeter (pm) framework

Extrae API

void Extrae_init (void)

Purpose: Initializes the tracing library.

void Extrae_fini (void)

Purpose: Finalizes the tracing library and dumps the intermediate tracing buffers onto disk.

void Extrae_event (unsigned event, unsigned value)

Purpose: Adds a single time-stamped event to the tracefile.
event: Identify the event.
value: Identify the event. value=0 marks the end of the event.

void Extrae_user_function (int enter)

Purpose: Emits an event into the tracefile which references the source code.

enter: Identify the event. enter=0 marks the end of the event.

void Extrae_counters (void)

Purpose: Emits the value of the active hardware counter set.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

The Extrae+Paraver framework
The powermeter (pm) framework

The powermeter (pm) framework

pmlib library

Power measurement package of Universitat Jaume I (Spain)

Interface to interact and utilize our own and commercial power meters

Power tracing

daemon

Power tracing

server

Computer

Mainboard

Application node

Power
supply
unit

External

powermeter

powermeter

InternalRS232

USB

Ethernet

Server daemon: collects data from power meters and send to clients

Client library: enables communication with server and synchronizes with start-stop
primitives

Power meter:
LEM HXS 20-NP transducers with a microcontroller (own design)

Sampling rate 25 Hz

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

The Extrae+Paraver framework
The powermeter (pm) framework

The pmAPI

Some client routines:
int pm set server(char *svrip, int port, server t *svr)

Initializes IP and port for server connection.

int pm create counter(char *devn, mask t lin, int aggr, int freq, server t svr, counter t *pm ctr)

Creates a new counter.

int pm start counter(counter t *pm ctr)

Starts the measurements.

int pm continue counter(counter t *pm ctr)

Continues the measurements.

int pm stop counter(counter t *pm ctr)

Stops the measurements.

int pm get counter data(counter t *pm ctr)

Dumps power data onto memory.

int pm print data stdout(counter t *pm ctr)

Imprime los datos por la salida estándar.

int pm print data paraver(char *file, counter t *pm ctr, char *unit)

Dumps power data into a Paraver compatible file.

int pm finalize counter(counter t *pm ctr)

Finalizes the counter.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

The Extrae+Paraver framework
The powermeter (pm) framework

Instrumented code with Extrae

Guiding example: Cholesky factorization. A = UTU, U is upper triangular.

1 #define A_ref(i,j) A[((j)-1)* Alda +((i)-1)]

2 void dpotrf(int n, int nb, double *A, int Alda , int *info){

3 // Declaration of variables ...

4 pm_start_counter (& pm_ctr);

5 Extrae_init ();

6 for (k=1; k<=n; k+=nb) {

7 // Factor current diagonal block

8 Extrae_event (500000001 ,1);

9 dpotf2(nb , &A_ref(k,k), Alda , info);

10 Extrae_event (500000001 ,0);

11
12 if(k+nb <= n) {

13 // Triangular solve

14 Extrae_event (500000001 ,2);

15 dtrsm("L", "U", "T", "N", nb, n-k-nb+1, &done , &A_ref(k, k), Alda ,

16 &A_ref(k, k+nb), Alda);

17 Extrae_event (500000001 ,0);

18
19 }

20 // ... More code ...

21 }

22 Extrae_fini ();

23 pm_stop_counter (& pm_ctr);

24 }

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Example: LAPACK dpotrf routine
Example: LAPACK LUPP routine
Example: ScaLAPACK pdpotrf routine

Collecting traces and visualization

Tracing
Power

Server

 Application

cluster

app.x

Trace data
from pm

 power.prv

Postprocessing

statistical module

app.prv

merge Paraver

app.pcf

app.row

performance.prv
−Avg. power per task type

− Energy model

− Power per core

Trace files

Trace data
from Extrae

Powermeters
270, 120, 270, 120, 190, ...

Power samples

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Example: LAPACK dpotrf routine
Example: LAPACK LUPP routine
Example: ScaLAPACK pdpotrf routine

Example: LAPACK dpotrf routine

Platform: 16 AMD Opteron 6128 cores (two eight-core sockets, 2.0 GHz) and 48 GB of RAM.
Problem: Cholesky n=16384, nb=256.

Kernels

Power

Legend idle dpotf2 dtrsm dsyrk sync

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Example: LAPACK dpotrf routine
Example: LAPACK LUPP routine
Example: ScaLAPACK pdpotrf routine

Example: LAPACK LUPP routine

Problem: LUPP n=16384, nb=256.

Kernels

Power

Legend idle dgetf2 dlaswp dtrsm dgemm sync

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Example: LAPACK dpotrf routine
Example: LAPACK LUPP routine
Example: ScaLAPACK pdpotrf routine

Collecting traces and visualization

Problem: LUPP n=16384, nb=256.

Kernels

Power

Legend idle dgetf2 dlaswp dtrsm dgemm sync

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Example: LAPACK dpotrf routine
Example: LAPACK LUPP routine
Example: ScaLAPACK pdpotrf routine

Example: ScaLAPACK pdpotrf routine
Platform: 4 nodes with two Intel Xeon Quad-core E5520 processors (2.27 GHz) and 24 GB.
Problem: ScaLAPACK pdpotrf n=20000.

Kernels

Power

Legend idle dpotrf dtrsm dsyrk dgemm

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

Introduction

We develop an energy model for task-parallel scientific applications that
can be subsequently leveraged by task schedulers to meet power budget
and thermal constraints while simultaneously improving performance.

We first describe how to obtain a task-parallel implementation/execution
of the Cholesky factorization using SMPSs to then formulate and validate
our model for parallel applications of this class.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

SMPSs

SMPSs is an instance of the StarSs framework for shared-memory
multiprocessors.

It combines a language with a reduced number of OpenMP-like pragmas,
a source-to-source compiler, and a runtime system to leverage task-level
parallelism in sequential codes:

1 The programmer employs pragmas to annotate routines indicating
directionality of operands with clauses.

2 A source-to-source compiler produces a C code.
3 A runtime decomposes the code into a number tasks at run time,

dynamically identifying dependencies, and issuing ready tasks.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

SMPSs: Example code for Cholesky factorization

1 #define A_ref(i,j) A[((j)-1)* Alda +((i)-1)]

2 void dpotrf_smpss(int n, int nb , double *A, int Alda , int *info){

3 // Declaration of variables ...

4 for (k=1; k<=n; k+=nb) {

5 // Factor current diagonal block

6 dpotf2_wrapper(nb, &A_ref(k,k), Alda , info);

7 if(k+nb <= n) {

8 // Triangular solve

9 for (j=k+nb; k<=n; k+=nb)

10 dtrsm_wrapper(nb , &A_ref(k, k), &A_ref(k, j), Alda);

11 // Update trailing submatrix

12 for (i=k+nb; i<=n; i+=nb) {

13 dsyrk_wrapper(nb , &A_ref(k, i), &A_ref(i, i), Alda);

14 for (j=i+nb; j<=n; j+=nb)

15 dgemm_wrapper(nb, &A_ref(k, i), &A_ref(k, j), &A_ref(i, j), Alda);

16 } }

17 } }

18
19 #pragma css task input(nb, ldm) inout(A[nb*nb], info)

20 void dpotf2_wrapper(int nb, double A[], int ldm , int *info) {

21 dpotrf("U", &nb, A, &ldm , info);

22 }

23
24 #pragma css task input(nb, A[nb*nb], ldm) inout(B[nb*nb])

25 void dtrsm_wrapper(int nb , double A[], double B[], int ldm) {

26 dtrsm("L", "U", "T", "N", &nb , &nb, &done , A, &ldm , B, &ldm);

27 }

28
29 #pragma css task input(nb, A[nb*nb], ldm) inout(C[nb*nb])

30 . . .

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

SMPSs: Example code for Cholesky factorization

C00

C11

C22

C33

T01 T02 T03

T12 T13

T23

S11

S22

S22

S33

S33

S33

G12 G13

G23

G23

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

An energy/power model for task-parallel applications

Consider a task-parallel application that can be decomposed into a number of
tasks of r different types, where tasks of the j-th type, j = 1, 2, ..., r , run during
a total time Tj , we propose the following energy consumption model:

Emod = PY · Tidle + (PY + PS) · Tbusy +
r∑

j=1

P̄D
j · Tj ,

where

P(S)Y (stem) is the power dissipated by the target platform when idle,

PS(tatic) is the power required to “energize” the platform,

Ttot is the total execution time of the application,

Tidle is the time during which there are no tasks running,

Tbusy = Ttot − Tidle , and

P̄
D(ynamic)
j is the average dynamic power dissipated by one core when

running a task of type j .

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

SMPSs: Example code for Cholesky factorization

 50

 100

 150

 200

 250

 300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
o
w

er
 (

w
at

ts
)

active cores

Task power when using different number of cores

Idle-wait
Busy-wait

PY = 80.15 Watts

P(c) = α+ β · c = 158.40 + 7.84 · c
PS = α− PY = 158.40 − 80.15 = 78.25 Watts

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

An energy/power model for task-parallel applications

We evaluate the average power per task type, P̄D
j .

For this purpose, we propose to employ information from Extrae and apply a postprocessing
statistical module to estimate these values.

A power trace is composed of m samples s = (s1, s2, . . . , sm), the measured energy
consumption derived from these samples is given by

Emes =
m∑

i=1

si

m
· Ttot = P̄ · Ttot ,

We also filter the performance trace to obtain a sequence of m tuples of the form

(ai,1, ai,2, . . . , ai,r), i = 1, 2, ...,m, where ai,j is the number of tasks of type j being

executed at the instant of time corresponding to the i-th power sample.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

An energy/power model for task-parallel applications

We evaluate the average power per task type, P̄D
j .

For this purpose, we propose to employ information from Extrae and apply a postprocessing
statistical module to estimate these values.

A power trace is composed of m samples s = (s1, s2, . . . , sm), the measured energy
consumption derived from these samples is given by

Emes =
m∑

i=1

si

m
· Ttot = P̄ · Ttot ,

We also filter the performance trace to obtain a sequence of m tuples of the form
(ai,1, ai,2, . . . , ai,r), i = 1, 2, ...,m, where ai,j is the number of tasks of type j being
executed at the instant of time corresponding to the i-th power sample.

A =


1 2 0 0
0 2 3 0
0 1 4 1
0 0 1 2

.

.

.
.
.
.

.

.

.
.
.
.



Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

An energy/power model for task-parallel applications

We evaluate the average power per task type, P̄D
j .

For this purpose, we propose to employ information from Extrae and apply a postprocessing
statistical module to estimate these values.

A power trace is composed of m samples s = (s1, s2, . . . , sm), the measured energy
consumption derived from these samples is given by

Emes =

m∑
i=1

si

m
· Ttot = P̄ · Ttot ,

We also filter the performance trace to obtain a sequence of m tuples of the form
(ai,1, ai,2, . . . , ai,r), i = 1, 2, ...,m, where ai,j is the number of tasks of type j being
executed at the instant of time corresponding to the i-th power sample.

We obtain a linear system Ax = b, where the rows of the m × r matrix A correspond to the
m tuples that specify the task activity, and the entries of b satisfy bi = si − (PY + PS).

The entries of the solution vector, x = (x1, x2, . . . , xr), for the linear-least squares problem

min
x
‖Ax − b‖2,

then provide an estimation of the average power per task type; i.e., xj ≈ P̄D
j .

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

An energy/power model for task-parallel applications

 145

 150

 155

 160

 165

 170

 175

 180

 0 5 10 15 20 25 30

P
o
w

er
 (

w
at

ts
)

Time (s)

Tasks power

 Gemm
Gemv
Trsm
Trsv

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

An energy/power model for task-parallel applications

 0

 2

 4

 6

 8

 10

1
0

2
4

0

1
2

2
8

8

1
4

3
3

6

1
6

3
8

4

1
8

4
3

2

2
0

4
8

0

2
2

5
2

8

2
4

5
7

6

2
6

6
2

4

2
8

6
7

2

3
0

7
2

0

-10

-5

 0

 5

 10

E
n

e
rg

y
 (

W
a
tt

s
h

o
u

r)

R
e
la

ti
v

e
 e

rr
o

r
(%

)

Matrix size (n)

Energy consumption for the Cholesky factorization

Real app. energy
Est’d app. energy
Real total energy

Est’d total energy
Error in app. energy
Error in total energy

 0

 5

 10

 15

 20

1
0

2
4

0

1
2

2
8

8

1
4

3
3

6

1
6

3
8

4

1
8

4
3

2

2
0

4
8

0

2
2

5
2

8

2
4

5
7

6

2
6

6
2

4

2
8

6
7

2

3
0

7
2

0

-10

-5

 0

 5

 10

E
n

e
rg

y
 (

W
a
tt

s
h

o
u

r)

R
e
la

ti
v

e
 e

rr
o

r
(%

)

Matrix size (n)

Energy consumption for the LU factorization with partial pivoting

Real app. energy
Est’d app. energy
Real total energy

Est’d total energy
Error in app. energy
Error in total energy

 0

 5

 10

 15

 20

1
0

2
4

0

1
2

2
8

8

1
4

3
3

6

1
6

3
8

4

1
8

4
3

2

2
0

4
8

0

2
2

5
2

8

2
4

5
7

6

2
6

6
2

4

2
8

6
7

2

3
0

7
2

0

-10

-5

 0

 5

 10

E
n

e
rg

y
 (

W
a
tt

s
h

o
u

r)

R
e
la

ti
v

e
 e

rr
o

r
(%

)

Matrix size (n)

Energy consumption for the LU factorization with incremental pivoting

Real app. energy
Est’d app. energy
Real total energy

Est’d total energy
Error in app. energy
Error in total energy

 0

 5

 10

 15

 20

5
1

2

1
0

2
4

1
5

3
6

2
0

4
8

2
5

6
0

3
0

7
2

3
5

8
4

4
0

9
6

4
6

0
8

5
1

2
0

5
6

3
2

6
1

4
4

6
6

5
6

7
1

6
8

7
6

8
0

8
1

9
2

8
7

0
4

9
2

1
6

9
7

2
8

1
0

2
4

0

-10

-5

 0

 5

 10

E
n

e
rg

y
 (

W
a
tt

s
h

o
u

r)

R
e
la

ti
v

e
 e

rr
o

r
(%

)

tasks

Energy consumption for the synthetic benchmark

Real app. energy
Est’d app. energy
Real total energy

Est’d total energy
Error in app. energy
Error in total energy

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Using SMPSs to parallelize the Cholesky factorization
An energy/power model for task-parallel applications

An energy/power model for task-parallel applications

In order to validate the model, we obtain the following data:

Estimated and real (measured) total energy consumption of the mainboard, as
given respectively by

Emod = PY · Tidle + (PY + PS) · Tbusy +
r∑

j=1

P̄D
j · Tj ,

and

Emes =

m∑
i=1

si

m
· Ttot = P̄ · Ttot .

Estimated and real application energy consumption, given by

ED
mod =

∑r
j=1 P̄

D
j · Tj and ED

mes =
∑m

j=1
bi
m

· Ttot = P̄D · Ttot , respectively.

Relative errors of the energy estimations, computed as the difference between
the estimated and real (total or application) energy consumption divided by the

real (total or application) energy consumption: |Emes−Emod |
Emes

and
|ED

mes−ED
mod |

ED
mes

.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Conclusions and future work

We have presented a framework to analyze the power-performance
interaction of parallel MPI and/or multi-threaded scientific applications.

Using a number of representative operations from dense linear algebra, we
have illustrated how the hardware and software tools in this framework
provide a detailed execution trace of the application that allows the
determination of the power cost at the granularity of functions or code
fragments.

For task-parallel applications we have extended these results to derive an
energy model which, utilizing the information contained in the
power-performance traces, obtains the power cost at the task level as well
as the power dissipated per core.

While we expect that this environment can already be leveraged to write
more energy-aware applications, as part of future work, we aim at
integrating this information into the SMPSs runtime system, to obtain a
power/energy-aware scheduler.

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

Introduction: The integrated framework
Tools and APIs for Performance–Power Tracing

Visualizing the Performance-Power Interaction
Analysis of Task–Parallel Applications

Conclusions

Thanks for your attention!

Questions?

Pedro Alonso et al. Tools for Power and Energy Analysis of Parallel Scientific Applications

	Introduction: The integrated framework
	Tools and APIs for Performance–Power Tracing
	The Extrae+Paraver framework
	The powermeter (pm) framework

	Visualizing the Performance-Power Interaction
	Example: LAPACK dpotrf routine
	Example: LAPACK LUPP routine
	Example: ScaLAPACK pdpotrf routine

	Analysis of Task–Parallel Applications
	Using SMPSs to parallelize the Cholesky factorization
	An energy/power model for task-parallel applications

	Conclusions

