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Motivation

High performance computing:

Optimization of algorithms applied to solve complex problems

Technological advance ⇒ improve performance:

Higher number of cores per socket (processor)

Large number of processors and cores ⇒ High energy consumption

Tools to analyze performance and power in order to detect code
inefficiencies and reduce energy consumption
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Introduction

Parallel scientific applications

Examples for dense linear algebra: Cholesky, QR and LU factorizations

Tools for power and energy analysis

Power profiling in combination with Extrae+Paraver tools

Parallel applications + Power profiling

⇓
Environment to identify sources of power inefficiency

⇓
Energy savings
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Tools for performance and power tracing

Why traces?

Details and variability are important (along time, processors, etc.)

Extremely useful to analyze performance of applications, also at power level!

Extrae library

Other libraries:

Computational

Communication
...

pm library

           

         ...

Extrae API :

          Extrae_init()

         Extrae_fini()

         pm_stop()

         ...

          pm_start()

   

pm API :
         app.c  app’.c app.x

   Executable

MPI/Multi−threaded

 Scientific Application Scientific ApplicatonScientific Application

   Annotations
           +     

MPI/Multi−threaded MPI/Multi−threaded

 Compiler+linker

Scientific application app.c

Application with annotated code app’.c

Executable code app.x
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Tracing framework

Extrae: instrumentation and measurement package of BSC (Barcelona
Supercomputing Center):

Intercept calls to MPI, OpenMP, PThreads

Records relevant information: time stamped events, hardware counter values, etc.

Dumps all information into a single trace file.

Paraver: graphical interface tool from BSC to analyze/visualize trace files:

Inspection of parallelism and scalability

High number of metrics to characterize the program and performance application
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Power measurement framework

pmlib library
Power measurement package of Jaume I University (Spain)

Interface to interact and utilize our own and commercial power meters

Power tracing

daemon

Power tracing

server

Computer

Mainboard

Application node

Power
supply
unit

External

powermeter

powermeter

InternalRS232

USB

Ethernet

Server daemon: collects data from power meters and send to clients

Client library: enables communication with server and synchronizes with start-stop
primitives

Power meter:
ASIC-based powermeter (own design!)

LEM HXS 20-NP transductors with PIC microcontroller

Sampling rate 25 Hz
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Scientific application

LU factorization with partial pivoting

PA = LU

A ∈ Rn×n nonsingular matrix

P ∈ Rn×n permutation matrix

L/U ∈ Rn×n unit lower/upper triangular matrices

Consider a partitioning of matrix A into blocks of size b × b

For numerical stability, permutations are introduced to prevent operation
with small pivot elements

Example of performance and power tracing with the LU factorization:

LAPACK routine dgetrf

Shared-memory parallelism is extracted by calling to the multi-thread implementations of:

dgetf2, dlaswp, dtrsm and dgemm kernels from Intel MKL, AMD ACML or IBM
ESSL.
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Code annotation

LU factorization using LAPACK code:

#d e f i n e A r e f ( i , j ) A [ ( ( j )−1)∗Alda +(( i )−1)]
v o i d d g e t r f ( i n t m, i n t n , i n t b , double ∗A, i n t Alda , i n t ∗ i p i v , i n t ∗ i n f o ){

// De c l a r a t i o n o f v a r i a b l e s ( omi t ted )

f o r ( j =1; j<=min ( m, n ) ; j+=b ) {

// Fac to r c u r r e n t pane l
d g e t f 2 ( m−j +1, b , &A r e f ( j , j ) , Alda , &i p i v [ j−1] , i n f o ) ;

// Apply pe rmuta t i on s to l e f t and r i g h t o f pane l
dlaswp ( j−1, A, Alda , j , j+b−1, i p i v , 1 ) ;
d laswp ( n−j−b+1, &A r e f ( 1 , j+b ) , Alda , j , j+b−1, i p i v , 1 ) ;

// T r i a n g u l a r s o l v e
dtrsm ( ”L” , ”L” , ”N” , ”U” , b , n−j−b+1, done , &A r e f ( j , j ) , Alda , &A r e f ( j , j+b ) , Alda ) ;

// Update t r a i l i n g submat r i x
dgemm( ”N” , ”N” , m−j−b+1, n−j−b+1, b , done , &A r e f ( j+b , j ) , Alda ,

&A r e f ( j , j+b ) , Alda , done , &A r e f ( j+b , j+b ) , Alda ) ;

}

}
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Code annotation

LU factorization using LAPACK code (Extrae routines):

#d e f i n e A r e f ( i , j ) A [ ( ( j )−1)∗Alda +(( i )−1)]
v o i d d g e t r f ( i n t m, i n t n , i n t b , double ∗A, i n t Alda , i n t ∗ i p i v , i n t ∗ i n f o ){

// De c l a r a t i o n o f v a r i a b l e s ( omi t ted )

E x t r a e i n i t ( ) ;
f o r ( j =1; j<=min ( m, n ) ; j+=b ) {

// Fac to r c u r r e n t pane l
d g e t f 2 ( m−j +1, b , &A r e f ( j , j ) , Alda , &i p i v [ j−1] , i n f o ) ;

// Apply pe rmuta t i on s to l e f t and r i g h t o f pane l
dlaswp ( j−1, A, Alda , j , j+b−1, i p i v , 1 ) ;
d laswp ( n−j−b+1, &A r e f ( 1 , j+b ) , Alda , j , j+b−1, i p i v , 1 ) ;

// T r i a n g u l a r s o l v e
dtrsm ( ”L” , ”L” , ”N” , ”U” , b , n−j−b+1, done , &A r e f ( j , j ) , Alda , &A r e f ( j , j+b ) , Alda ) ;

// Update t r a i l i n g submat r i x
dgemm( ”N” , ”N” , m−j−b+1, n−j−b+1, b , done , &A r e f ( j+b , j ) , Alda ,

&A r e f ( j , j+b ) , Alda , done , &A r e f ( j+b , j+b ) , Alda ) ;

}
E x t r a e f i n i ( ) ;

}
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Code annotation

LU factorization using LAPACK code (Extrae routines):

#d e f i n e A r e f ( i , j ) A [ ( ( j )−1)∗Alda +(( i )−1)]
v o i d d g e t r f ( i n t m, i n t n , i n t b , double ∗A, i n t Alda , i n t ∗ i p i v , i n t ∗ i n f o ){

// De c l a r a t i o n o f v a r i a b l e s ( omi t ted )

E x t r a e i n i t ( ) ;
f o r ( j =1; j<=min ( m, n ) ; j+=b ) {

E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 1 ) ;
// Fac to r c u r r e n t pane l
d g e t f 2 ( m−j +1, b , &A r e f ( j , j ) , Alda , &i p i v [ j−1] , i n f o ) ;
E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 0 ) ;

E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 2 ) ;
// Apply pe rmuta t i on s to l e f t and r i g h t o f pane l
dlaswp ( j−1, A, Alda , j , j+b−1, i p i v , 1 ) ;
d laswp ( n−j−b+1, &A r e f ( 1 , j+b ) , Alda , j , j+b−1, i p i v , 1 ) ;
E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 0 ) ;

E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 3 ) ;
// T r i a n g u l a r s o l v e
dtrsm ( ”L” , ”L” , ”N” , ”U” , b , n−j−b+1, done , &A r e f ( j , j ) , Alda , &A r e f ( j , j+b ) , Alda ) ;
E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 0 ) ;

E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 4 ) ;
// Update t r a i l i n g submat r i x
dgemm( ”N” , ”N” , m−j−b+1, n−j−b+1, b , done , &A r e f ( j+b , j ) , Alda ,

&A r e f ( j , j+b ) , Alda , done , &A r e f ( j+b , j+b ) , Alda ) ;
E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 0 ) ;

}
E x t r a e f i n i ( ) ;

}
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Code annotation

LU factorization using LAPACK code (pmlib routines):

#d e f i n e A r e f ( i , j ) A [ ( ( j )−1)∗Alda +(( i )−1)]
v o i d d g e t r f ( i n t m, i n t n , i n t b , double ∗A, i n t Alda , i n t ∗ i p i v , i n t ∗ i n f o ){

// De c l a r a t i o n o f v a r i a b l e s ( omi t ted )
p m s t a r t c o u n t e r (& pm ctr ) ;
E x t r a e i n i t ( ) ;
f o r ( j =1; j<=min ( m, n ) ; j+=b ) {

E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 1 ) ;
// Fac to r c u r r e n t pane l
d g e t f 2 ( m−j +1, b , &A r e f ( j , j ) , Alda , &i p i v [ j−1] , i n f o ) ;
E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 0 ) ;

E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 2 ) ;
// Apply pe rmuta t i on s to l e f t and r i g h t o f pane l
dlaswp ( j−1, A, Alda , j , j+b−1, i p i v , 1 ) ;
d laswp ( n−j−b+1, &A r e f ( 1 , j+b ) , Alda , j , j+b−1, i p i v , 1 ) ;
E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 0 ) ;

E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 3 ) ;
// T r i a n g u l a r s o l v e
dtrsm ( ”L” , ”L” , ”N” , ”U” , b , n−j−b+1, done , &A r e f ( j , j ) , Alda , &A r e f ( j , j+b ) , Alda ) ;
E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 0 ) ;

E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 4 ) ;
// Update t r a i l i n g submat r i x
dgemm( ”N” , ”N” , m−j−b+1, n−j−b+1, b , done , &A r e f ( j+b , j ) , Alda ,

&A r e f ( j , j+b ) , Alda , done , &A r e f ( j+b , j+b ) , Alda ) ;
E x t r a e e v e n t ( 5 0 0 0 0 0 0 0 1 , 0 ) ;

}
E x t r a e f i n i ( ) ;
pm stop counter (& pm ctr ) ;

}
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Code execution

Basic execution schema for tracing performance and power:

Tracing
Power

Server

         Application

cluster

app.x

Trace data
from pm

       power.prv

Postprocessing

statistical module

    

  

app.prv

merge Paraver

app.pcf

app.row

performance.prv 
−Avg. power per task type

− Energy model

− Power per core

Trace files

Trace data 
from Extrae

Powermeters
270, 120, 270, 120, 190, ...

Power samples

Trace files:

Extrae outputs performance.prv file

pmlib outputs power.prv file

Tools:

Paraver: performance and power trace visualization

Manuel F. Dolz et al Binding Performance and Power of Dense Linear Algebra Operations



Introduction
Tools for performance and power tracing

Experimental results
Conclusions

Environment setup
LU factorization
Cholesky factorization
Reduction to tridiagonal form
Results

Experimental results

Environment setup:

4 AMD Opteron 6172 processors, 4x12 cores at 2.1 GHz, 256 GB of RAM

Intel MKL (v10.3.9) using IEEE double-precision arithmetic

Performance traces obtained with Extrae (v2.2.0) and Paraver (v4.1.0)

Power traces obtained with our power library pmlib (v2.0) and a microcontroller-based
internal powermeter measuring 12 V motherboard lines at 25 samples/sec.

Problem size: n=10,240
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Implementations

LAPACK Netlib routines for:
LU factorization with partial pivoting (dgetrf)
Cholesky factorization (dpotrf)
Reduction to tridiagonal form (dsytrd)

Parallelism exploited within the invocations to Intel (multi-threaded)
12 cores and block size b=128
Routine dpotrf was modified to compute the Cholesky factorization via
a right-looking algorithmic variant

MKL Intel MKL routines for:
LU factorization with partial pivoting (dgetrf)
Cholesky factorization (dpotrf)
Reduction to tridiagonal form (dsytrd)

12 cores and block size b=128

SMPSs C codes for:
LU factorization with incremental pivoting
Cholesky factorization

Linked to the sequential MKL BLAS, with task-level parallelism
extracted by the SMPSs runtime system
6 cores, block size b=256 and internal block size ib=64
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Experimental results: LU factorization

LU factorization with partial pivoting from LAPACK (dgetrf)

idle dgetf2 dlaswp dtrsm dgemm sync.

Sequential execution of dgetf2 and dlaswp (low power) and parallel execution for dtrsm and dgemm (high power)

Synchronization points after dgemm execution, due to unbalanced distribution of work among cores
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Experimental results: LU factorization

LU factorization with partial pivoting from MKL (dgetrf)
MFLOPS

L2 cache misses

dgemm and dtrsm are BLAS-3, thus deliver a high MFLOPS rate

dgetf2 is performed by only one core but overlapped with matrix updates (MKL code uses look-ahead techniques)

Synchronization point at the end of execution⇒ Algorithmic reasons
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Experimental results: LU factorization

LU factorization with incremental pivoting parallelized with SMPS
Kernels

idle dgetrf dgetrf2x1 dtrsm dgemm2x1 sync.

dgemm2x1 dominates the execution time of the algorithm

Plain power profile corresponding to dgemm2x1 BLAS-3 kernel and the lack of idle periods
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Experimental results: Cholesky factorization

Cholesky factorization from LAPACK (dpotrf)

idle dpotf2 dtrsm dsyrk sync.

Synchronization points due to unbalanced distribution of work among cores during dsyrk kernel⇒ Idle periods

Idle periods are so short and do not exert a visible change in the power profile
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Experimental results: Cholesky factorization

Cholesky factorization from MKL (dpotrf)
MFLOPS

L2 cache misses

High variability in MFLOPS rate taking into account that most of the operations are BLAS-3

About 3/4 of the execution time a drastic decrease of MFLOPS is done⇒ Change in MKL algorithm strategy

Plain power profile even decreasing MFLOPS rate
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Experimental results: Cholesky factorization

Cholesky factorization parallelized with SMPS
Kernels

idle dpotrf dtrsm dsyrk dgemm sync.

Better performance and low energy consumption of the SMPSs parallelization compared with the LAPACK and MKL
implementations
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Experimental results: Reduction to tridiagonal form

Reduction to tridiagonal form from LAPACK

dsyr2k sync.idle dsymv

Interleaved execution of serial (dsymv) and parallel phases (dsyr2k)

dsymv becomes a bottleneck because of the lack of concurrency of MKL implementation and low MFLOPS rate
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Experimental results: Reduction to tridiagonal form

Reduction to tridiagonal form from MKL (dsytrd)
MFLOPS

L2 cache misses

Alternates periods of low and high activity for MFLOPS rate at high frequency!

MKL employs a narrow block size to reduce latency of the panel factorization
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Experimental results

Comparative table for evaluated algorithms and implementations:
LU factorization Cholesky factorization Reduction to tridiagonal form

LAPACK MKL SMPSs LAPACK MKL SMPSs LAPACK MKL

T (s) 18.37 10.99 13.25 6.50 5.48 5.09 73.83 17.99

GFLOPS 38.96 65.13 54.02 55.06 65.31 70.31 1.24 5.09

Pmax (W) 390.70 385.78 392.81 384.61 389.06 393.52 327.42 336.33

Pmin (W) 301.64 294.37 328.12 307.27 289.92 292.04 285.00 297.89

Pavg (W) 359.72 377.94 385.56 373.13 377.80 373.73 293.87 325.95

Pwrk (W) 112.22 130.44 138.06 125.63 130.30 125.23 46.37 78.45

Etot (J) 6,608.60 4,155.61 5,109.44 2,427.28 2,072.07 1,905.70 21,698.53 5,865.51

Ewrk (J) 2,061.48 1,433.54 1,829.30 816.60 714.04 643.65 3,423.50 1,411.32

LU factorization

Due to lack of synchronization points MKL leads better performance in terms of execution time over LAPACK
SMPSs: longer execution time due to high number of flops to perform LU factorization with incremental pivoting!

Cholesky factorization

Superiority for the SMPSs parallelization from performance and energy!
SMPSs: Gains in execution time around 7% and improvement of energy savings about 9%

Reduction to tridiagonal form

MKL outperforms the execution time of LAPACK due to a narrow block size and parallel version of dsymv kernel
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Conclusions and future work

Implementations:

MKL/SMPSs routines produce higher average power than LAPACK but provide a reduced
execution time!

MKL/SMPSs apply “race-to-idle” technique keeping the cores busy the most of the time!

MKL/SMPSs take advantage in energy efficiency!

Performance and power tracing:
Detect code inefficiencies in order to reduce energy consumption

Very useful to detect bottlenecks in the code:

Performance inefficiency ⇒ hot spots in hardware and power sinks in code

Future work:
Developing power models for numerical libraries in order to predict energy consumption even
without execution the code.
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Thanks for your attention!

Questions?
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