
BIPGPU
Una biblioteca optimizada para el procesamiento de imágenes

biomédicas sobre procesadores gráficos

Francisco Igual1 Rafael Mayo1

Antonio Ruiz2 Manuel Ujaldón2

Department of Computer Engineering and Computer Science.
University Jaume I. Castellón (Spain)

Computer Architecture Department.
University of Málaga (Spain)

BIPGPU 1 Igual et al.



Outline

1 General framework and motivation: Biomedical image analysis

2 BIPGPU: implemented routines

3 GPU implementation

4 Experimental results

5 Conclusions

BIPGPU 2 Igual et al.



General framework and motivation: Biomedical image analysis

Biomedical analysis on the GPU

Cancer prognosis is based on evaluation of tissue samples using
a microscope to obtain large-scale images
The analysis of pathology images is particularly challenging due
to the large size of the data
Image processing on the GPU has attracted many researchers
for data mining, segmentation, . . . and fits well within this
framework
Our goal is to optimize the efficient execution of large-scale
biomedical image analysis applications on the GPU

BIPGPU 3 Igual et al.



General framework and motivation: Biomedical image analysis

Computation infrastructure

BIPGPU 4 Igual et al.



General framework and motivation: Biomedical image analysis

Computation infrastructure

BIPGPU 4 Igual et al.



General framework and motivation: Biomedical image analysis

Computation infrastructure

BIPGPU 4 Igual et al.



General framework and motivation: Biomedical image analysis

Computation infrastructure

BIPGPU 4 Igual et al.



General framework and motivation: Biomedical image analysis

Computation infrastructure

BIPGPU 4 Igual et al.



General framework and motivation: Biomedical image analysis

Computation infrastructure

BIPGPU 4 Igual et al.



General framework and motivation: Biomedical image analysis

Typical operations on biomedical image analysis

Color space conversions: Typical GPU-like streaming operators
Feature extraction: CPU-like operators. Should be optimized

BIPGPU 5 Igual et al.



BIPGPU: implemented routines

Color conversions

Typical streaming operations

Used for a high-fidelity representation depending on the
framework within image processing, like:

Color addition (light treatment in monitors): RGB, XYZ.

Color substraction (printing devices in paper): CMYK.

Color treatment/handling: Luv, LA*B*, HSV.

Digital storage/potography (sRGB, JPEG, PNG).

Textures representation for rendering (bitmaps).

A conversion is typically required from the source format to the
desired scope of application.

BIPGPU 6 Igual et al.



BIPGPU: implemented routines

LBP operator

Widely used functional feature (e.g. facial expression recognition)
LBP: invariant to rotation and local or global intensity variations
Pixel neighborhood from the original image (small windows)

2
(11000101)   = 197

0

1

1 1 0

0

01

1

51 42 27

26

36 30 19

1535

BIPGPU 7 Igual et al.



BIPGPU: implemented routines

Textural features based on co-occurrence matrices

Introduced by Haralick, 1973

Joint histogram of intensity levels of a pair of pixels with a given
spatial relationship, [dx,dy]
Captures the statistics of spatial variation of intensities
Used as intermediate data structure for calculating features:
contrast, correlation, energy, homogeneity. . .

Example for a small image with four intensity levels:

2 2 3 3

2220

0

3 0 1 1

1 10

0 1 2 3

3

2

1

0

2

21

1

3

3

0

0

0

0

1 2 1 0

002

0

01 0 1

13

BIPGPU 8 Igual et al.



BIPGPU: implemented routines

Co-occurrence matrix variants

For each image pixel or image tile to classify
Window size: centered on computed pixel/tile

Smallest window: 4×4
Largest window: 256×256

Analyzed the entire set of windows
Discretized color space or whole-range (0..255) in RGB color
space
For each color channel or using gray scale values

Experimental setup

Input images used: taken from real biomedical applications
Hardware platform: CPU vs GPU comparison
Data structures: dense vs sparse matrices

BIPGPU 9 Igual et al.



BIPGPU: implemented routines

Image descriptors based on Zernike moments

Spatial domain filters as a direct way to capture texture
properties
Legendre and Zernike polynomials represent an image by a set
of mutually independent descriptors.
The moment within a window centered at a given pixel can be
interpreted as a convolution of the image with a mask.
The more computed moments, the better reconstructed image.

Vpq(x,y) = Rpq(ρ)∗ ejqθ (1)

Optimized recursive implementations on CPU (Hwang, Al-Rahi)

BIPGPU 10 Igual et al.



GPU implementation

Why do we need HPC here?

Due to the large sizes of whole-slide images
A 120K x 120K image digitized at 40x occupies more than 40GB

Due to the large processing time on a single CPU
Using C++ code for a simple image classifier based on statistical
features computed through co-occurrence matrices, it takes 850
ms. for an image tile of 1Kx1K and 20 min. for a 50Kx50K slide

Due to the large number of medical samples
In clinical practice, 8-9 biopsy samples are collected per patient,
and a hospital may treat around 500 patients per year, consuming
months or even years of computational time using C++ on a CPU

In previous studies, we have reduced the time to few days using the
GPU, and to few hours using CPU/GPU clusters

BIPGPU 11 Igual et al.



GPU implementation

Why do we need HPC here?

Due to the large sizes of whole-slide images
A 120K x 120K image digitized at 40x occupies more than 40GB

Due to the large processing time on a single CPU
Using C++ code for a simple image classifier based on statistical
features computed through co-occurrence matrices, it takes 850
ms. for an image tile of 1Kx1K and 20 min. for a 50Kx50K slide

Due to the large number of medical samples
In clinical practice, 8-9 biopsy samples are collected per patient,
and a hospital may treat around 500 patients per year, consuming
months or even years of computational time using C++ on a CPU

In previous studies, we have reduced the time to few days using the
GPU, and to few hours using CPU/GPU clusters

BIPGPU 11 Igual et al.



GPU implementation

Why do we need HPC here?

Due to the large sizes of whole-slide images
A 120K x 120K image digitized at 40x occupies more than 40GB

Due to the large processing time on a single CPU
Using C++ code for a simple image classifier based on statistical
features computed through co-occurrence matrices, it takes 850
ms. for an image tile of 1Kx1K and 20 min. for a 50Kx50K slide

Due to the large number of medical samples
In clinical practice, 8-9 biopsy samples are collected per patient,
and a hospital may treat around 500 patients per year, consuming
months or even years of computational time using C++ on a CPU

In previous studies, we have reduced the time to few days using the
GPU, and to few hours using CPU/GPU clusters

BIPGPU 11 Igual et al.



GPU implementation

Roadblocks to fast GPU kernels

CUDA exposes better interface than Cg or assembly
programming for general-purpose computing
But architectural idiosyncrasies still need managing:

Memory bank conflicts
Long latencies to global memory
Correct data structure choice
Thread deployment shape
Kernels with high data reuse
Kernels with low computational load
Small local memories

CUDA (since 2007):

BIPGPU 12 Igual et al.



GPU implementation

Color conversions and LBP implementation

Color conversions
Fully streaming operator: without optimizations
Data coalescing: RGB⇒ padding to 32 bits

LBP

Full GPU resource utilization
requires heavyweight,
complex kernel
Simpler kernel overlaps
windows by one pixel
Transfers redundant data
Is still 1.25x faster than
heavyweight version

threads   deployment

computing
threads

data required

to compute

LBP operator

on central pixel (3x3 pixels window)

BIPGPU 13 Igual et al.



GPU implementation

Co-occurrence matrices: discretization and
optimizations

Non-discretized matrices: 256×256 elements. No Sh. Memory
Solution: discretization

0 3 151 2 10 0 1 15 0 1 15

DATA (1 byte)

BANKS (4 bytes):

THREADS: 63 64 127 128 191 192 255

15001 255

0123

row 2

row 3

row 1

row 0

row 0

row 1

row 2

row 3

pixels
belonging
to thread

(0,0)

lo
ca

l 
co

o
cc

u
rr

en
ce

 m
at

ri
ce

s 
(s

er
ia

li
ze

d
)

16x16 threads (first kernel)

kernel)
(second
reduction

(w
it

h
 o

n
ly

 1
6
 t

h
re

ad
s 

w
e 

o
p
ti

m
iz

e 
m

em
o
ry

 a
cc

es
s)

th
re

ad
 d

ep
lo

y
m

en
t 

fo
r 

se
co

n
d
 k

er
n
el

threads accessing

01234567...

0 15

MEMORY
BANKS

SHARED

thread deployment for first kernel

mem. on half warp

ThrID(6): 00000110

00011000

after
shuffling
bits

global memory

shared memory

local coocurrence
matrix for thread 150

bank: 1

bank: 6

6 7 1312111098 14 15

image pixels (serialized)

BIPGPU 14 Igual et al.



GPU implementation

Sparse matrix format

The format is critical for attaining high performance

Simple to fit the GPU execution model
Compact to fit in shared memory

Our proposal: coordinate format

15

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0 0
1

2

1

1

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

1 2 3 40

1

0

A

J

I 1 2

4

4

1

5

7

7

4

CO−OCCURRENCE  MATRIX

COORDINATE  FORMAT

DENSE  FORMAT

SPARSE  MATRIX

0

150

4

1

5 7

42

4 1 0window
3x3

(values)

(rows)

(columns)

0
1

INPUT  IMAGE

Pixel intensities: 0..7

Resolution: 16x16

1 2 1 1

BIPGPU 15 Igual et al.



GPU implementation

Alternative formats for sparse matrices

There are more sparse formats:

Single linked lists

Uses an ordered linked list per row
Benefits: efficient insertion

Double linked lists by rows and columns

Uses a double linked list of columns and rows
Benefits: allows optimizations for some matrix shapes

Common disadvantages

More storage space
↓

Less threads per block computing co-occurrence matrices

BIPGPU 16 Igual et al.



GPU implementation

Alternative formats for sparse matrices

There are more sparse formats:

Single linked lists

Uses an ordered linked list per row
Benefits: efficient insertion

Double linked lists by rows and columns

Uses a double linked list of columns and rows
Benefits: allows optimizations for some matrix shapes

Common disadvantages

More storage space
↓

Less threads per block computing co-occurrence matrices

BIPGPU 16 Igual et al.



GPU implementation

The computational process using CUDA (I)

The algorithm can be shared for all sparse formats and has two
phases:

1 Shared memory phase⇒ Sparse format
Each thread operates on a chunk of the original window
Creates a local sparse representation
Sequentially, a reduction process is performed
Sparse to dense conversion
One dense matrix per block is written to global memory

2 Global memory phase⇒ Dense format
The second phase is performed on global memory
Global reduction process using shared memory (optimized)
Usually attaining good performance results

BIPGPU 17 Igual et al.



GPU implementation

The computational process using CUDA (II)

+ + + +

++

+

0a a1 a2 a3 a4 a5 a6 a7

i0 i1 i2 i3 i4 i5 i6 i7

j0 j1 j2 j3 j4 j5 j6 j7

a01 a23 a45 a67

i23 i45 i67

j01

i01

j23 j45 j67

a03 a47

i03

j03

i47

j47

a07

i07

j07

THREAD 0 1 2 3 4 5 6

BLOCK 0

PER BLOCK REDUCTION − SPARSE FORMAT Using only SHARED MEMORY

PER GRID REDUCTION − DENSE FORMAT Using only GLOBAL MEMORY

Image pixels (serialized) − Global memory

+
 S

P
A

R
S

IT
Y

 R
A

T
IO

Local sparse submatrices

Total size: O(WINDOW_SIZE)

Per block dense submatrix

Size: O(COOC_MATRIX_SIZE)

S
H

A
R

E
D

 M
E

M
O

R
Y

G
L

O
B

A
L

 M
E

M
O

R
Y

FINAL COOCURRENCE MATRIX

... ...

7 N
M

0 1 2 3 4 5 6 M

...

BIPGPU 18 Igual et al.



Experimental results

Our benchmark

Input images: taken from bone and cartilage regeneration and
precomputed to obtain grayscales
CPU: Intel Core 2 Duo
GPU: Nvidia GeForce 8800 GPU
Experimental numbers measured for different window sizes and
discretized levels

BIPGPU 19 Igual et al.



Experimental results

Color conversions

Color conversions: fully stream-oriented operation

Format conversion CPU time GPU time GPU Speedup
RGB to XYZ 140.01 ms 1.27 ms 109.47x
RGB to Luv 273.83 ms 1.42 ms 191.62x
RGB to L*A*B* 267.92 ms 2.23 ms 119.66x
RGB to HSV 16.60 ms 0.57 ms 28.98x
RGB to sRGB 123.51 ms 1.23 ms 99.84x
sRGB to XYZ 16.50 ms 0.43 ms 37.59x
sRGB to Luv 150.31 ms 0.57 ms 263.25x
sRGB to L*A*B* 144.41 ms 1.29 ms 111.68x

BIPGPU 20 Igual et al.



Experimental results

LBP operator

“Simple” GPU implementation outperforms CPU
Even better results than with Cg

Image CPU GPU GPU GPU
size C++ Cg CUDA speedup
128×128 3.95 1.01 0.072 54.86x
256×256 17.83 1.09 0.140 127.35x
512×512 76.70 1.92 0.415 184.81x
1024×1024 310.65 6.88 1.564 198.62x
2048×2048 1234.96 23.91 6.114 201.98x

BIPGPU 21 Igual et al.



Experimental results

Co-occurrence matrices: window size impact

Results (in ms.) for different window sizes
Using non-discretized co-oc. matrix

Window CPU GPU dense GPU sparse Nonzeros Speedup GPU/CPU
4x4 1.36 7.61 0.10 0.024% 76.1x 13.60x
8x8 2.82 7.62 0.16 0.090% 47.62x 17.62x

16x16 2.82 7.58 0.39 0.390% 19.43x 7.23x
32x32 3.04 7.63 0.74 1.560% 10.31x 4.10x
64x64 3.08 7.76 1.74 6.250% 4.45x 1.77x

128x128 2.94 8.54 7.70 25% 1.1x 0.38x
256x256 2.96 9.19 46.49 100% 0.19x 0.32x

Best results achieved for Sparse Formats on GPU for matrices
sparse enough
Even better results that those on CPU

Encouraging results

BIPGPU 22 Igual et al.



Experimental results

Co-occurrence matrices: potential optimizations

Results (in ms.) of different window sizes
Using non-discretized co-oc. matrix

Window Coordinate Simple link Double link Optimally
4x4 0.10 0.13 0.30 0.21
8x8 0.14 0.25 0.58 0.37

16x16 0.36 1.02 1.52 1.10
32x32 0.45 2.31 4.91 4.83
64x64 1.13 3.46 6.52 6.90

128x128 6.58 19.85 23.33 24.41
256x256 43.19 65.99 78.19 78.31

Best results are achieved for the simplest implementation
Less storage space means more threads computing co-oc.
matrices per block

Disappointing results

BIPGPU 23 Igual et al.



Experimental results

Co-occurrence matrices: discretization impact

Results (in ms.) of different discretization level of the
co-occurrence matrix
Window size: 16×16

Co. size CPU GPU dense GPU sparse Nonzeros Speedup GPU/CPU
16x16 2.82 0.23 0.21 100% 1.09x 13.42x
32x32 2.82 0.31 0.27 25% 1.14x 10.44x
64x64 2.82 0.67 0.28 6.25% 2.39x 10.07x

128x128 2.82 2.09 0.33 1.56% 6.33x 8.54x
256x256 2.82 7.58 0.39 0.39% 19.43x 7.32x

Fixing the window size (16×16, very sparse matrix), sparse
Representation is the winner
The best results are achieved for the most sparse matrices
Particularizing the window size to 16x16, the sparse
representation always performs better

Outstanding results

BIPGPU 24 Igual et al.



Experimental results

Zernike moments

Comparison CPU-GPU (ms.):

All mo- Exec. times 1024x1024 image Speed-up GPU vs:
ments of HWANG AL-RAWI Direct HWANG Al-Rawi

an order (2006) (2008) on GPU (2006) (2008)
A4,∗ (3) 258.0 62.5 19.0 13.57x 3.28x
A8,∗ (5) 859.0 54.5 36.6 23.47x 1.48x
A12,∗ (7) 1 969.0 62.5 50.5 38.99x 1.23x
A16,∗ (9) 3 836.0 78.0 68.2 56.24x 1.14x
A20,∗ (11) 6 586.0 93.5 90.0 73.17x 1.03x

Optimizations (ms.):

Moments Direct method Optimiz. Optimiz. Optimiz. Speed
of order (GPU) 1 2 3 up
A4,∗(3) 19.0 14.92 14.03 13.79 1.37x

1 Using sincosf
2 Maximizing threads per block (384 optimally)
3 No temporary data structures

BIPGPU 25 Igual et al.



Conclusions

Some recommendations

Implement data parallel, arithmetically intensive, regular codes

Adapt the algorithm: lightweight and simple threads

Redisign the algorithm: no recursion, no divergences. . .

Choose the correct data structure: compact and simple

Relax some restrictions. Goal: use shared memory as much
as possible

Apply CUDA specific tricks: coalescing, avoid conflicts in shared
memory. . .

BIPGPU 26 Igual et al.



Conclusions

Conclusions

Biomedical image analysis is a HPC-demanding application
There are processes that fit perfectly to the GPU execution model
. . . but not all
It is necessary to take into account both the architecture and the
execution model, which explains why a more complex format or
algorithm does not lead to better performance
CUDA-specific improvements can boost performance
Optimizing ALL the steps of our process allows us to execute it
exclusively on GPU, with no transfers penalty nor CPU
occupancy

BIPGPU 27 Igual et al.


	General framework and motivation: Biomedical image analysis
	BIPGPU: implemented routines
	GPU implementation
	Experimental results
	Conclusions

