
Solving Dense Linear Systems on Graphics
Processors

Sergio Barrachina Maribel Castillo Francisco Igual
Rafael Mayo Enrique S. Quintana-Ort́ı

High Performance Computing & Architectures Group
Universidad Jaume I de Castellón (Spain)

Solving Dense Linear Systems on GPUs 1 Barrachina et al.

Motivation (I)

The power and versatility of modern GPU have transformed them
into the first widely extended HPC platform

Solving Dense Linear Systems on GPUs 2 Barrachina et al.

Motivation (II)

The solution of dense linear systems arises in a wide variety of
fields

How does the new generation of GPUs adapt to this type of
problems?

What optimization techniques can be applied to boost
performance?

Is really single precision support a problem?

Solving Dense Linear Systems on GPUs 3 Barrachina et al.

Outline

1 Introduction

2 The CUDA architecture

3 Factorizations and algorithmic variants

4 Improvement techniques

5 Results

6 Conclusions and further work

Solving Dense Linear Systems on GPUs 4 Barrachina et al.

Introduction

1 Introduction

2 The CUDA architecture

3 Factorizations and algorithmic variants

4 Improvement techniques

5 Results

6 Conclusions and further work

Solving Dense Linear Systems on GPUs 5 Barrachina et al.

Introduction

Introduction

Dense linear algebra has been a pioneering area to explore the
performance of new architectures

This fact continues with the advent of

Multicore processors
Hardware accelerators (GPUs, Cell B.E., ClearSpeed
boards,. . .)

The increase in performance, functionality and
programmability of the current GPUs has renewed the interest
in this class of hardware

Solving Dense Linear Systems on GPUs 6 Barrachina et al.

Introduction

Related work

Galoppo et al. (2005): “Efficient algorithms for solving dense

linear systems on graphics hardware”

Based on older GPUs (not unified architectures)
Based on graphics APIs (Cg and OpenGL)

Volkov and Demmel (2008): “LU, QR and Cholesky

factorization using vector capabilities of GPUs”

Using CUBLAS 2.0
Just one variant of each procedure

Barrachina et al. (2008): “Evaluation and tuning of the level

3 CUBLAS for graphics processors”

Evaluating and tuning version 1.1 of CUBLAS
Gave us ideas to find the best variants of the factorizations

Solving Dense Linear Systems on GPUs 7 Barrachina et al.

Introduction

Goals

Our paper makes the following contributions:

We propose a full set of variants for both the Cholesky and
the LU factorization

Variants are evaluated taking into account the underlying
BLAS implementation (CUBLAS)

All implementations are evaluated on modern GPUs (G80
processor)

Several optimization techniques are described and successfully
implemented:

Padding
Hybrid implementation
Recursive implementation
Iterative refinement

Solving Dense Linear Systems on GPUs 8 Barrachina et al.

The CUDA architecture

1 Introduction

2 The CUDA architecture

3 Factorizations and algorithmic variants

4 Improvement techniques

5 Results

6 Conclusions and further work

Solving Dense Linear Systems on GPUs 9 Barrachina et al.

The CUDA architecture

CUDA Hardware

A CUDA-enabled device is seen as a coprocessor to the CPU,
capable of executing a very high number of threads in parallel

Example: nVIDIA G80 as a set of SIMD Multiprocessors with
On-Chip Shared Memory

Up to 128 Streaming

Processors (SP), grouped in
clusters

SP are SIMD processors

Small and fast Shared Memory
shared per SP cluster

Local 32-bit registers per
processor

Solving Dense Linear Systems on GPUs 10 Barrachina et al.

The CUDA architecture

CUDA Software

The CUDA API provides a simple framework for writing C
programs for execution on the GPU

Consists of:

A minimal set of extensions to the C language
A runtime library of routines for controlling the transfers
between video and main memory, run-time configuration,
execution of device-specific functions, handling multiple
GPUs,. . .

CUDA libraries

On top of CUDA, nVIDIA provides two optimized libraries:
CUFFT and CUBLAS

Solving Dense Linear Systems on GPUs 11 Barrachina et al.

The CUDA architecture

CUBLAS Example

i n t main (vo id){
. . .
f l o a t∗ h ve c t o r , ∗ d v e c t o r ;

h v e c t o r = (f l o a t ∗) ma l l o c (M∗ s i z e o f (f l o a t)) ;

. . . // I n i t i a l i z e v e c t o r o f M f l o a t s
c u b l a s A l l o c (M, s i z e o f (f l o a t) ,

(vo id∗∗) &d v e c t o r) ;

c ub l a s S e tVe c t o r (M, s i z e o f (f l o a t) , h v e c t o r ,
d v e c t o r , 1) ;

c u b l a s S s c a l (M, ALPHA, d ve c t o r , 1) ;
c ub l a sGe tVec t o r (M, s i z e o f (f l o a t) , d v e c t o r ,

h v e c t o r , 1) ;

c u b l a s F r e e (d v e c t o r) ;
. . .
}

A typical CUDA (and
CUBLAS) program has 3
phases:

1 Allocation and transfer of
data to GPU

2 Execution of the BLAS
kernel

3 Transfer of results back to
main memory

Our codes have been developed using FORTRAN, and the
FORTRAN wrappers provided by NVIDIA

Solving Dense Linear Systems on GPUs 12 Barrachina et al.

Factorizations and algorithmic variants

1 Introduction

2 The CUDA architecture

3 Factorizations and algorithmic variants

4 Improvement techniques

5 Results

6 Conclusions and further work

Solving Dense Linear Systems on GPUs 13 Barrachina et al.

Factorizations and algorithmic variants

Cholesky and LU factorizations

Cholesky factorization

Given a s.p.d. matrix A,

A = LLT , (1)

where L is a lower triangular matrix known as the Cholesky factor of A.

LU factorization with partial pivoting

Given a matrix A, the LU factorization with partial pivoting decomposes

this matrix into two matrices, L and U , such that

PA = LU, (2)

where P is a permutation matrix, L is a unit lower triangular matrix, and

U is an upper triangular matrix.

Solving Dense Linear Systems on GPUs 14 Barrachina et al.

Factorizations and algorithmic variants

Variants for the Cholesky and LU factorization

Algorithm: A := Chol blk(A)

Partition . . .

where . . .

while m(ATL) < m(A) do

Determine block size b

Repartition
„

ATL ATR

ABL ABR

«

→

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

where A11 is b × b

Variant 1:
A11 := Chol unb(A11)

A21 := A21tril (A11)
−T

A22 := A22 − A21AT
21

Variant 2:

A10 := A10tril (A00)−T

A11 := A11 − A10AT
10

A11 := Chol unb(A11)

Variant 3:
A11 := A11 − A10AT

10
A11 := Chol unb(A11)
A21 := A21 − A20AT

10

A21 := A21tril (A11)−T

Continue with

. . .

endwhile

Solving Dense Linear Systems on GPUs 15 Barrachina et al.

Factorizations and algorithmic variants

Why different variants?

All variants perform exactly the same operations

However, their performance depends on the specific BLAS
implementation employed

CUBLAS is far from being fully optimized (Barrachina et al.)

The CUBLAS routines used by each variant will determine
their performance

Solving Dense Linear Systems on GPUs 16 Barrachina et al.

Factorizations and algorithmic variants

Algorithmic variants. Cholesky factorization

Variant 1:
A11 := Chol unb(A11)

A21 := A21tril (A11)
−T

(trsm)
A22 := A22 − A21A

T

21
(syrk)

Variant 2:

A10 := A10tril (A00)
−T

(trsm)
A11 := A11 − A10A

T

10
(syrk)

A11 := Chol unb(A11)

Variant 3:
A11 := A11 − A10A

T

10
(syrk)

A11 := Chol unb(A11)
A21 := A21 − A20A

T

10
(gemm)

A21 := A21tril (A11)
−T

(trsm)

Solving Dense Linear Systems on GPUs 17 Barrachina et al.

Factorizations and algorithmic variants

Algorithmic variants. LU factorization

Variant 1:

A01

A11

A21

 := P (p0)

A01

A11

A21

A01 := trilu(A00)
−1A01 (trsm)

A11 := A11 − A10A01 (gemm)
A21 := A21 − A20A01 (gemm)
[(

A11

A21

)

, p1

]

:= LUP unb

(

A11

A21

)

(

A10

A20

)

:= P (p1)

(

A10

A20

)

Solving Dense Linear Systems on GPUs 18 Barrachina et al.

Factorizations and algorithmic variants

Algorithmic variants. LU factorization

Variant 2:

A11 := A11 − A10A01 (gemm)
A21 := A21 − A20A01 (gemm)
[(

A11

A21

)

, p1

]

:= LUP unb

(

A11

A21

)

(

A10 A12

A20 A22

)

:= P (p1)

(

A10 A12

A20 A22

)

A12 := A12 − A10A02 (gemm)
A12 := trilu(A11)

−1A12 (trsm)

Solving Dense Linear Systems on GPUs 19 Barrachina et al.

Factorizations and algorithmic variants

Algorithmic variants. LU factorization

Variant 3:

[(

A11

A21

)

, p1

]

:= LUP unb

(

A11

A21

)

(

A10 A12

A20 A22

)

:= P (p1)

(

A10 A12

A20 A22

)

A12 := trilu(A11)
−1A12 (trsm)

A22 := A22 − A21A12 (gemm)

Solving Dense Linear Systems on GPUs 20 Barrachina et al.

Improvement techniques

1 Introduction

2 The CUDA architecture

3 Factorizations and algorithmic variants

4 Improvement techniques

5 Results

6 Conclusions and further work

Solving Dense Linear Systems on GPUs 21 Barrachina et al.

Improvement techniques

Padding

Barrachina et al. have shown that Level 3 CUBLAS is far
from optimized

Kernels deliver better performance for certain matrix
dimensions (multiple of 32) ⇒ memory alignment issues

It is possible to take benefit for the Cholesky (and LU)
factorizations:

Starting from a block size nb that is multiple of 32, we pad the
n × n matrix A:

Ā =

(

A 0
0 Ik

)

=

(

L 0
0 Ik

)(

L 0
0 Ik

)T

,

Ik denotes the identity matrix of order k,
k is the difference between the matrix size n and the nearest
integer multiple of nb larger than n

all BLAS-3 calls operate on submatrices of dimensions that are
a multiple of 32

Solving Dense Linear Systems on GPUs 22 Barrachina et al.

Improvement techniques

Hybrid algorithm

Goal: Exploit the different abilities of each processor to deal
with specific operations

Two main advantages of the CPU:

1 Higher performance with small matrices
2 Higher performance for some fine-grained operations (square

root)

Hybrid algorithm (Cholesky):

1 Sends the diagonal block from video memory to main memory
2 Factorizes this block on the CPU
3 Transfers back the results to video memory
4 The factorization continues on GPU

Solving Dense Linear Systems on GPUs 23 Barrachina et al.

Improvement techniques

Recursive implementation

Recursive implementation: partitions the matrix into 2 × 2
square blocks

Factorizes the upper-left block using the same blocked
algorithm

The procedure is then repeated recursively at each deeper level

Solving Dense Linear Systems on GPUs 24 Barrachina et al.

Improvement techniques

Iterative refinement (I)

The G80 only provides single precision

Iterative refinement can be used to regain full precision

Mixed precision approach introduced by Buttari et al. for the
Cell B.E. processor

Can be used with any type of accelerator using single precision

Procedure:

1 Factorization of matrix A is performed on the GPU (single
precision)

2 A first solution is computed from the factors
3 Iteratively, the solution is refined on CPU to double-precision

arithmetic

Solving Dense Linear Systems on GPUs 25 Barrachina et al.

Improvement techniques

Iterative refinement (II)

Solution of a S.P.D. using mixed precision and iterative refinement:

A(32), b(32) ← A, b

L(32) ← GPU Chol blk(A(32))

x
(1)
(32)

← L
−T

(32)
(L−1

(32)
b(32))

x(1) ← x
(1)
(32)

i← 0
r e p e a t

i← i + 1

r(i) ← b− A · x(i)

r
(i)
(32)

← r(i)

z
(i)
(32)

← L
−T

(32)
(L−1

(32)
r
(i)
(32)

)

z(i) ← z
(i)
(32)

x(i+1) ← x(i) + z(i)

u n t i l x(i+1) i s a c c u r a t e enough

O(n3) work is done in lower precision (GPU)

O(n2) work is done in higher precision (CPU)

Solving Dense Linear Systems on GPUs 26 Barrachina et al.

Results

1 Introduction

2 The CUDA architecture

3 Factorizations and algorithmic variants

4 Improvement techniques

5 Results

6 Conclusions and further work

Solving Dense Linear Systems on GPUs 27 Barrachina et al.

Results

Experimental setup

Experimental setup

System based on an Intel Core2Duo CPU (1.86 Ghz)

GPU: Nvidia 8800 Ultra board (G80 processor)

Used CUDA and CUBLAS 1.0 for our evaluation purposes

GotoBLAS 1.19 and LAPACK 3.0 when necessary

GNU Fortran Compiler 3.3.5 and NVCC release 1.0

Developed software

FORTRAN code developed, based on LAPACK

Ease of programming: far from Cg + OpenGL

Blocked and unblocked versions of the codes

Solving Dense Linear Systems on GPUs 28 Barrachina et al.

Results

Experimental setup

Experimental setup

System based on an Intel Core2Duo CPU (1.86 Ghz)

GPU: Nvidia 8800 Ultra board (G80 processor)

Used CUDA and CUBLAS 1.0 for our evaluation purposes

GotoBLAS 1.19 and LAPACK 3.0 when necessary

GNU Fortran Compiler 3.3.5 and NVCC release 1.0

Developed software

FORTRAN code developed, based on LAPACK

Ease of programming: far from Cg + OpenGL

Blocked and unblocked versions of the codes

Solving Dense Linear Systems on GPUs 28 Barrachina et al.

Results

Blocked Cholesky variants

 0

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension

Cholesky factorization - Blocked variants

CPU - Variant 1
CPU - Variant 2
CPU - Variant 3
GPU - Variant 1
GPU - Variant 2
GPU - Variant 3

Only shown blocked variants ⇒ better performance

GPU outperforms CPU for large dimensions

Note the differences between variants

Solving Dense Linear Systems on GPUs 29 Barrachina et al.

Results

Blocked LU variants

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension

LU factorization - Blocked variants

CPU - Variant 1
CPU - Variant 2
CPU - Variant 3
GPU - Variant 1
GPU - Variant 2
GPU - Variant 3

Similar behavior than Cholesky

Solving Dense Linear Systems on GPUs 30 Barrachina et al.

Results

Blocked Cholesky with padding

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension

Cholesky factorization - Blocked variants with padding

GPU - Variant 1 + padding
GPU - Variant 2 + padding
GPU - Variant 3 + padding
GPU - Variant 1
GPU - Variant 2
GPU - Variant 3

Improving the performance of CUBLAS implies an
improvment in our results

Note how the irregularities in the performance disappear

Solving Dense Linear Systems on GPUs 31 Barrachina et al.

Results

Blocked LU with padding

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension

LU factorization - Blocked variants with padding

GPU - Variant 1 + padding
CPU - Variant 2 + padding
CPU - Variant 3 + padding
GPU - Variant 1
GPU - Variant 2
GPU - Variant 3

Solving Dense Linear Systems on GPUs 32 Barrachina et al.

Results

Hybrid computation. Cholesky factorization

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension

Cholesky factorization - Recursive and hybrid variants

GPU - Variant 1
GPU - Variant 1. Hybrid
GPU - Variant 1. Recursive + Hybrid

No overhead associated with the factorization of the small
current diagonal block

Similar behaviour to be expected for the other variants

Solving Dense Linear Systems on GPUs 33 Barrachina et al.

Results

Hybrid computation. LU factorization

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension

LU factorization - Recursive and hybrid variants

GPU - Variant 2
GPU - Variant 2. Hybrid
GPU - Variant 2. Recursive + Hybrid

Solving Dense Linear Systems on GPUs 34 Barrachina et al.

Results

Iterative refinement. Cholesky factorization

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000 4000 5000

T
im

e
(s

)

Problem size

Solution of a linear system - Cholesky

LAPACK - Double precision
Variant 1 - Mixed precision
Variant 1 - Simple precision

Iterative refinement introduces some overhead, but results are
better than those on the CPU

Solving Dense Linear Systems on GPUs 35 Barrachina et al.

Results

Iterative refinement. LU factorization

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1000 2000 3000 4000 5000

T
im

e
(s

)

Problem size

Solution of a linear system - LU

LAPACK - Double precision
Variant 2 - Mixed precision
Variant 2 - Simple precision

Solving Dense Linear Systems on GPUs 36 Barrachina et al.

Conclusions and further work

Conclusions

Our study reveals the most suitable variants for the Cholesky
and LU implementations for unified GPUs

We report how techniques such as padding, hybrid CPU-GPU
computation, and recursion are effective to attain better
performance

Iterative refinement with mixed precision is an inexpensive
technique to regain full accuracy

This idea can be exported to other accelerators with simple
precision accuracy

Similar ideas can be applied to other procedures, such as the
QR factorization

Solving Dense Linear Systems on GPUs 37 Barrachina et al.

Conclusions and further work

Future work

Which is the future of GPGPU?
Maybe, multi-GPU systems

Nvidia Tesla systems

Double precision support

Programming style: DAG + runtime

Ideas can be applied to other multi-accelerator systems, not
only GPUs

Solving Dense Linear Systems on GPUs 38 Barrachina et al.

Conclusions and further work

Future work

Which is the future of GPGPU?
Maybe, multi-GPU systems

Nvidia Tesla systems

Double precision support

Programming style: DAG + runtime

Ideas can be applied to other multi-accelerator systems, not
only GPUs

Solving Dense Linear Systems on GPUs 38 Barrachina et al.

Conclusions and further work

Thanks for your attention!!

Solving Dense Linear Systems on GPUs 39 Barrachina et al.

	Introduction
	The CUDA architecture
	Factorizations and algorithmic variants
	Improvement techniques
	Results
	Conclusions and further work

