An Extension of the StarSs Programming
Model for Platforms with Multiple GPUs

Eduard Ayguadé®> Rosa M. Badia®> Francisco lguall
Jesus Labarta’® Rafael Mayo! Enrique S. Quintana-Orti'

' Departamento de Ingenieria y Ciencia de los Computadores.
University Jaume |. Castellon (Spain)

2Barcelona Supercomputing Center - Centro Nacional de Supercomputacién.
Barcelona (Spain)

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Motivation (I)

The past: emergence of hardware accelerators

@ Hardware accelerators (especially GPUs) have become a real
solution for HPC

@ Hardware: manycore systems on chip (up to 240 cores on
modern Nvidia GPUs)

@ Software: problem solved with high level programming and
execution models (e.g. Nvidia CUDA, Brook+, OpenCL)

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Motivation (lI)

The present: heterogeneous multi-accelerator systems

@ One accelerator is not always enough for many applications
@ Different accelerators adapted to specific applications

@ Multi-accelerator systems are the next step
°

Hardware: Nvidia Tesla series, multiple ClearSpeed boards per
system, hybrid architectures, ...

Software: the problem is not solved yet:

@ Big code modifications from sequential code

e Manual scheduling

@ The user has to know the best accelerator for each part of the
application

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Motivation (llI)

The future: heterogeneous multi-accelerator systems (on-chip)

@ Number of cores is increasing

@ The programmability problem must be addressed as soon as
possible

@ Hardware: Larrabee, AMD Fusion, ...

@ Software: will determine the success or failure of novel
architectures

An Extension of the StarSs Programming Model . .. Ayguadé et al.

0 Introduction

e The StarSs programming model. New extensions
e The GPUSs framework
@ Experimental results

e Conclusions and future work

An Extension of the StarSs Programming Model . .. Ayguadé et al.

o Introduction

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Introduction

Introduction. StarSs

@ The StarSs programming model addresses the programmability
problem by exploiting task level parallelism

@ It consists of:

o A few OpenMP-like pragmas identifying tasks in the user code
@ A source-to-source compiler
e A runtime system adapted to the underlying architecture

@ Many instantiations of StarSs have been developed: CellSs,
SMPSs, GridSs

@ Each instantiation targets one specific architecture

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Introduction

Introduction. GPUSs

Our proposal: GPUSs

GPUSs: Instantation of the StarSs programming model focusing
heterogeneous multi-accelerator platforms

@ Heterogeneity: The target architecture is an heterogeneous
multi-accelerator system

© Separate memory spaces: The user does not have to deal with
separate memory spaces for each accelerator

© Simplicity: It adds few pragmas to the sequential user code to
port it to the multi-accelerator system

© Portability: It can be easily ported to other similar architectures
based on multiple accelerators

An Extension of the StarSs Programming Model . .. Ayguadé et al.

The StarSs programming model. New extensions

e The StarSs programming model. New extensions

An Extension of the StarSs Programming Model . .. Ayguadé et al.

The StarSs programming model. New extensions

The StarSs programming model

StarSs programming model

@ Automatic parallelization of sequential applications

@ Runtime system: efficient use available resources (e.g. GPUSs)
in parallel

@ The user annotates the application: pieces of code that will be
executed on a GPU (tasks)

@ Runtime extracts parallelism building a data dependency graph

User code Annotated TDG Tesla system
code
#pragma css task
void taskl(float * A){ void taskl(float * A){
3 User [}~ Runtime Runtime

An Extension of the StarSs Programming Model . .. 10 Ayguadé et al.

The StarSs programming model. New extensions

Proposed extensions

Extensions to the StarSs programming model

GPUSs provides OpenMP-like constructs to annotate code:

@ To identify a unit of work, or task: pragma css task
@ To select the execution device: pragma css target device

An Extension of the StarSs Programming Model . .. 11 Ayguadé et al.

The StarSs programming model. New extensions

Defining tasks: the task clause

Taskifying functions

#pragma css task [clause_list]
{function—header | function—definition}

@ The task clause denotes a function that is always executed as a
task.

@ Whenever the program calls a function annotated in this way, the
runtime will create an explicit task.

An Extension of the StarSs Programming Model . .. 12 Ayguadé et al.

The StarSs programming model. New extensions

Defining tasks: the task clause

Identifying the directionality of the arguments

#pragma css task input(parameter) |
output(parameter) |
inout(parameter)

{function—header | function—definition}

@ The input, output and inout clauses denote the
directionality of each argument.

@ Used by the runtime to track dependencies among tasks and
manage data transfers.

An Extension of the StarSs Programming Model . .. 13 Ayguadé et al.

The StarSs programming model. New extensions

Specifying target devices: the target clause

Specifying target devices

#pragma css target device(device—name—list) [clause—list]
{function—header | function—definition}

@ The target construct specifies that the execution of a task can
be offloaded on a given device.

@ The target device is specified in device-name-1list.

@ When a task becomes ready, the runtime can choose among the
available targets to decide where to execute the task.

An Extension of the StarSs Programming Model . .. 14 Ayguadé et al.

The StarSs programming model. New extensions

Managing heterogeneity: the implements clause

@ The implements clause is used to specify alternative
implementations for a function

Example

#pragma css task
void matmul(float <A, float xB, float *C);

#pragma css target device(cuda) implements(matmul)
void matmul_cuda(float xA, float xB, float *C) {
// tuned version for a CUDA-compatible device

}

#pragma css target device(smp) implements(matmul)
void matmul_smp(float xA, float xB, float *C) {
// tuned vrsion for a SMP device

}

An Extension of the StarSs Programming Model . .. Ayguadé et al.

The StarSs programming model. New extensions

Example: the matrix-matrix multiplication

Parallelizing the matix-matrix multiplication

#pragma css task input(A[BS][BS], B[BS][BS]) inout (C[BS][BS])
#pragma css target device(cuda)
void matmul(float *A, float xB, float xC) {
// tuned CUDA code for the matmul
}

float *A[][], =B[1[], *C[][];

int main(void) {
for(int i=0; i<NB; i++)
for(int j=0; j<NB; j++)
for(int k=0; k<NB; k++)
matmul (A[i][k], B[KI[j], CLiI[j]);

An Extension of the StarSs Programming Model . ..

Ayguadé et al.

The StarSs programming model. New extensions

Example: the Cholesky factorization

The Chokesky factorization of a dense SPD matrix A € R"*" is

defined as

A=LLT

where L € ®R"*" is a lower triangular matrix.

Blocked algorithm:

An Extension of the StarSs Programming Model . ..

. Chol_upd

- Chol_gemm
- Chol_syrk

Ayguadé et al.

The StarSs programming model. New extensions

Sequential Cholesky factorization

void Cholesky(float *A, int ts, int nt) {
for (int k = 0; k < nt; k++) {

chol_spotrf(A[k«nt+k], ts); // Factorize diagonal block

for (int i = k+1; i < nt; i++) // Triangular solves
chol_strsm(A[kxnt+k], A[k«nt+i], ts);

// Update trailing submatrix
for (int i = k+1; i < nt; i++) {
for (int j = k+1; j < i; j++)
chol_sgemm(A[kxnt+i], A[k«nt+j], A[j*nt+i], ts);
chol_ssyrk(A[ksnt+i], A[ixnt+i], ts);
}
}

int main(void) {
float «A[nt][nt];

// Compute the Cholesky factor
Cholesky (A, ts, nt);

An Extension of the StarSs Programming Model . .. Ayguadé et al.

The StarSs programming model. New extensions

Taskifying the Cholesky factorization

Each block function can be converted into a task:

#pragma css task inout (A[NT][NT])
void chol_spotrf(float A) {
spotrf("Lower", &ts, A,
&ts, &info);

An Extension of the StarSs Programming Model . .. 19 Ayguadé et al.

The StarSs programming model. New extensions

askifying the Cholesky factorization

Each block function can be converted into a task:

spotrf task

#pragma css task inout (A[NT][NT])
void chol_spotrf(float A) {
spotrf("Lower", &ts, A,
&ts, &info);

|

sgemm task

#pragma css task input(A[NT][NT],

B[NT][NT])
inout (C[NT][NT])
void chol_sgemm(float =A,
float =B,
float «C) {
sgemm("N", "T", &ts, &ts, &ts,
-1.0, A, &ts, B, &ts,
1.0, C, &ts);
}

An Extension of the StarSs Programming Model . ..

ssyrk task

#pragma css task input(A[NT][NT])
inout (C[NT][NT])

void chol_syrk(float =A,
float «xC) {
ssyrk("L", "N", &ts, &ts,
-1.0, A, &ts,
1.0, C, &ts);

#pragma css task input(T[NT][NT])
inout (B[NT][NT])
void chol_strsm(float T,

float «B) {

dtrsm(an, uLn’ "T", "Nu‘
&ts, &ts, 1.0, T, &ts,
B, &ts);

Ayguadé et al.

The StarSs programming model. New extensions

Specifying the target device for each task

@ By default, each task is executed on the SMP device unless the
target clause is given.

@ Example: chol_spotrf can be executed on a CUDA-capable
device:

spotrf task on a CUDA-capable device

#pragma css task inout(A[NT][NT]) target device(cuda)
void chol_spotrf(float *xA) {

// CUDA kernel for

// the Cholesky factorization

An Extension of the StarSs Programming Model . ..

Ayguadé et al.

The StarSs programming model. New extensions

Specifying multiple implementations for each task

@ Multiple implementations for the chol_spotrf can be given:

spotrf task on a CUDA-capable device

#pragma css task inout (A[NT][NT])
void chol_spotrf(float *A);

#pragma css task inout(A[NT][NT]) target device(cuda)
implements(chol_spotrf)
void chol_spotrf_cuda(float *A) {
// CUDA kernel for
// the Cholesky factorization

}

#pragma css task inout(A[NT][NT]) target device(smp)
implements(chol_spotrf)
void chol_spotrf_smp(float *A) {
// SMP routine for
// the Cholesky factorization

An Extension of the StarSs Programming Model . .. Ayguadé et al.

The GPUSs framework

e The GPUSs framework

An Extension of the StarSs Programming Model . .. 22 Ayguadé et al.

The GPUSs framework

The target architecture

A typical multi-accelerator system

@ Host with main
memory

Host

An Extension of the StarSs Programming Model . .. Ayguadé et al.

The GPUSs framework

The target architecture

A typical multi-accelerator system

@ Host with main
memory

Host

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Itec

A typical multi-accelerator syste

@ Host with main
memory

@ Devices with
local memory

Host

An Extension of the StarSs Programming Model . .. 23 Ayguadé et al.

The target architec

A typical multi-accelerator syste

@ Host with main
memory

@ Devices with
local memory

Host

An Extension of the StarSs Programming Model . .. 23 Ayguadé et al.

The target archite

A typical multi-accelerator system

@ Host with main
memory

@ Devices with
local memory

An Extension of the StarSs Programming Model . .. 23 Ayguadé et al.

The target architec

A typical multi-accelerator syste

@ Host with main
memory

@ Devices with
local memory

An Extension of the StarSs Programming Model . .. 23 Ayguadé et al.

The GPUSs framework

The target architecture

A typical multi-accelerator system

@ Host with main
memory

@ Devices with
local memory

@ Communication
Host

Main memry through
PCIExpress Bus f PCIExpress

An Extension of the StarSs Programming Model . .. 23 Ayguadé et al.

The GPUSs framework

The target architecture

A typical multi-accelerator system

@ Host with main
memory

@ Devices with
local memory

@ Communication

Host
Ve mamry through
PCIExpress Bus f PCIExpress

@ No direct
device-device
communication

An Extension of the StarSs Programming Model . .. 23 Ayguadé et al.

The GPUSs framework

The target architecture

A typical multi-accelerator system

@ Host with main
memory

@ Devices with
local memory

@ Communication
Host
through
PCIExpress Bus PCIExpress
@ No direct
noo device-device
communication

@ Communication
through main
memory

An Extension of the StarSs Programming Model . .. 23 Ayguadé et al.

The GPUSs framework

The GPUSs runtime. Overview

@ Many features inherited from the CellSs and SMPSs runtimes
@ Two main modules:

@ Execution of the annotated user code, task generation and
scheduling
© Data movements and task execution

An Extension of the StarSs Programming Model . .. 24 Ayguadé et al.

The GPUSs framework

The GPUSs runtime. Structure

@ A master thread:

e Executes the user code

e Intercepts calls to annotated functions

o Generates tasks

o Inserts them in a Task Dependency Graph

@ A helper thread:

e Consumes tasks from the TDG as the GPUs become idle
e Maps tasks to the most suitable device
o Intercepts finalization signals from the worker threads

@ A set of worker threads:

o Wait for available tasks

e Perform the necessary data transfers from RAM to GPU
o Invoke the task call on the GPU

o Retrieve the results (if necessary)

An Extension of the StarSs Programming Model . .. 25 Ayguadé et al.

The GPUSs framework

The GPUSs runtime. Locality exploitation

@ Host and device memories: two-level memory hierarchy

e Data is transferred to device memory prior to any task execution
e Data is transferred back after execution

@ Consider the local memory of each GPU as a cache memory
storing recently-used data blocks

@ Software cache + Memory coherence policies:

o Write-invalidate
o Write-back

@ The runtime keeps a memory map of each accelerator cache

@ This information can be used to improve the mapping of tasks to
resources

An Extension of the StarSs Programming Model . .. 26 Ayguadé et al.

The GPUSs framework

The GPUSSs runtim dditional features

@ Definition of the number of accelerators at runtime
@ Paraver traces to analyze performance

) Bt o s
Fi
%-Axis _Sementic — | tatistic

Control Window: Prise

=] Data Window:

@ Hybrid CPU/GPU execution of tasks
@ Ported to a system with multiple ClearSpeed boards

An Extension of the StarSs Programming Model . ..

Ayguadé et al.

Experimental results

@ Experimental results

An Extension of the StarSs Programming Model . .. 28 Ayguadé et al.

Experimental results

Experimental results

Experimental setup

CPU Dual Xeon QuadCore E5440
CPU frequency 2.83 Ghz
RAM memory 16 Gbytes
GPU Tesla s1070
Graphics processors 4 x GT200
GPU frequency 1.3 Ghz
Video memory 4 Gbytes per GPU
Interconnection [PCIExpress Gen2
CUDA version 2.0

MKL version 10.0.1
Driver version 185.18

Performance measured in GFLOPS

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Experimental results

Experimental results. Cholesky factorization

Cholesky factorization - GPUSs runtime

GPUSS - Cached Write-back - 4 GPUs —a—

500 GPUSS - Basic implementation - 4 GPUs —e— g

MKL spotrf - Dual Intel Xeon (8 cores) —&—
Cholesky GPU (CUBLAS) - 1 GPU —&—

/\‘/M/

%
2. 300
g e
5 ///
200 o
r = 5 = 5 == BN
LA A A AN AR
100 " %ﬁ/
0 %
0 4096 8192 12288 16384 20480

Matrix size

@ Tasks executed exclusively on GPUs (simple precision)
@ Important improvement with software cache

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Experimental results

Experimental results. Scalability

Cholesky factorization - Speed-up

4 . .
GPUSS - 4 GPUs —&—
35 L GPUSS - 3GPUs —e—
: GPUSS -2 GPUs —=—
GPUSS -1 GPUs —=—
3
25 .
Q,
§ 2 /A\/r/ a—e/e‘e/
A
& ;-e——e—ﬁ/e'e/e/
I -]
! NN SN\ N W W N S N S Sty
0.5
0
0 4096 8192 12288 16384 20480

Matrix size

@ PCIExpress: main bottleneck as number of GPUs increases

An Extension of the StarSs Programming Model . .. 31 Ayguadé et al.

Experimental results

Experimental results. GEMM

Performance of the Matrix-Matrix Product (C=C+A*B) on s1070

GPUSS - 4 GPUs ——
1200 - CUBLAS - 1 GPUs —o—

1000 / \/
« 800 J—
g Y
g 600 —

400

200 /

0

0 4096 8192 12288 16384 2048(
Matrix size (m=n=k)

@ Performance near 1.1 TFlop (346 GFlops on 1 GPU using
CUBLAS)

An Extension of the StarSs Programming Model . .. 32 Ayguadé et al.

Experimental results

Experimental results on Cle eed boards

Performance of the Matrix-Matrix Product (C=C+A*B)

300 1 GPUSS - Double precision - 4 CSX700 —— l
GPUSS - Double precision - 4 GPUs —e—

250

200

150 /\

100 ﬁ

50 /
4

0 4096 8192 1228¢
Matrix size (m=n=k)

GFLOPS

@ Performance similar to 4 GPUs (double precision)

An Extension of the StarSs Programming Model . .. 33 Ayguadé et al.

Conclusions and future work

e Conclusions and future work

An Extension of the StarSs Programming Model . .. 34 Ayguadé et al.

Conclusions and work

Conclusions

Conclusions

@ StarSs programming model: versatile and extensible for new
architectures

@ Programmability will determine the success of emerging
architectures

@ Our approach relies on a runtime system: little user intervention
@ Many ideas can be applied to other multi-accelerator systems

An Extension of the StarSs Programming Model . .. 35 Ayguadé et al.

Conclusions and future work

Conclusions

Conclusions

@ StarSs programming model: versatile and extensible for new
architectures

@ Programmability will determine the success of emerging
architectures

@ Our approach relies on a runtime system: little user intervention
@ Many ideas can be applied to other multi-accelerator systems

@ More complex scheduling strategies

@ Porting to other multi-accelerator platforms

@ Porting to heterogeneous multi-accelerator platforms

@ Let the runtime automatically decide where to execute each task

An Extension of the StarSs Programming Model . ..

Ayguadé et al.

Conclusions and future work

Questions? J

n Extension of the StarSs Programming Model 36 Ayguadé et al.

Conclusions and future work

Related work

Related work

SuperMatrix @ Extension of the SuperMatrix SMP runtime
@ Automatic parallelization of linear algebra
programs
@ Hybrid CPU / Multi-GPU systems

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Conclusions and future work

Related work

Related work

SuperMatrix @ Extension of the SuperMatrix SMP runtime
@ Automatic parallelization of linear algebra
programs
@ Hybrid CPU / Multi-GPU systems

Volkov et al. @ Some highly tuned codes for multi-GPU systems
@ Linear algebra codes
@ No runtime or automatic scheduling

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Conclusions and future work

Related work

Related work

SuperMatrix @ Extension of the SuperMatrix SMP runtime
@ Automatic parallelization of linear algebra
programs
@ Hybrid CPU / Multi-GPU systems

Volkov et al. @ Some highly tuned codes for multi-GPU systems
@ Linear algebra codes
@ No runtime or automatic scheduling

Leeetal. @ Compiler framework for automatic translation and
optimization
@ OpenMP — GPU translation

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Conclusions and future work

Related work

Related work

SuperMatrix @ Extension of the SuperMatrix SMP runtime
@ Automatic parallelization of linear algebra
programs
@ Hybrid CPU / Multi-GPU systems

Volkov et al. @ Some highly tuned codes for multi-GPU systems
@ Linear algebra codes
@ No runtime or automatic scheduling

Leeetal. @ Compiler framework for automatic translation and
optimization
@ OpenMP — GPU translation

StarPU

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Conclusions and future work

Tesla vs. Cell B.E.

Similarities with the Cell B.E.

@ Heterogeneous architectures:

e Cell B.E.: 1 PPE + 8 SPEs
e Tesla: 1 (multicore) CPU + 4 GPUs

@ Each accelerator has its own local memory pool

@ Fast interconnection network

Differences with the Cell B.E.

@ GPUs need more granularity to attain good performance
@ PPE performance is poor compared to that of the SPE

@ Larger local memory spaces for each GPU (Gbytes) than for
each SPE (Kbytes)

@ Impact of data transfers (PCIExpress vs EIB)

@ GPUs are passive elements: no system threads can be run on
them

An Extension of the StarSs Programming Model . .. Ayguadé et al.

Conclusions and future work

Specifying data movements

Some additional clauses can be used with the device pragma:

Data movement clauses

copy_in(data—reference—list)
copy_out (data—-reference—list)

These clauses specify data movement for the shared variables inside
a task:

@ copy_in moves variables from host to device memory once the
task is ready for execution.

@ copy_out moves variables from device to host once the task
finishes execution.

An Extension of the StarSs Programming Model . .. 39 Ayguadé et al.

	Motivation
	Introduction
	The StarSs programming model. New extensions
	The GPUSs framework
	Experimental results
	Conclusions and future work

