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Motivation

Motivation (I)

GPU vendors promise spectacular peak performances

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 2 Igual et al.



Motivation

Motivation (II)

But real performances are not so optimistic. . .
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Motivation

Motivation (III)

And current implementations can be quite poor. . .
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Introduction

Introduction

BLAS
BLAS: Basic Linear Algebra Subprograms
Lie in the heart of complex dense linear algebra algorithms
Key in their final performance
Tuned implementations for many architectures

GotoBLAS, MKL, CUBLAS

Goals
Tune the performance of the latest implementation of CUBLAS
Without low-level programming (CUDA)
Improving programmability: FLAME methodology
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Development of algorithms by blocks. The matrix-matrix product

FLAME

The FLAME methodology

FLAME: high level abstraction and notation for dense linear
algebra algorithms
Not only a library:

Notation for expressing algorithms

Methodology for systematic derivation of algorithms

Application Program Interfaces (APIs) for representing the
algorithms in code

Tools and more

Example: Matrix-matrix multiplication
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Development of algorithms by blocks. The matrix-matrix product

The matrix-matrix multiplication

C1 C2 B1 B2B0C0 A

C2C1 B2B1C0 B0A

C1 B1A x+=

a) Partitioning before iteration

b) Computation in iteration

c) Advancement of partitioning for next iteration
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Development of algorithms by blocks. The matrix-matrix product

The matrix-matrix multiplication. FLAME algorithm

Algorithm: GEMM_MP(A,B,C)
Partition B→

(
BL BR

)
, C→

(
CL CR

)
where BL has 0 columns, CL has 0

columns
while n(BL) < n(B) do

Determine block size b
Repartition(

BL BR
)
→
(

B0 B1 B2
)

,(
CL CR

)
→
(

C0 C1 C2
)

where B1 has b columns, C1 has b
columns

C1 := C1 +AB1

Continue with(
BL BR

)
←
(

B0 B1 B2
)

,(
CL CR

)
←
(

C0 C1 C2
)

endwhile
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Development of algorithms by blocks. The matrix-matrix product

The matrix-matrix multiplication. FLAME code

1 FLA_Obj BL , BR, B1 , B2 , B3 ;
2 FLA_Obj CL, CR, C1, C2, C3 ;
3
4 FLA_Part_1x2 ( B,
5 &BL , &BR, 0 , FLA_LEFT ) ;
6
7 FLA_Part_1x2 ( C,
8 &CL, &CR, 0 , FLA_LEFT ) ;
9

10 while ( FLA_Obj_width ( BL ) < FLA_Obj_width ( B ) ) {
11
12 b = min ( FLA_Obj_width ( BR ) , nb_alg ) ;
13
14 FLA_Repart_1x2_to_1x3 ( BL , /∗∗/ BR,
15 &B0 , /∗∗/ &B1 , &B2 ,
16 b , FLA_RIGHT ) ;
17
18 FLA_Repart_1x2_to_1x3 ( CL, /∗∗/ CR,
19 &C0, /∗∗/ &C1, &C2,
20 b , FLA_RIGHT ) ;
21
22 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
23 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE, FLA_MINUS_ONE, A, B1 , FLA_ONE, C1 ) ;
24 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
25
26 FLA_Cont_with_1x3_to_1x2 ( &BL , /∗∗/ &BR,
27 B0 , B1 , /∗∗/ B2 ,
28 FLA_LEFT ) ;
29
30 FLA_Cont_with_1x3_to_1x2 ( &CL, /∗∗/ &CR,
31 C0, C1, /∗∗/ C2 ,
32 FLA_LEFT ) ;
33 }
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Development of algorithms by blocks. The matrix-matrix product

The matrix-matrix multiplication. Spark

SPARK: AUTOMATIC GENERATION OF CODE SKELETONS
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Accelerating the Level-3 CUBLAS

Accelerated Level-3 BLAS routines

SYMM C := AB+C, A symmetric and only the lower triangular
part of this matrix is stored.

SYRK C := C−AAT , C symmetric and only the lower triangular
part of this matrix is stored and computed.

SYR2K C := C−ABT −BAT , C symmetric and only the upper
triangular part of this matrix is stored and computed.

TRMM C := AB+C, where A upper triangular.

TRSM XAT = B, A lower triangular and B is overwritten with the
solution X.
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Accelerating the Level-3 CUBLAS

Accelerating the CUBLAS

Three main ideas
1 GEMM-based implementations
2 Multiple algorithmic variants
3 Multiple block sizes
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Accelerating the Level-3 CUBLAS

GEMM-based SYRK

Algorithm: SYRK_GEMM(C,A)

Partition C→
(

CTL CTR

CBL CBR

)
, A→

(
AT

AB

)
where CTL is 0×0, AT has 0 rows

while m(CTL) < m(C) do
Determine block size b
Repartition(

CTL CTR

CBL CBR

)
→

 C00 C01 C02

C10 C11 C12
C20 C21 C22

,
(

AT

AB

)
→

 A0

A1
A2


where C11 is b×b , A1 has b rows

C11 := C11−A1AT
1 (SYRK)

C21 := C21−A2AT
1 (GEMM)

Continue with(
CTL CTR

CBL CBR

)
←

 C00 C01 C02
C10 C11 C12

C20 C21 C22

,
(

AT

AB

)
←

 A0
A1

A2


endwhile
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Accelerating the Level-3 CUBLAS

Multiple algorithmic variants

Algorithm: GEMM_MP(A,B,C)
Partition B→

(
BL BR

)
, C→

(
CL CR

)
where BL has 0 columns, CL has 0
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Accelerating the Level-3 CUBLAS

Multiple algorithmic variants

Algorithm: GEMM_PM(A,B,C)

Partition A→
(

AT

AB

)
, C→

(
CT

CB

)
where AT has 0 rows, CT has 0 rows

while m(AT ) < m(A) do
Determine block size b
Repartition(

AT

AB

)
→

 A0

A1
A2

 ,
(

CT

CB

)
→

 C0

C1
C2


where A1 has b rows, C1 has b rows

C1 := C1 +A1B

Continue with(
AT

AB

)
←

 A0
A1

A2

 ,
(

CT

CB

)
←
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C2
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Accelerating the Level-3 CUBLAS

Multiple algorithmic variants

Algorithm: GEMM_PP(A,B,C)

Partition A→
(

AL AR
)

, B→
(

BT

BB

)
where AL has 0 columns, BT has 0

rows
while n(AL) < n(A) do

Determine block size b
Repartition(

AL AR
)
→
(

A0 A1 A2
)

,
(

BT

BB

)
→

 B0

B1
B2


where A1 has b columns, B1 has b

rows

C := C +A1B1

Continue with(
AL AR

)
←
(

A0 A1 A2
)

,
(

BT

BB

)
←

 B0
B1

B2


endwhile
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Accelerating the Level-3 CUBLAS

Varying the block size

Algorithm: GEMM_PP(A,B,C)

Partition A→
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AL AR
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BT

BB
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rows
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Contents

1 Introduction

2 Development of algorithms by blocks. The matrix-matrix product

3 Accelerating the Level-3 CUBLAS

4 Experimental results

5 Conclusions and future work

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 22 Igual et al.



Experimental results

Experimental setup

Experimental setup

CPU Dual Xeon QuadCore E5410
CPU frequency 2.33 Ghz
RAM memory 8 Gbytes
GPU Tesla C1060
Processor Nvidia GT200
GPU frequency 1.3 Ghz
Video memory 4 Gbytes DDR3
Interconnection PCIExpress Gen2
CUDA (CUBLAS) version 2.3 (July 2009)
Driver version 185.18

Results in terms of GFLOPS (single precision)
Transfer times not included in results
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Experimental results

Experimental results

Results for square matrices: SYRK, SYMM and SYR2K.
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Experimental results

Experimental results

Results for square matrices: TRSM and TRMM.
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Experimental results

Experimental results

Results for rectangular matrices: TRSM and SYR2K.
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Experimental results

Application: Symmetric Eigenvalue Problem (PPAM09)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000

G
F

LO
P

S

Matrix rows/columns

Reduction from full to tridiagonal form using LAPACK/SBR

SBR - 1 GPU/8 CORES - Tuned CUBLAS
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SBR - 8 Intel cores - Intel MKL
LAPACK - 8 Intel cores - Intel MKL

Using our SYMM and SYR2K implementations

Speedup 2.2x when using GPU acceleration for SBR (19.2 vs 42 GFLOPS)

Speedup 4.3x when using GPU acceleration and tuned BLAS (19.2 vs 82 GFLOPS)
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Conclusions and future work
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Conclusions and future work

Conclusions and future work

Performance boost with little effort for BLAS routines

Attain considerable speedups compared with tuned CUBLAS

Without writing one line of CUDA code

Methodology appliable to other linear algebra routines

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 29 Igual et al.



Conclusions and future work

Conclusions and future work

Thank you!

More information. . .

[Level-3 BLAS on a GPU: Picking the Low Hanging Fruit]
FLAME Working Note #37
May, 2009

HPCA Group at University Jaume I (http://www.hpca.uji.es)

figual@icc.uji.es
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