
Level-3 BLAS on a GPU
Picking the Low Hanging Fruit

Francisco Igual1 Gregorio Quintana-Ortí1

Robert A. van de Geijn2

1Departamento de Ingeniería y Ciencia de los Computadores.
University Jaume I. Castellón (Spain)

2Department of Computer Sciences.
The University of Texas at Austin

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 1 Igual et al.

Motivation

Motivation (I)

GPU vendors promise spectacular peak performances

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 2 Igual et al.

Motivation

Motivation (II)

But real performances are not so optimistic. . .

0

200

400

600

800

1000

1200

0 4096 8192 12288 16384

G
F

LO
P

S

Matrix Size

CUBLAS peak performance on a T10

Peak performance
CUBLAS 2.3 GEMM

Limitations of the graphics-oriented architecture

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 3 Igual et al.

Motivation

Motivation (III)

And current implementations can be quite poor. . .

0

200

400

600

800

1000

1200

0 4096 8192 12288 16384

G
F

LO
P

S

Matrix Size

Performance against CUBLAS on a T10

Peak performance
CUBLAS 2.3 GEMM

CUBLAS Syr2k
CUBLAS Symm

Hard to efficiently program the GPU, even using CUDA

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 4 Igual et al.

Motivation

Outline

1 Introduction

2 Development of algorithms by blocks. The matrix-matrix product

3 Accelerating the Level-3 CUBLAS

4 Experimental results

5 Conclusions and future work

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 5 Igual et al.

Introduction

Contents

1 Introduction

2 Development of algorithms by blocks. The matrix-matrix product

3 Accelerating the Level-3 CUBLAS

4 Experimental results

5 Conclusions and future work

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 6 Igual et al.

Introduction

Introduction

BLAS
BLAS: Basic Linear Algebra Subprograms
Lie in the heart of complex dense linear algebra algorithms
Key in their final performance
Tuned implementations for many architectures

GotoBLAS, MKL, CUBLAS

Goals
Tune the performance of the latest implementation of CUBLAS
Without low-level programming (CUDA)
Improving programmability: FLAME methodology

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 7 Igual et al.

Introduction

Introduction

BLAS
BLAS: Basic Linear Algebra Subprograms
Lie in the heart of complex dense linear algebra algorithms
Key in their final performance
Tuned implementations for many architectures

GotoBLAS, MKL, CUBLAS

Goals
Tune the performance of the latest implementation of CUBLAS
Without low-level programming (CUDA)
Improving programmability: FLAME methodology

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 7 Igual et al.

Development of algorithms by blocks. The matrix-matrix product

Contents

1 Introduction

2 Development of algorithms by blocks. The matrix-matrix product

3 Accelerating the Level-3 CUBLAS

4 Experimental results

5 Conclusions and future work

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 8 Igual et al.

Development of algorithms by blocks. The matrix-matrix product

FLAME

The FLAME methodology

FLAME: high level abstraction and notation for dense linear
algebra algorithms
Not only a library:

Notation for expressing algorithms

Methodology for systematic derivation of algorithms

Application Program Interfaces (APIs) for representing the
algorithms in code

Tools and more

Example: Matrix-matrix multiplication

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 9 Igual et al.

Development of algorithms by blocks. The matrix-matrix product

The matrix-matrix multiplication

C1 C2 B1 B2B0C0 A

C2C1 B2B1C0 B0A

C1 B1A x+=

a) Partitioning before iteration

b) Computation in iteration

c) Advancement of partitioning for next iteration

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 10 Igual et al.

Development of algorithms by blocks. The matrix-matrix product

The matrix-matrix multiplication. FLAME algorithm

Algorithm: GEMM_MP(A,B,C)
Partition B→

(
BL BR

)
, C→

(
CL CR

)
where BL has 0 columns, CL has 0

columns
while n(BL) < n(B) do

Determine block size b
Repartition(

BL BR
)
→
(

B0 B1 B2
)

,(
CL CR

)
→
(

C0 C1 C2
)

where B1 has b columns, C1 has b
columns

C1 := C1 +AB1

Continue with(
BL BR

)
←
(

B0 B1 B2
)

,(
CL CR

)
←
(

C0 C1 C2
)

endwhile

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 11 Igual et al.

Development of algorithms by blocks. The matrix-matrix product

The matrix-matrix multiplication. FLAME code

1 FLA_Obj BL , BR, B1 , B2 , B3 ;
2 FLA_Obj CL, CR, C1, C2, C3 ;
3
4 FLA_Part_1x2 (B,
5 &BL , &BR, 0 , FLA_LEFT) ;
6
7 FLA_Part_1x2 (C,
8 &CL, &CR, 0 , FLA_LEFT) ;
9

10 while (FLA_Obj_width (BL) < FLA_Obj_width (B)) {
11
12 b = min (FLA_Obj_width (BR) , nb_alg) ;
13
14 FLA_Repart_1x2_to_1x3 (BL , /∗∗/ BR,
15 &B0 , /∗∗/ &B1 , &B2 ,
16 b , FLA_RIGHT) ;
17
18 FLA_Repart_1x2_to_1x3 (CL, /∗∗/ CR,
19 &C0, /∗∗/ &C1, &C2,
20 b , FLA_RIGHT) ;
21
22 /∗−−−∗/
23 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE, FLA_MINUS_ONE, A, B1 , FLA_ONE, C1) ;
24 /∗−−−∗/
25
26 FLA_Cont_with_1x3_to_1x2 (&BL , /∗∗/ &BR,
27 B0 , B1 , /∗∗/ B2 ,
28 FLA_LEFT) ;
29
30 FLA_Cont_with_1x3_to_1x2 (&CL, /∗∗/ &CR,
31 C0, C1, /∗∗/ C2 ,
32 FLA_LEFT) ;
33 }

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 12 Igual et al.

Development of algorithms by blocks. The matrix-matrix product

The matrix-matrix multiplication. Spark

SPARK: AUTOMATIC GENERATION OF CODE SKELETONS

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 13 Igual et al.

Accelerating the Level-3 CUBLAS

Contents

1 Introduction

2 Development of algorithms by blocks. The matrix-matrix product

3 Accelerating the Level-3 CUBLAS

4 Experimental results

5 Conclusions and future work

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 14 Igual et al.

Accelerating the Level-3 CUBLAS

Accelerated Level-3 BLAS routines

SYMM C := AB+C, A symmetric and only the lower triangular
part of this matrix is stored.

SYRK C := C−AAT , C symmetric and only the lower triangular
part of this matrix is stored and computed.

SYR2K C := C−ABT −BAT , C symmetric and only the upper
triangular part of this matrix is stored and computed.

TRMM C := AB+C, where A upper triangular.

TRSM XAT = B, A lower triangular and B is overwritten with the
solution X.

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 15 Igual et al.

Accelerating the Level-3 CUBLAS

Accelerating the CUBLAS

Three main ideas
1 GEMM-based implementations
2 Multiple algorithmic variants
3 Multiple block sizes

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 16 Igual et al.

Accelerating the Level-3 CUBLAS

GEMM-based SYRK

Algorithm: SYRK_GEMM(C,A)

Partition C→
(

CTL CTR

CBL CBR

)
, A→

(
AT

AB

)
where CTL is 0×0, AT has 0 rows

while m(CTL) < m(C) do
Determine block size b
Repartition(

CTL CTR

CBL CBR

)
→

 C00 C01 C02

C10 C11 C12
C20 C21 C22

,
(

AT

AB

)
→

 A0

A1
A2


where C11 is b×b , A1 has b rows

C11 := C11−A1AT
1 (SYRK)

C21 := C21−A2AT
1 (GEMM)

Continue with(
CTL CTR

CBL CBR

)
←

 C00 C01 C02
C10 C11 C12

C20 C21 C22

,
(

AT

AB

)
←

 A0
A1

A2


endwhile

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 17 Igual et al.

Accelerating the Level-3 CUBLAS

Multiple algorithmic variants

Algorithm: GEMM_MP(A,B,C)
Partition B→

(
BL BR

)
, C→

(
CL CR

)
where BL has 0 columns, CL has 0

columns
while n(BL) < n(B) do

Determine block size b
Repartition(

BL BR
)
→
(

B0 B1 B2
)

,(
CL CR

)
→
(

C0 C1 C2
)

where B1 has b columns, C1 has b
columns

C1 := C1 +AB1

Continue with(
BL BR

)
←
(

B0 B1 B2
)

,(
CL CR

)
←
(

C0 C1 C2
)

endwhile

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 18 Igual et al.

Accelerating the Level-3 CUBLAS

Multiple algorithmic variants

Algorithm: GEMM_PM(A,B,C)

Partition A→
(

AT

AB

)
, C→

(
CT

CB

)
where AT has 0 rows, CT has 0 rows

while m(AT) < m(A) do
Determine block size b
Repartition(

AT

AB

)
→

 A0

A1
A2

 ,
(

CT

CB

)
→

 C0

C1
C2


where A1 has b rows, C1 has b rows

C1 := C1 +A1B

Continue with(
AT

AB

)
←

 A0
A1

A2

 ,
(

CT

CB

)
←

 C0
C1

C2


endwhile

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 19 Igual et al.

Accelerating the Level-3 CUBLAS

Multiple algorithmic variants

Algorithm: GEMM_PP(A,B,C)

Partition A→
(

AL AR
)

, B→
(

BT

BB

)
where AL has 0 columns, BT has 0

rows
while n(AL) < n(A) do

Determine block size b
Repartition(

AL AR
)
→
(

A0 A1 A2
)

,
(

BT

BB

)
→

 B0

B1
B2


where A1 has b columns, B1 has b

rows

C := C +A1B1

Continue with(
AL AR

)
←
(

A0 A1 A2
)

,
(

BT

BB

)
←

 B0
B1

B2


endwhile

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 20 Igual et al.

Accelerating the Level-3 CUBLAS

Varying the block size

Algorithm: GEMM_PP(A,B,C)

Partition A→
(

AL AR
)

, B→
(

BT

BB

)
where AL has 0 columns, BT has 0

rows
while n(AL) < n(A) do

Determine block size b
Repartition(

AL AR
)
→
(

A0 A1 A2
)

,
(

BT

BB

)
→

 B0

B1
B2


where A1 has b columns, B1 has b

rows

C := C +A1B1

Continue with(
AL AR

)
←
(

A0 A1 A2
)

,
(

BT

BB

)
←

 B0
B1

B2


endwhile

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 21 Igual et al.

Experimental results

Contents

1 Introduction

2 Development of algorithms by blocks. The matrix-matrix product

3 Accelerating the Level-3 CUBLAS

4 Experimental results

5 Conclusions and future work

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 22 Igual et al.

Experimental results

Experimental setup

Experimental setup

CPU Dual Xeon QuadCore E5410
CPU frequency 2.33 Ghz
RAM memory 8 Gbytes
GPU Tesla C1060
Processor Nvidia GT200
GPU frequency 1.3 Ghz
Video memory 4 Gbytes DDR3
Interconnection PCIExpress Gen2
CUDA (CUBLAS) version 2.3 (July 2009)
Driver version 185.18

Results in terms of GFLOPS (single precision)
Transfer times not included in results

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 23 Igual et al.

Experimental results

Experimental results

Results for square matrices: SYRK, SYMM and SYR2K.

0

100

200

300

400

500

0 4096 8192 12288 16384

G
F

LO
P

S

Matrix Size (m=n=k)

Performance against CUBLAS on a T10

CUBLAS Symm
New Symm

CUBLAS Syr2k
New Syr2k

CUBLAS Syrk
New Syrk

0

1

2

3

4

5

0 4096 8192 12288 16384
S

pe
ed

up
Matrix Size (m=n=k)

Speedup against CUBLAS on a T10

Speedup of New Symm
Speedup of New Syrk

Speedup of New Syr2k

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 24 Igual et al.

Experimental results

Experimental results

Results for square matrices: TRSM and TRMM.

0

100

200

300

400

500

0 4096 8192 12288 16384

G
F

LO
P

S

Matrix Size (m=n=k)

Performance against CUBLAS on a T10

CUBLAS Trsm
New Trsm

CUBLAS Trmm
New Trmm

CUBLAS Gemm
New Gemm

0

0.5

1

1.5

2

2.5

3

3.5

0 4096 8192 12288 16384
S

pe
ed

up
Matrix Size (m=n=k)

Speedup against CUBLAS on a T10

Speedup of New Trmm
Speedup of New Trsm

Speedup of New Gemm

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 25 Igual et al.

Experimental results

Experimental results

Results for rectangular matrices: TRSM and SYR2K.

0

50

100

150

200

250

300

0 4096 8192 12288 16384

G
F

LO
P

S

Second dimension (n)

Performance against CUBLAS on a T10

CUBLAS Syr2k (k=32)
New Syr2k (k=32)

CUBLAS Trsm (m=32)
New Trsm (m=32)

0

2

4

6

8

10

12

14

16

0 4096 8192 12288 16384
S

pe
ed

up
Second dimension (n)

Speedup against CUBLAS on a T10

Speedup of New Syr2k (k=32)
Speedup of New Trsm (m=32)

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 26 Igual et al.

Experimental results

Application: Symmetric Eigenvalue Problem (PPAM09)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000

G
F

LO
P

S

Matrix rows/columns

Reduction from full to tridiagonal form using LAPACK/SBR

SBR - 1 GPU/8 CORES - Tuned CUBLAS
SBR - 1 GPU/8 CORES - NVIDIA CUBLAS 2.2

SBR - 8 Intel cores - Intel MKL
LAPACK - 8 Intel cores - Intel MKL

Using our SYMM and SYR2K implementations

Speedup 2.2x when using GPU acceleration for SBR (19.2 vs 42 GFLOPS)

Speedup 4.3x when using GPU acceleration and tuned BLAS (19.2 vs 82 GFLOPS)

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 27 Igual et al.

Conclusions and future work

Contents

1 Introduction

2 Development of algorithms by blocks. The matrix-matrix product

3 Accelerating the Level-3 CUBLAS

4 Experimental results

5 Conclusions and future work

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 28 Igual et al.

Conclusions and future work

Conclusions and future work

Performance boost with little effort for BLAS routines

Attain considerable speedups compared with tuned CUBLAS

Without writing one line of CUDA code

Methodology appliable to other linear algebra routines

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 29 Igual et al.

Conclusions and future work

Conclusions and future work

Thank you!

More information. . .

[Level-3 BLAS on a GPU: Picking the Low Hanging Fruit]
FLAME Working Note #37
May, 2009

HPCA Group at University Jaume I (http://www.hpca.uji.es)

figual@icc.uji.es

Level-3 BLAS on a GPU: Picking the Low Hanging Fruit 30 Igual et al.

	Motivation
	Introduction
	Development of algorithms by blocks. The matrix-matrix product
	Accelerating the Level-3 CUBLAS
	Experimental results
	Conclusions and future work

