
Using GPUs to Accelerate the Solution of
Large-Scale Model Reduction Problems

Peter Benner1 Pablo Ezzatti2 Francisco Igual3

Daniel Kressner4 Enrique S. Quintana-Ortí3

Alfredo Remón3

1Fakultät für Mathematik, Chemnitz University of Technology, Chemnitz (Germany)

2Centro de Cálculo–Instituto de la Computación, Universidad de la República, Montevideo
(Uruguay)

3Seminar für angewandte Mathematik, ETH Zürich, Zurich (Switzerland).

4Depto. de Ingeniería y Ciencia de Computadores, Universidad Jaume I, Castellón (Spain).

Model Reduction Problems on GPUs. . . 1 Benner et al.

Motivation

Dynamical Linear Systems

Linear time-invariant systems:

ẋ(t) = Ax(t)+Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t)+Du(t), t ≥ 0,

n state-space variables, i.e., n is the order of the system;
m inputs,
p outputs.

Corresponding TFM:

G(s) = C(sIn−A)−1B+D.

Model Reduction Problems on GPUs. . . 2 Benner et al.

Motivation

Goal for Model Reduction

Find a reduced-order model

˙̂x(t) = Âx̂(t)+ B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t)+ D̂u(t), t ≥ 0,

of order r� n such that the output error

y− ŷ = Gu− Ĝu = (G− Ĝ)u

is “small”.

Model Reduction Problems on GPUs. . . 3 Benner et al.

Motivation

Example

µ-mechanical Gyroscope [THE IMEGO INSTITUTE (SWEDEN) +
SAAB BOFORS DYNAMICS AB]

Commercial rate sensor with
applications in inertial navigation
systems.
Simulation problem: Improve the
design with respect to a number of
parameters.
n = 17,361 states.

Can we obtain a reduced-order model with similar behavior?

Model Reduction Problems on GPUs. . . 4 Benner et al.

Motivation

Outline

1 Truncation methods for model reduction

2 Solution of Lyapunov equations

3 GPU implementation
Matrix inversion

4 Iterative refinement

5 Conclusions

Model Reduction Problems on GPUs. . . 5 Benner et al.

Truncation methods for model reduction

Outline

1 Truncation methods for model reduction

2 Solution of Lyapunov equations

3 GPU implementation
Matrix inversion

4 Iterative refinement

5 Conclusions

Model Reduction Problems on GPUs. . . 6 Benner et al.

Truncation methods for model reduction

Balanced Truncation (I)

Balanced Truncation is an absolute error method, which aims at

min‖G− Ĝ‖∞

Composed of the following three steps:

Step 1. Solve the coupled Lyapunov matrix equations

AWc +WcAT +BBT = 0,

ATWo +WoA+CTC = 0,

for the observability and controllability Gramians, Wc and Wo.
Actually, we need the Cholesky factors S and R such that

Wc = STS, Wo = RTR.

S and R are dense.

Model Reduction Problems on GPUs. . . 7 Benner et al.

Truncation methods for model reduction

Balanced Truncation (I)

Balanced Truncation is an absolute error method, which aims at

min‖G− Ĝ‖∞

Composed of the following three steps:

Step 1. Solve the coupled Lyapunov matrix equations

AWc +WcAT +BBT = 0,

ATWo +WoA+CTC = 0,

for the observability and controllability Gramians, Wc and Wo.
Actually, we need the Cholesky factors S and R such that

Wc = STS, Wo = RTR.

S and R are dense.

Model Reduction Problems on GPUs. . . 7 Benner et al.

Truncation methods for model reduction

Balanced Truncation (II)

Step 2. Compute the Hankel singular values (HSV) from

SRT = UΣVT = [U1 U2]
[

Σ1
Σ2

][
VT

1
VT

2

]
,

with U, V, and Σ partitioned at a certain order r.

The HSV in Σ = diag(σ1, . . . ,σn), measure how much a state is
involved in energy transfer from a given input to a certain output!

Model Reduction Problems on GPUs. . . 8 Benner et al.

Truncation methods for model reduction

Balanced Truncation (III)

Step 3. In the square-root balance truncation (SRBT) method

Tl = Σ
−1/2
1 VT

1 R and Tr = STU1Σ
−1/2
1 ,

and (Â, B̂, Ĉ, D̂) = (TlATr,TlB,CTr,D) for the TFM:

Ĝ(s) = CTr(sIn−TlATr)−1TlB+D.

Computable error bound: ‖G− Ĝ‖∞ ≤ 2∑
n
k=r+1 σk.

Model Reduction Problems on GPUs. . . 9 Benner et al.

Truncation methods for model reduction

Balanced Truncation (IV)

Given (A,B,C,D,x0) with A large, and m,p� n. . .

How do we solve the previous numerical problems?

1 Coupled Lyapunov equations.
2 SVD of matrix product.
3 Application of the SRBT formulae to obtain the reduced-order

model.

Model Reduction Problems on GPUs. . . 10 Benner et al.

Solution of Lyapunov equations

Outline

1 Truncation methods for model reduction

2 Solution of Lyapunov equations

3 GPU implementation
Matrix inversion

4 Iterative refinement

5 Conclusions

Model Reduction Problems on GPUs. . . 11 Benner et al.

Solution of Lyapunov equations

Sign Function Method

Given α ∈ R,

sign(α) =

 1 if α > 0,
−1 if α < 0,
undefined otherwise.

For a matrix A ∈ Rn×n, sign(A) is a function of the signs of its
eigenvalues.

Given

H =
[

A 0
CTC −AT

]
, sign(H) =

[
−In 0
2Wo In

]
,

where Wo is the observability Gramian.

So, how do we compute the sign function?

Model Reduction Problems on GPUs. . . 12 Benner et al.

Solution of Lyapunov equations

Sign Function Methods (I)

For H =
[

A 0
CTC −AT

]
the classical Newton iteration boils down to

Aj+1 =
1
2
(Aj +A−1

j)/2, A0 = A,

Rj+1 =
1√
2

[
Rj

RjA−1
j

]
, R0 = C,

which converges to R, the Cholesky factor of Wo.

At each iteration Rj is increased in p rows (p⇒ number of outputs).

The computation of the inverse represents the main part of the
computation (O(2n3) flops).

Model Reduction Problems on GPUs. . . 13 Benner et al.

Solution of Lyapunov equations

Sign Function Methods (II)

As in model reduction R (and S) is usually rank-deficient the cost of
the iteration and subsequent steps can be greatly reduced:

At the jth iteration, compute the rank-revealing QR (RRQR)
factorization

1√
2

[
Rj

RjA−1
j

]
= Q̄R̄Π

and then set

Rj+1 = (R̄Π)T .

On convergence the iteration produces dense, full-rank R̂ with l� n
columns, such that

R̂T R̂≈ RTR = Wo.

Model Reduction Problems on GPUs. . . 14 Benner et al.

GPU implementation

Outline

1 Truncation methods for model reduction

2 Solution of Lyapunov equations

3 GPU implementation
Matrix inversion

4 Iterative refinement

5 Conclusions

Model Reduction Problems on GPUs. . . 15 Benner et al.

GPU implementation

Hybrid approach for the sign function

Hybrid approach

Each step is performed in the most suitable device:
1 Aj+1 = 1

2 (Aj +A−1
j)/2, A0 = A ⇒ Matrix inverse on GPU

2 Rj+1 = 1√
2

[
Rj

RjA−1
j

]
, R0 = C ⇒ GEMM on CPU or GPU

3 RRQR ⇒ Executed on CPU

Model Reduction Problems on GPUs. . . 16 Benner et al.

GPU implementation Matrix inversion

Matrix inversion

Via LU factorization
1 PA = LU
2 U→ U−1

3 Solve the system XL = U−1 for X
4 Undo the permutations A−1 := XP

Implementation

The algorithm sweeps through the matrix four times
Presents a mild load imbalance, due to the work with triangular
factors

Algorithm implemented by LAPACK

Model Reduction Problems on GPUs. . . 17 Benner et al.

GPU implementation Matrix inversion

Matrix inversion

Via Gauss-Jordan elimination (GJE)

Reordering of the computations of LU-based methods
Requires the same arithmetic cost

Implementation

The algorithm sweeps through the matrix once
Most of the computations are highly parallel

Model Reduction Problems on GPUs. . . 18 Benner et al.

GPU implementation Matrix inversion

Matrix inversion (GJE)

Algorithm: [A] := GJEBLK (A)

Partition A→

(
ATL ATR
ABL ABR

)
whereATL is 0×0 and ABR is n×n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR
ABL ABR

)
→

 A00 A01 A02
A10 A11 A12
A20 A21 A22


whereA11 is b×b A01

A11
A21

 := GJEUNB

 A01
A11
A21

 Unblocked Gauss-Jordan

A00 := A00 +A01A10 Matrix-matrix product
A20 := A20 +A21A10 Matrix-matrix product
A10 := A11A10 Matrix-matrix product
A02 := A02 +A01A12 Matrix-matrix product
A22 := A22 +A21A12 Matrix-matrix product
A12 := A11A12 Matrix-matrix product

Continue with

(
ATL ATR
ABL ABR

)
←

 A00 A01 A02
A10 A11 A12
A20 A21 A22


endwhile

Figure: Blocked algorithm for matrix inversion via GJE without pivoting.

Model Reduction Problems on GPUs. . . 19 Benner et al.

GPU implementation Matrix inversion

Matrix inversion (GJE)

GPU implementation

The matrix is transferred to the GPU
The inverse is computed completely on the GPU
Result is transferred back to the CPU

Hybrid implementation

GPU computes all the matrix-matrix products
CPU computes the GJEUNB

Only small (column) panels are transferred

Model Reduction Problems on GPUs. . . 20 Benner et al.

GPU implementation Matrix inversion

Experimental Results

Experimental setup

CPU Dual Xeon QuadCore E5410
CPU frequency 2.33 Ghz
RAM memory 8 Gbytes
GPU Tesla C1060
Processor Nvidia GT200
GPU frequency 1.3 Ghz
Video memory 4 Gbytes DDR3
Interconnection PCIExpress Gen2
CUDA (CUBLAS) version 2.1
BLAS implementation GOTOBlas 1.26
Driver version 185.18

Results for matrices with 1000 ≤ n≤ 8000 and b≤ 200
Transfer times included in all results

Model Reduction Problems on GPUs. . . 21 Benner et al.

GPU implementation Matrix inversion

Experimental Results
(Matrix inverse - GotoBLAS)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1000 2000 3000 4000 5000 6000 7000 8000

G
F

L
O

P
s

Matrix size

Matrix inversion on Caton2 + Goto 1.26

LAPACK+CPU
GJE+CPU
GJE+GPU

GJE+Hybrid

Model Reduction Problems on GPUs. . . 22 Benner et al.

GPU implementation Matrix inversion

Experimental Results
(Single precision Matrix Sign Function - GotoBLAS)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
(s

)

Matrix size

Sign Function on Caton2 + Goto 1.26

LAPACK
GJE(CPU)
GJE(GPU)

GJE(Hybrid)

Model Reduction Problems on GPUs. . . 23 Benner et al.

GPU implementation Matrix inversion

Experimental Results
(Double Precision Matrix Sign Function - GotoBLAS)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
(s

)

Matrix size

Sign Function on Caton2 + Goto 1.26

LAPACK
DGJE(CPU)
DGJE(GPU)

DGJE(Hybrid)

Model Reduction Problems on GPUs. . . 24 Benner et al.

Iterative refinement

Outline

1 Truncation methods for model reduction

2 Solution of Lyapunov equations

3 GPU implementation
Matrix inversion

4 Iterative refinement

5 Conclusions

Model Reduction Problems on GPUs. . . 25 Benner et al.

Iterative refinement

Iterative refinement (I)

Given a Lyapunov equation:

AX +XAT =−BBT

Goals
1 Exploit the single-precision capabilities of GPUs.
2 Get an approximation of the solution in low-precision arithmetic:

L = ApproxLyap(B), X ≈ LLT

3 Refine the result to regain full accuracy.

Model Reduction Problems on GPUs. . . 26 Benner et al.

Iterative refinement

Iterative refinement (II)

Let
L0 = ApproxLyap(B) SinglePrecision(GPU)

to improve L0 we construct a correction based on the residual

Res = AL0LT
0 +L0LT

0 AT +BBT DoublePrecision

and solve

L1 = ApproxLyap(−Res) SinglePrecision

to get the correction term.

Problem
Res is usually indefinite

Model Reduction Problems on GPUs. . . 27 Benner et al.

Iterative refinement

Iterative refinement (III)

Solution
Decompose Res into a positive definite and a negative definite part:

Res = RpRT
p −RnRT

n

Each term corresponds to a Lyapunov equation (solved in SP):

AXp +XpAT =−RpRT
p A(−Xn)+(−Xn)AT =−RnRT

n

Then Xc = Xp +Xn solves the correction equation

AXc +XcAT =−Res

Corrected solution:

X1 = L0LT
0 +LpLT

p −LnLT
n

Model Reduction Problems on GPUs. . . 28 Benner et al.

Iterative refinement

Numerical example (MATLAB)

A→ 900×900 symmetric negative definite matrix
it→ number of sign function iterations
tol→ tolerance for sign function
resi → residual after i steps of iterative refinement

tol 10−2 10−4 }
Sign functionit 4 5

res0 7×10−2 7×10−4


Iterative refinement

res1 5×10−4 7×10−7

res2 3×10−5 7×10−11

res3 6×10−7

res4 1×10−7

res5 1×10−9

res6 1×10−10

res7 1×10−12

Time (s) 6.5+1 8+0.5 ⇒ 15 seconds in double precision

Model Reduction Problems on GPUs. . . 29 Benner et al.

Conclusions

Outline

1 Truncation methods for model reduction

2 Solution of Lyapunov equations

3 GPU implementation
Matrix inversion

4 Iterative refinement

5 Conclusions

Model Reduction Problems on GPUs. . . 30 Benner et al.

Conclusions

Concluding remarks

Solution of (large) model reduction problems applying GPUs

Truncation Methods→ Lyapunov equations

Hybrid approach for the Sign Function to solve Lyapunov
equations

Iterative refinement approach to combine full-accuracy and high
performance

Model Reduction Problems on GPUs. . . 31 Benner et al.

Conclusions

Thank you!

More information. . .
HPCA Group at University Jaume I (http://www.hpca.uji.es)
{figual, quintana, remon}@icc.uji.es

Model Reduction Problems on GPUs. . . 32 Benner et al.

	Motivation
	Truncation methods for model reduction
	Solution of Lyapunov equations
	GPU implementation
	Matrix inversion

	Iterative refinement
	Conclusions

