Reduction to Condensed Forms for Symmetric Eigenvalue Problems on Multi-core Architectures

Paolo Bientinesi¹ Francisco Igual² Daniel Kressner³ Enrique S. Quintana-Ortí²

¹AICES, RWTH Aachen University Aachen (Germany)

²Departamento de Ingeniería y Ciencia de los Computadores. University Jaume I Castellón (Spain)

³Seminar für angewandte Mathematik, ETH Zürich (Switzerland)

The symmetric eigenvalue problem

$$AX = X\Lambda,$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric, $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^{n \times n}$ are the eigenvalues and $X \in \mathbb{R}^{n \times n}$ are the eigenvectors

Applications (large scale dense *A*)

- computational quantum chemistry
- finite element modeling
- multivariate statistics
- density functional theory

Motivation

Efficient algorithms for dense eigenproblems

- **(**) $Q_1^T A Q_1 \rightarrow T$, with $Q_1 \in \mathbb{R}^{n \times n}$ orthogonal, $T \in \mathbb{R}^{n \times n}$ tridiagonal
- 2 $Q_2^T T Q_2 \rightarrow \Lambda$, with $Q_2 \in \mathbb{R}^{n \times n}$ orthogonal, $\Lambda \in \mathbb{R}^{n \times n}$
- If the eigenvectors of A needed, apply a back-transformation to the eigenvectors of T

Stage	Algorithm	Cost (flops)
1	Two-sided reduction	$O(n^3)$
2	MR ³	$O(n^2)$
3	Back-transform	$O(n^3)$

Motivation

- 2 Two-sided reduction
 - LAPACK SYTRD
 - The SBR Toolbox. SBR SYRDB
 - SBR on the GPU

3 Experimental results

Conclusions and future work

Contents

Motivation

2 Two-sided reduction

LAPACK SYTRD

The SBR Toolbox. SBR SYRDB

SBR on the GPU

Experimental results 3

Two-sided reduction: LAPACK SYTRD

$$H_{j-1}^T \cdots H_2^T H_1^T A H_1 H_2 \cdots H_{j-1} = \begin{pmatrix} T_{00} & T_{10}^T & 0 \\ \hline T_{10} & A_{11} & A_{21}^T \\ \hline 0 & A_{21} & A_{22} \end{pmatrix},$$

where $T_{00} \in \mathbb{R}^{j-1 \times j-1}$ is in tridiagonal form and $A_{11} \in \mathbb{R}^{b \times b}$.

Current iteration of SYTRD (Step 1)

 $\left(\frac{A_{11}}{A_{21}}\right)$ reduced to tridiagonal form + build $U, W \in \mathbb{R}^{(n-j-b+1)\times b}$:

$$\begin{aligned} H_{j+b-1}^T \cdots H_{j+1}^T H_j^T \begin{pmatrix} T_{00} & T_{10}^T & 0 \\ \hline T_{10} & A_{11} & A_{21}^T \\ \hline 0 & A_{21} & A_{22} \end{pmatrix} H_j H_{j+1} \cdots H_{j+b-1} \\ &= \begin{pmatrix} T_{00} & T_{10}^T & 0 \\ \hline T_{10} & T_{11} & T_{21}^T \\ \hline 0 & T_{21} & A_{22} - UW^T - WU^T \end{pmatrix}, \end{aligned}$$

 T_{11} tridiagonal and all entries of T_{21} zero but top right corner.

Two-sided reduction: LAPACK SYTRD

$$H_{j-1}^T \cdots H_2^T H_1^T A H_1 H_2 \cdots H_{j-1} = \begin{pmatrix} T_{00} & T_{10}^T & 0 \\ \hline T_{10} & A_{11} & A_{21}^T \\ \hline 0 & A_{21} & A_{22} \end{pmatrix},$$

where $T_{00} \in \mathbb{R}^{j-1 \times j-1}$ is in tridiagonal form and $A_{11} \in \mathbb{R}^{b \times b}$.

Current iteration of SYTRD (Step 2)

 A_{22} is updated as $A_{22} := A_{22} - UW^T - WU^T$, only the lower (or the upper) half of this matrix is updated.

Cost analysis of LAPACK SYTRD

- Step 1 Four panel-vector multiplications
 - One symmetric matrix-vector multiplication with A_{22} $2(n-j)^2b$ flops
- Step 2 Update A₂₂: computed with SYR2K

 $2(n-j)^2b$ flops

ji

Overall cost

 $4n^3/3$ flops, if $b \ll n$

Contents

Motivation

- LAPACK SYTRD
- The SBR Toolbox. SBR SYRDB
- SBR on the GPU

3 Experimental results

The SBR Toolbox

The SBR Toolbox

- SBR: symmetric band reduction via orthogonal transforms
- Routines for:
 - Reduction of dense symmetric matrices to banded form (SYRDB)
 - Reduction of banded matrices to narrower banded form (SBRDB)
 - Reduction to tridiagonal form (SBRDT)

SBR vs. LAPACK

- SYRDB + SBRDT \Rightarrow Dense matrix to tridiagonal form
- Same result as LAPACK SYTRD

The SBR Toolbox

The SBR Toolbox

- SBR: symmetric band reduction via orthogonal transforms
- Routines for:
 - Reduction of dense symmetric matrices to banded form (SYRDB)
 - Reduction of banded matrices to narrower banded form (SBRDB)
 - Reduction to tridiagonal form (SBRDT)

SBR vs. LAPACK

- SYRDB + SBRDT \Rightarrow Dense matrix to tridiagonal form
- Same result as LAPACK SYTRD

Step 1

Compute the QR factorization of $A_0 \in \mathbb{R}^{k \times b}$, k = n - (j + w) + 1:

$$A_0 = Q_0 R_0, \tag{1}$$

Cost:
$$2b^2(k-b/3)$$
 flops.

j'i

Step 2

Construct the factors of the compact WY representation of $Q_0 = I_k + WTW^T$, with $W \in \mathbb{R}^{k \times b}$ and $T \in \mathbb{R}^{k \times k}$ upper triangular.

Cost: *kb*² flops.

j

Step 3

Apply the orthogonal matrix to $A_1 \in \mathbb{R}^{k \times w-b}$ from the left:

$$A_1 := Q_0^T A_1 = (I_k + WTW^T)^T A_1 = A_1 + W(T(W^T A_1)).$$
(1)

Cost: 4kb(w-b) flops. (No operations if w = b)

バ

Step 4

Apply orthogonal matrix to $A_2 \in \mathbb{R}^{k \times k}$ from left and right:

$$A_2 := Q_0^T A_2 Q_0 = (I_k + WY^T)^T A_2 (I + WY^T)$$
(1)

$$= A_2 + YW^T A_2 + A_2 WY^T + YW^T A_2 WY^T, (2)$$

with Y = WT.

バ

Cost analysis of Step 4

Step 4

$$A_2 := A_2 + YW^T A_2 + A_2WY^T + YW^T A_2WY^T$$

Computed as a sequence of BLAS operations:

Total cost

 $4k^2b + 4kb^2$ flops

バ

(3)

Cost analysis of Step 4

Step 4

$$A_2 := A_2 + YW^T A_2 + A_2WY^T + YW^T A_2WY^T$$

Computed as a sequence of BLAS operations:

Total cost

 $4k^2b + 4kb^2$ flops

(3)

Cost of full matrix to band form (SYRDB)

Step 1 $O(kb^2)$ Step 2 $O(kb^2)$ Step 3 $O(\max(kb^2, kbw))$ Step 4 $O(4k^2b + 4kb^2)$

Total $O(4n^3/3)$

Cost of reduction to tridiagonal form (SBRDT)

- Routine SBRDT in SBR (using Householder reflectors)
- SBRDT returns the tridiagonal matrix T
- T constructed one column at the time
 - BLAS-2 operations at best
- Total cost: $6n^2w + 8nw^2$ flops.

Cost of full matrix to band form (SYRDB)

Step 1 $O(kb^2)$ Step 2 $O(kb^2)$ Step 3 $O(\max(kb^2, kbw))$ Step 4 $O(4k^2b + 4kb^2)$

Total $O(4n^3/3)$

Cost of reduction to tridiagonal form (SBRDT)

- Routine SBRDT in SBR (using Householder reflectors)
- SBRDT returns the tridiagonal matrix T
- T constructed one column at the time
 - BLAS-2 operations at best
- Total cost: $6n^2w + 8nw^2$ flops.

Contents

Motivation 1

2 Two-sided reduction

- LAPACK SYTRD
- The SBR Toolbox. SBR SYRDB
- SBR on the GPU

Experimental results 3

Conclusions and future work

Reduction to band form on the GPU

Hybrid strategy

Reduction to band form on the GPU

Matrix in video memory

Matrix in GPU memory

- For each column block:
- Transfer $b \times b$ diagonal blocks to

Reduction to band form on the GPU

Transfer A_0 to RAM Steps 1 and 2 on CPU

- Matrix in GPU memory
- For each column block:
 - $\bigcirc A_0 \Rightarrow \mathsf{CPU}$
 - Steps 1, 2 on CPU
- Transfer $b \times b$ diagonal blocks to

Reduction to band form on the GPU

Transfer A_1 to RAM Step 3 on CPU

- Matrix in GPU memory
- For each column block:
 - $\bigcirc A_0 \Rightarrow \mathsf{CPU}$
 - Steps 1, 2 on CPU
 - $I A_1 \Rightarrow \mathsf{CPU}$
 - Step 3 on CPU
- Transfer $b \times b$ diagonal blocks to

Reduction to band form on the GPU

Transfer W, Y to GPU

- Matrix in GPU memory
- For each column block:
 - $A_0 \Rightarrow \mathsf{CPU}$
 - Steps 1, 2 on CPU
 - $I A_1 \Rightarrow \mathsf{CPU}$
 - Step 3 on CPU
 - Transfer W, Y to GPU
- Transfer $b \times b$ diagonal blocks to

Reduction to band form on the GPU

Matrix in GPU memory

- For each column block:
 - $A_0 \Rightarrow \mathsf{CPU}$
 - Steps 1, 2 on CPU
 - $I A_1 \Rightarrow \mathsf{CPU}$
 - Step 3 on CPU
 - Transfer W, Y to GPU
 - Step 4 on GPU
- Transfer $b \times b$ diagonal blocks to

Two-sided reduction

SBR on the GPU

Reduction to band form on the GPU

Band matrix and Householder reflectors on main memory

- Matrix in GPU memory
- For each column block:
 - $A_0 \Rightarrow \mathsf{CPU}$
 - Steps 1, 2 on CPU
 - $A_1 \Rightarrow \mathsf{CPU}$
 - Step 3 on CPU
 - Transfer W, Y to GPU
 - Step 4 on GPU
- Transfer b × b diagonal blocks to RAM

j

Accelerating the CUBLAS routines

- Bulk of the computation cast in terms of SYR2K and SYMM
- CUBLAS only offers tuned GEMM
- Solution: use our own tuned BLAS-3 implementation on GPU

[Level-3 BLAS on a GPU: Picking the Low Hanging Fruit] FLAME Working Note #37, May 2009.

Symmetric Eigenvalue Problems on multi-cores ...

バ

Experimental setup

Ϊ

Experimental setup

CPU	Dual Xeon QuadCore E5410		
CPU frequency	2.33 Ghz		
RAM memory	8 Gbytes		
GPU	Tesla C1060		
Processor	Nvidia GT200		
GPU frequency	1.3 Ghz		
Video memory	4 Gbytes DDR3		
Interconnection	PCIExpress Gen2		
CUDA (CUBLAS) version	2.2		
MKL version	10.0.1		
Driver version	185.18		

Reduction to tridiagonal form:

- LAPACK SYTRD
- SBR SYRDB + SBRDT
- Consider $4n^3/3$ flops for square matrices (order *n*). Single precision.

Experimental results

Experimental results

Speedup 2.2*x* when using GPU acceleration for SBR (19.2 vs 42 GFLOPS)

Speedup 4.3x when using GPU acceleration and tuned BLAS (19.2 vs 82 GFLOPS)

Experimental results

Execution times for SBR routines

		1st stage: Full→ Band			2nd stage: Band→ Tridiagonal	
n	W	1 Core	4 Cores	8 Cores	CUBLAS	1 core
2048	32	1.1	0.8	0.8	0.2	0.4
	96	0.9	0.5	0.5	0.2	0.8
6144	32	33.5	23.8	28.5	2.5	3.7
	96	25.3	11.6	11.7	2.7	7.5
10240	32	155.8	110.4	129.5	10.1	10.3
	96	116.6	51.2	51.6	10.6	25.6

Table: Execution time (in seconds) for the two-stage SBR routines.

- Speedup 12x for the first stage with w = 32
- Times for the first and second stage are comparable if accelerated with GPU

j

Conclusions and future work

- Evaluation of the performance of existing codes for reductions from full to tridiagonal forms
- LAPACK vs. SBR
- Offloading of the most-expensive operations to the GPU
- Tuned BLAS-3 routines to boost performance
- Future work: single to double precision refinement

Conclusions and future work

Thank you!

More information...

- [Reduction to condensed forms for symmetric eigenvalue problems on multi-core architectures] Technical report 2009-13, Seminar for applied mathematics ETH Zurich, March 2009
 - HPCA Group at University Jaume I (http://www.hpca.uji.es)
 - quintana@icc.uji.es, figual@icc.uji.es