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Motivation

Motivation

The symmetric eigenvalue problem

AX = XΛ,

where A ∈ Rn×n is symmetric, Λ = diag(λ1,λ2, . . . ,λn) ∈ Rn×n are the
eigenvalues and X ∈ Rn×n are the eigenvectors

Applications (large scale dense A)

computational quantum chemistry
finite element modeling
multivariate statistics
density functional theory
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Motivation

Motivation

Efficient algorithms for dense eigenproblems
1 QT

1 AQ1→ T, with Q1 ∈ Rn×n orthogonal, T ∈ Rn×n tridiagonal
2 QT

2 TQ2→ Λ, with Q2 ∈ Rn×n orthogonal, Λ ∈ Rn×n

3 If the eigenvectors of A needed, apply a back-transformation to
the eigenvectors of T

Stage Algorithm Cost (flops)
1 Two-sided reduction O(n3)
2 MR3 O(n2)
3 Back-transform O(n3)
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Two-sided reduction LAPACK SYTRD

Two-sided reduction: LAPACK SYTRD

HT
j−1 · · ·HT

2 HT
1 AH1H2 · · ·Hj−1 =

 T00 TT
10 0

T10 A11 AT
21

0 A21 A22

 ,

where T00 ∈ Rj−1×j−1 is in tridiagonal form and A11 ∈ Rb×b.

Current iteration of SYTRD (Step 1)(
A11
A21

)
reduced to tridiagonal form + build U,W ∈ R(n−j−b+1)×b:

HT
j+b−1 · · ·H

T
j+1HT

j

 T00 TT
10 0

T10 A11 AT
21

0 A21 A22

HjHj+1 · · ·Hj+b−1

=

 T00 TT
10 0

T10 T11 TT
21

0 T21 A22−UWT −WUT

 ,

T11 tridiagonal and all entries of T21 zero but top right corner.
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Two-sided reduction: LAPACK SYTRD

HT
j−1 · · ·HT

2 HT
1 AH1H2 · · ·Hj−1 =

 T00 TT
10 0

T10 A11 AT
21

0 A21 A22

 ,

where T00 ∈ Rj−1×j−1 is in tridiagonal form and A11 ∈ Rb×b.

Current iteration of SYTRD (Step 2)

A22 is updated as A22 := A22−UWT −WUT , only the lower (or the
upper) half of this matrix is updated.

Symmetric Eigenvalue Problems on multi-cores . . . 6 Bientinesi et al.



Two-sided reduction LAPACK SYTRD

Cost analysis of LAPACK SYTRD

Step 1 Four panel-vector multiplications

One symmetric matrix-vector multiplication with A22

2(n− j)2b flops
Step 2 Update A22: computed with SYR2K

2(n− j)2b flops

Overall cost

4n3/3 flops, if b� n
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The SBR Toolbox

The SBR Toolbox
SBR: symmetric band reduction via orthogonal transforms
Routines for:

Reduction of dense symmetric matrices to banded form (SYRDB)
Reduction of banded matrices to narrower banded form (SBRDB)
Reduction to tridiagonal form (SBRDT)

SBR vs. LAPACK
SYRDB + SBRDT ⇒ Dense matrix to tridiagonal form
Same result as LAPACK SYTRD
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Two-sided reduction: SBR SYRDB

w
j

j

0

b

k

w−b k=n−(j+w)+1

0 1 2A A A

Step 1

Compute the QR factorization of A0 ∈ Rk×b, k = n− (j+w)+1:

A0 = Q0R0, (1)

Cost: 2b2(k−b/3) flops.

Symmetric Eigenvalue Problems on multi-cores . . . 10 Bientinesi et al.



Two-sided reduction The SBR Toolbox. SBR SYRDB

Two-sided reduction: SBR SYRDB
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Step 2

Construct the factors of the compact WY representation of
Q0 = Ik +WTWT , with W ∈ Rk×b and T ∈ Rk×k upper triangular.

Cost: kb2 flops.
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Two-sided reduction: SBR SYRDB

w
j

j

0
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w−b k=n−(j+w)+1

0 1 2A A A

Step 3

Apply the orthogonal matrix to A1 ∈ Rk×w−b from the left:

A1 := QT
0 A1 = (Ik +WTWT)TA1 = A1 +W(T(WTA1)). (1)

Cost: 4kb(w−b) flops. (No operations if w = b)
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Two-sided reduction: SBR SYRDB

w
j

j
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w−b k=n−(j+w)+1

0 1 2A A A

Step 4

Apply orthogonal matrix to A2 ∈ Rk×k from left and right:

A2 := QT
0 A2Q0 = (Ik +WYT)TA2(I +WYT) (1)

= A2 +YWTA2 +A2WYT +YWTA2WYT , (2)

with Y = WT.
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Cost analysis of Step 4

Step 4

A2 := A2 +YWTA2 +A2WYT +YWTA2WYT (3)

Computed as a sequence of BLAS operations:

(SYMM) X1 := A2W,

(GEMM) X2 := 1
2 XT

1 W,
(GEMM) X3 := X1 +YX2,
(SYR2K) A2 := A2 +X3YT +YXT

3 .

Total cost

4k2b+4kb2 flops
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Two-sided reduction The SBR Toolbox. SBR SYRDB

Cost of full matrix to band form (SYRDB)

Step 1 O(kb2)
Step 2 O(kb2)
Step 3 O(max(kb2,kbw))
Step 4 O(4k2b+4kb2)

Total O(4n3/3)

Cost of reduction to tridiagonal form (SBRDT)

Routine SBRDT in SBR (using Householder reflectors)
SBRDT returns the tridiagonal matrix T

T constructed one column at the time
BLAS-2 operations at best

Total cost: 6n2w+8nw2 flops.
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Two-sided reduction SBR on the GPU

Reduction to band form on the GPU

Hybrid strategy

w
j

j
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w−b k=n−(j+w)+1

0 1 2A A A

Steps 1 and 2
Narrow M-V products

Better on CPU

w
j
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0 1 2A A A

Step 3
(w−b) usually small

Better on CPU

w
j

j

0

b

k

w−b k=n−(j+w)+1

0 1 2A A A

Step 4
Big BLAS-3 operations

Better on GPU
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Two-sided reduction SBR on the GPU

Reduction to band form on the GPU

w
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Matrix in video memory

Matrix in GPU memory
For each column block:

1 A0⇒ CPU
2 Steps 1, 2 on CPU
3 A1⇒ CPU
4 Step 3 on CPU
5 Transfer W,Y to GPU
6 Step 4 on GPU

Transfer b×b diagonal blocks to
RAM
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Reduction to band form on the GPU
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Two-sided reduction SBR on the GPU

Accelerating the CUBLAS routines

Bulk of the computation cast in terms of SYR2K and SYMM
CUBLAS only offers tuned GEMM
Solution: use our own tuned BLAS-3 implementation on GPU
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Performance against CUBLAS 2.2 on a Tesla C1060

CUBLAS Syr2k (k=32)
New Syr2k (k=32)

CUBLAS Symm (m=32)
New Symm (m=32)

[Level-3 BLAS on a GPU: Picking the Low Hanging Fruit]
FLAME Working Note #37, May 2009.
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Experimental setup

Experimental setup

CPU Dual Xeon QuadCore E5410
CPU frequency 2.33 Ghz
RAM memory 8 Gbytes
GPU Tesla C1060
Processor Nvidia GT200
GPU frequency 1.3 Ghz
Video memory 4 Gbytes DDR3
Interconnection PCIExpress Gen2
CUDA (CUBLAS) version 2.2
MKL version 10.0.1
Driver version 185.18

Reduction to tridiagonal form:
LAPACK SYTRD
SBR SYRDB + SBRDT

Consider 4n3/3 flops for square matrices (order n). Single
precision.
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Reduction from full to tridiagonal form using LAPACK/SBR

SBR - 1 GPU/8 CORES - Tuned CUBLAS
SBR - 1 GPU/8 CORES - NVIDIA CUBLAS 2.2

SBR - 8 Intel cores - Intel MKL
LAPACK - 8 Intel cores - Intel MKL

Speedup 2.2x when using GPU acceleration for SBR (19.2 vs 42 GFLOPS)

Speedup 4.3x when using GPU acceleration and tuned BLAS (19.2 vs 82 GFLOPS)
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Experimental results

Execution times for SBR routines

1st stage: Full→ Band 2nd stage: Band→ Tridiagonal
n w 1 Core 4 Cores 8 Cores CUBLAS 1 core

2048 32 1.1 0.8 0.8 0.2 0.4
96 0.9 0.5 0.5 0.2 0.8

6144 32 33.5 23.8 28.5 2.5 3.7
96 25.3 11.6 11.7 2.7 7.5

10240 32 155.8 110.4 129.5 10.1 10.3
96 116.6 51.2 51.6 10.6 25.6

Table: Execution time (in seconds) for the two-stage SBR routines.

Speedup 12x for the first stage with w = 32

Times for the first and second stage are comparable if accelerated with GPU
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Conclusions and future work

Evaluation of the performance of existing codes for reductions
from full to tridiagonal forms

LAPACK vs. SBR

Offloading of the most-expensive operations to the GPU

Tuned BLAS-3 routines to boost performance

Future work: single to double precision refinement
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Conclusions and future work

Thank you!

More information. . .

[Reduction to condensed forms for symmetric eigenvalue
problems on multi-core architectures]
Technical report 2009-13, Seminar for applied mathematics
ETH Zurich, March 2009

HPCA Group at University Jaume I (http://www.hpca.uji.es)
quintana@icc.uji.es, figual@icc.uji.es
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