
Optimizing co-occurrence matrices on graphics
processors using sparse representations

Francisco Igual1 Rafael Mayo1

Timothy Hartley2 Umit Catalyurek2

Antonio Ruiz3 Manuel Ujaldón3

Department of Computer Engineering and Computer Science.
University Jaume I. Castellón (Spain)

Departments of Biomedical Informatics and Electrical and Computer Engineering.
The Ohio State University, Columbus (USA)

Computer Architecture Department.
University of Malaga (Spain)

Optimizing co-occurrence matrices on graphics processors 1 Igual et al.

Outline

1 General framework and motivation: Biomedical image analysis

2 The co-occurrence matrix and its computations

3 GPU platform and CUDA programming

4 Our GPU implementation on sparse matrices

5 Experimental results

6 Conclusions and future work

Optimizing co-occurrence matrices on graphics processors 2 Igual et al.

General framework and motivation: Biomedical image analysis

Biomedical analysis on the GPU

Cancer prognosis is based on evaluation of tissue samples using
a microscope to obtain large-scale images
The analysis of pathology images is particularly challenging due
to the large size of the data
Image processing on the GPU has attracted many researchers
for data mining, segmentation, . . . and fits well within this
framework
Our goal is to optimize the efficient execution of large-scale
biomedical image analysis applications on the GPU

Optimizing co-occurrence matrices on graphics processors 3 Igual et al.

General framework and motivation: Biomedical image analysis

Computation infrastructure

Optimizing co-occurrence matrices on graphics processors 4 Igual et al.

General framework and motivation: Biomedical image analysis

Computation infrastructure

Optimizing co-occurrence matrices on graphics processors 4 Igual et al.

General framework and motivation: Biomedical image analysis

Computation infrastructure

Optimizing co-occurrence matrices on graphics processors 4 Igual et al.

General framework and motivation: Biomedical image analysis

Computation infrastructure

Optimizing co-occurrence matrices on graphics processors 4 Igual et al.

General framework and motivation: Biomedical image analysis

Computation infrastructure

Optimizing co-occurrence matrices on graphics processors 4 Igual et al.

General framework and motivation: Biomedical image analysis

Computation infrastructure

Optimizing co-occurrence matrices on graphics processors 4 Igual et al.

General framework and motivation: Biomedical image analysis

Typical operations on biomedical image analysis

Color space conversions: Typical GPU-like streaming operators
Feature extraction: CPU-like operators. Should be optimized

Optimizing co-occurrence matrices on graphics processors 5 Igual et al.

General framework and motivation: Biomedical image analysis

Textural features based on co-occurrence matrices

Introduced by Haralick, 1973

Joint histogram of intensity levels of a pair of pixels with a given
spatial relationship, [dx,dy]
Captures the statistics of spatial variation of intensities
Used as intermediate data structure for calculating features:
contrast, correlation, energy, homogeneity. . .

Example for a small image with four intensity levels:

2 2 3 3

2220

0

3 0 1 1

1 10

0 1 2 3

3

2

1

0

2

21

1

3

3

0

0

0

0

1 2 1 0

002

0

01 0 1

13

Optimizing co-occurrence matrices on graphics processors 6 Igual et al.

The co-occurrence matrix and its computations

Co-occurrence matrix variants

For each image pixel or image tile to classify
Window size: centered on computed pixel/tile

Smallest window: 4×4
Largest window: 256×256

Analyzed the entire set of windows
Discretized color space or whole-range (0..255) in RGB color
space
For each color channel or using gray scale values

Experimental setup

Input images used: taken from real biomedical applications
Hardware platform: CPU vs GPU comparison
Data structures: dense vs sparse matrices

Optimizing co-occurrence matrices on graphics processors 7 Igual et al.

GPU platform and CUDA programming

Why do we need HPC here? (I)

Due to the large sizes of whole-slide images
A 120K x 120K image digitized at 40x occupies more than 40GB

Due to the large processing time on a single CPU
Using C++ code for a simple image classifier based on statistical
features computed through co-occurrence matrices, it takes 850
ms. for an image tile of 1Kx1K and 20 min. for a 50Kx50K slide

Due to the large number of medical samples
In clinical practice, 8-9 biopsy samples are collected per patient,
and a hospital may treat around 500 patients per year, consuming
months or even years of computational time using C++ on a CPU

In previous studies, we have reduced the time to few days using the
GPU, and to few hours using CPU/GPU clusters

Optimizing co-occurrence matrices on graphics processors 8 Igual et al.

GPU platform and CUDA programming

Why do we need HPC here? (I)

Due to the large sizes of whole-slide images
A 120K x 120K image digitized at 40x occupies more than 40GB

Due to the large processing time on a single CPU
Using C++ code for a simple image classifier based on statistical
features computed through co-occurrence matrices, it takes 850
ms. for an image tile of 1Kx1K and 20 min. for a 50Kx50K slide

Due to the large number of medical samples
In clinical practice, 8-9 biopsy samples are collected per patient,
and a hospital may treat around 500 patients per year, consuming
months or even years of computational time using C++ on a CPU

In previous studies, we have reduced the time to few days using the
GPU, and to few hours using CPU/GPU clusters

Optimizing co-occurrence matrices on graphics processors 8 Igual et al.

GPU platform and CUDA programming

Why do we need HPC here? (I)

Due to the large sizes of whole-slide images
A 120K x 120K image digitized at 40x occupies more than 40GB

Due to the large processing time on a single CPU
Using C++ code for a simple image classifier based on statistical
features computed through co-occurrence matrices, it takes 850
ms. for an image tile of 1Kx1K and 20 min. for a 50Kx50K slide

Due to the large number of medical samples
In clinical practice, 8-9 biopsy samples are collected per patient,
and a hospital may treat around 500 patients per year, consuming
months or even years of computational time using C++ on a CPU

In previous studies, we have reduced the time to few days using the
GPU, and to few hours using CPU/GPU clusters

Optimizing co-occurrence matrices on graphics processors 8 Igual et al.

GPU platform and CUDA programming

Why do we need HPC here? (II)

But we have even harder scenarios. . .
Calculation of a co-occurrence matrix per pixel
Non-discretized co-occurrence matrix (256×256 size per pixel)
Variable window sizes, from 4×4 to 256×256

Sparse co-occurrence matrices

These conditions typically lead to a sparse co-oc. matrix per pixel:

4×4 window
Non-discretized co-oc.
matrix 256×256

⇒ At most 16 of the 65K
elements are nonzeros

Optimizing co-occurrence matrices on graphics processors 9 Igual et al.

GPU platform and CUDA programming

Evolution for the memory paradigms

CPU (from the 70’s):

GPU (this decade): CUDA (since 2007):

Optimizing co-occurrence matrices on graphics processors 10 Igual et al.

Our GPU implementation on sparse matrices

Our goal on the GPU platform

Overall goal:
Fully exploit the parallelism inherent in the application

Task to achieve this goal:
Develop high-quality kernels for use on GPU

SIMD multiprocessor 16

SIMD multiprocessor 1

SIMD multiprocessor 2

Texture Cache

Regs RegsRegs

Shared Memory (16 KB)

Core 1 Core 8Core 2

Global Memory (GDDR − 1.5 GB)

Issue
Instr.

SIMD parallelism Kernels

es
ca

la
b
il

it
y

F
u
tu

re
T T T T

TTT

T T T

T

T

T T T T

TTT

T T T

T

T

T T T T

TTT

T T T

T

T

T T T T

TTT

T T T

T

T

T T T T

TTT

T T T

T

T

T T T T

TTT

T T T

T

T

T T T T

TTT T

T

T

T T T T

TTT T

T

T

T T T T

TTT T

T

T

T T T T

TTT T

T

T

Thread (0,3)Grid 2

Grid 1

Block (0,1)Block (0,0)

Block (1,0) Block (1,1)

Kernel 2

Kernel 1

Hardware on GPU (device)Software on CPU (host)

Block (0,0) Block (0,1) Block (0,2)

Block (1,2)Block (1,1)Block (1,0)

The input program The parallel execution

Optimizing co-occurrence matrices on graphics processors 11 Igual et al.

Our GPU implementation on sparse matrices

Roadblocks to fast GPU kernels

CUDA exposes better interface than Cg or assembly
programming for general-purpose computing
But architectural idiosyncrasies still need managing:

Memory bank conflicts
Long latencies to global memory
Correct data structure choice
Thread deployment shape
Kernels with high data reuse
Kernels with low computational load
Small local memories

Motivation for using sparse matrices and testing different
representation formats

Optimizing co-occurrence matrices on graphics processors 12 Igual et al.

Our GPU implementation on sparse matrices

Implementation goals

Our scenario
Calculation of per-pixel co-occurrence matrix
Variable window sizes (relatively small)
Non discretized (256×256) co-occurrence matrices

Our goals

Architectural point of view: use shared memory as much as
possible
Implementation based on sparse formats
Choose a format simple enough to compute as many threads as
possible

Optimizing co-occurrence matrices on graphics processors 13 Igual et al.

Our GPU implementation on sparse matrices

Implementation goals

Our scenario
Calculation of per-pixel co-occurrence matrix
Variable window sizes (relatively small)
Non discretized (256×256) co-occurrence matrices

Our goals

Architectural point of view: use shared memory as much as
possible
Implementation based on sparse formats
Choose a format simple enough to compute as many threads as
possible

Optimizing co-occurrence matrices on graphics processors 13 Igual et al.

Our GPU implementation on sparse matrices

Sparse matrix format

The format is critical for attaining high performance

Simple to fit the GPU execution model
Compact to fit in shared memory

Our proposal: coordinate format

15

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0 0
1

2

1

1

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

1 2 3 40

1

0

A

J

I 1 2

4

4

1

5

7

7

4

CO−OCCURRENCE MATRIX

COORDINATE FORMAT

DENSE FORMAT

SPARSE MATRIX

0

150

4

1

5 7

42

4 1 0window
3x3

(values)

(rows)

(columns)

0
1

INPUT IMAGE

Pixel intensities: 0..7

Resolution: 16x16

1 2 1 1

Optimizing co-occurrence matrices on graphics processors 14 Igual et al.

Our GPU implementation on sparse matrices

Alternative formats for sparse matrices

There are more sparse formats:

Single linked lists

Uses an ordered linked list per row
Benefits: efficient insertion

Double linked lists by rows and columns

Uses a double linked list of columns and rows
Benefits: allows optimizations for some matrix shapes

Common disadvantages

More storage space
↓

Less threads per block computing co-occurrence matrices

Optimizing co-occurrence matrices on graphics processors 15 Igual et al.

Our GPU implementation on sparse matrices

Alternative formats for sparse matrices

There are more sparse formats:

Single linked lists

Uses an ordered linked list per row
Benefits: efficient insertion

Double linked lists by rows and columns

Uses a double linked list of columns and rows
Benefits: allows optimizations for some matrix shapes

Common disadvantages

More storage space
↓

Less threads per block computing co-occurrence matrices

Optimizing co-occurrence matrices on graphics processors 15 Igual et al.

Our GPU implementation on sparse matrices

The computational process using CUDA (I)

The algorithm can be shared for all sparse formats and has two
phases:

1 Shared memory phase⇒ Sparse format
Each thread operates on a chunk of the original window
Creates a local sparse representation
Sequentially, a reduction process is performed
Sparse to dense conversion
One dense matrix per block is written to global memory

2 Global memory phase⇒ Dense format
The second phase is performed on global memory
Global reduction process using shared memory (optimized)
Usually attaining good performance results

Optimizing co-occurrence matrices on graphics processors 16 Igual et al.

Our GPU implementation on sparse matrices

The computational process using CUDA (II)

+ + + +

++

+

0a a1 a2 a3 a4 a5 a6 a7

i0 i1 i2 i3 i4 i5 i6 i7

j0 j1 j2 j3 j4 j5 j6 j7

a01 a23 a45 a67

i23 i45 i67

j01

i01

j23 j45 j67

a03 a47

i03

j03

i47

j47

a07

i07

j07

THREAD 0 1 2 3 4 5 6

BLOCK 0

PER BLOCK REDUCTION − SPARSE FORMAT Using only SHARED MEMORY

PER GRID REDUCTION − DENSE FORMAT Using only GLOBAL MEMORY

Image pixels (serialized) − Global memory

+
 S

P
A

R
S

IT
Y

 R
A

T
IO

Local sparse submatrices

Total size: O(WINDOW_SIZE)

Per block dense submatrix

Size: O(COOC_MATRIX_SIZE)

S
H

A
R

E
D

 M
E

M
O

R
Y

G
L

O
B

A
L

 M
E

M
O

R
Y

FINAL COOCURRENCE MATRIX

... ...

7 N
M

0 1 2 3 4 5 6 M

...

Optimizing co-occurrence matrices on graphics processors 17 Igual et al.

Our GPU implementation on sparse matrices

Dense-sparse conversions and reduction process

Sparse formats are inefficient in global memory:
No data coalescing
No regular access pattern
Expensive insertion/modification

Instead, we decided to use dense formats because:
Sparse-dense transformation is cheap
There are not space restrictions in global memory

Reduction process

1

23

2 2

1

4

1 2

3

1

1

1

+

1 1 3 1 1

0

0 3 3 0

0 1 2 3 4

12

2

1 3 1 3 5

0 0 1 2 3 4

0 2 3 3 0

2

1

3 2 2

1 2 4

1 4 2

1

2

1

j

i

a

a

j

i

a

i

j

DENSE FORMAT SPARSE FORMAT

first_free

1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6

0

1 3 2 1 4 2

0 1 1 2 3 4

0321 4

2

4

22

1 2 3 4 5 60

first_free

11 12 13

Optimizing co-occurrence matrices on graphics processors 18 Igual et al.

Our GPU implementation on sparse matrices

Dense-sparse conversions and reduction process

Sparse formats are inefficient in global memory:
No data coalescing
No regular access pattern
Expensive insertion/modification

Instead, we decided to use dense formats because:
Sparse-dense transformation is cheap
There are not space restrictions in global memory

Reduction process

1

23

2 2

1

4

1 2

3

1

1

1

+

1 1 3 1 1

0

0 3 3 0

0 1 2 3 4

12

2

1 3 1 3 5

0 0 1 2 3 4

0 2 3 3 0

2

1

3 2 2

1 2 4

1 4 2

1

2

1

j

i

a

a

j

i

a

i

j

DENSE FORMAT SPARSE FORMAT

first_free

1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6

0

1 3 2 1 4 2

0 1 1 2 3 4

0321 4

2

4

22

1 2 3 4 5 60

first_free

11 12 13

Optimizing co-occurrence matrices on graphics processors 18 Igual et al.

Our GPU implementation on sparse matrices

Rationale for optimizations

Nonzero elements tend to be concentrated in the main diagonal
of the matrix

Some empirical examples from biomedical apps

Cartilage and bone regeneration using
different stainings

Neuroblastoma cancer
prognosis

Optimizing co-occurrence matrices on graphics processors 19 Igual et al.

Our GPU implementation on sparse matrices

Potential optimizations

We have performed some optimizations:

Diagonal shape

It is possible to store some diagonals in a dense format

Improving insertion

Contiguous pixels of images are related
It is possible to apply techniques to improve consecutive
insertions when they are next
Example: keep the position of the last insertion to accelerate
future search

However, most of them do not offer good performance results
Reason: too sparse matrices / too small window sizes

Optimizing co-occurrence matrices on graphics processors 20 Igual et al.

Our GPU implementation on sparse matrices

Potential optimizations

We have performed some optimizations:

Diagonal shape

It is possible to store some diagonals in a dense format

Improving insertion

Contiguous pixels of images are related
It is possible to apply techniques to improve consecutive
insertions when they are next
Example: keep the position of the last insertion to accelerate
future search

However, most of them do not offer good performance results
Reason: too sparse matrices / too small window sizes

Optimizing co-occurrence matrices on graphics processors 20 Igual et al.

Experimental results

Our benchmark

Input images: taken from bone and cartilage regeneration and
precomputed to obtain grayscales
CPU: Intel Core 2 Duo
GPU: Nvidia GeForce 8800 GPU
Experimental numbers measured for different window sizes and
discretized levels

Optimizing co-occurrence matrices on graphics processors 21 Igual et al.

Experimental results

Window size impact

Results (in ms.) for different window sizes
Using non-discretized co-oc. matrix

Window CPU GPU dense GPU sparse Nonzeros Speedup GPU/CPU
4x4 1.36 7.61 0.10 0.024% 76.1x 13.60x
8x8 2.82 7.62 0.16 0.090% 47.62x 17.62x

16x16 2.82 7.58 0.39 0.390% 19.43x 7.23x
32x32 3.04 7.63 0.74 1.560% 10.31x 4.10x
64x64 3.08 7.76 1.74 6.250% 4.45x 1.77x

128x128 2.94 8.54 7.70 25% 1.1x 0.38x
256x256 2.96 9.19 46.49 100% 0.19x 0.32x

Best results achieved for Sparse Formats on GPU for matrices
sparse enough
Even better results that those on CPU

Encouraging results

Optimizing co-occurrence matrices on graphics processors 22 Igual et al.

Experimental results

Potential optimizations

Results (in ms.) of different window sizes
Using non-discretized co-oc. matrix

Window Coordinate Simple link Double link Optimally
4x4 0.10 0.13 0.30 0.21
8x8 0.14 0.25 0.58 0.37

16x16 0.36 1.02 1.52 1.10
32x32 0.45 2.31 4.91 4.83
64x64 1.13 3.46 6.52 6.90

128x128 6.58 19.85 23.33 24.41
256x256 43.19 65.99 78.19 78.31

Best results are achieved for the simplest implementation
Less storage space means more threads computing co-oc.
matrices per block

Disappointing results

Optimizing co-occurrence matrices on graphics processors 23 Igual et al.

Experimental results

Discretization impact

Results (in ms.) of different discretization level of the
co-occurrence matrix
Window size: 16×16

Co. size CPU GPU dense GPU sparse Nonzeros Speedup GPU/CPU
16x16 2.82 0.23 0.21 100% 1.09x 13.42x
32x32 2.82 0.31 0.27 25% 1.14x 10.44x
64x64 2.82 0.67 0.28 6.25% 2.39x 10.07x

128x128 2.82 2.09 0.33 1.56% 6.33x 8.54x
256x256 2.82 7.58 0.39 0.39% 19.43x 7.32x

Fixing the window size (16×16, very sparse matrix), sparse
Representation is the winner
The best results are achieved for the most sparse matrices
Particularizing the window size to 16x16, the sparse
representation always performs better

Outstanding results

Optimizing co-occurrence matrices on graphics processors 24 Igual et al.

Experimental results

Results discussion

CPU vs. GPU
Dense representations on GPU did not achieve good results for
small window sizes
With sparse formats, we overcome this deficit versus the CPU, to
achieve a two-digit speed-up on GPUs

Sparsity rate

Sparse representations are more effective on:
Co-occurrence matrix per pixel (a tile is too big)
Relatively small window sizes⇒ High sparsity

This situation is very common in biomedical imaging

Optimizing co-occurrence matrices on graphics processors 25 Igual et al.

Experimental results

Results discussion

CPU vs. GPU
Dense representations on GPU did not achieve good results for
small window sizes
With sparse formats, we overcome this deficit versus the CPU, to
achieve a two-digit speed-up on GPUs

Sparsity rate

Sparse representations are more effective on:
Co-occurrence matrix per pixel (a tile is too big)
Relatively small window sizes⇒ High sparsity

This situation is very common in biomedical imaging

Optimizing co-occurrence matrices on graphics processors 25 Igual et al.

Experimental results

Results discussion

In conclusion
We achieve speedups of 20x - 50x for typical window sizes over
dense representations

We even achieve interesting speedups over CPU

Remember: feature extraction was a CPU-like operation. . .

Our main goal is to optimize each step of the image analysis
process⇒ no CPU use until the GPU process finishes

Optimizing co-occurrence matrices on graphics processors 26 Igual et al.

Conclusions and future work

Conclusions

Biomedical image analysis is a HPC-demanding application
There are processes that fit perfectly to the GPU execution model
. . . but feature extraction is not included among them
We propose an algorithm to compute co-oc. matrices for the
most typical scenarios
It is necessary to take into account both the architecture and the
execution model, which explains why a more complex and
efficient format does not lead to better performance
Optimizing ALL the steps of our process allows us to execute it
exclusively on GPU, with no transfers penalty nor CPU
occupancy

Optimizing co-occurrence matrices on graphics processors 27 Igual et al.

Conclusions and future work

Future work

This effort is part of the developing of an image processing
library for biomedical applications implemented entirely on the
GPU using CUDA
Other methods already implemented:

Color channel conversions
LBP operator for neighbour analysis
Zernike moments for texture analysis
Clustering algorithms such as k-means and EM-LDA

Our plan includes the implementation into high-performance
platforms such as TESLA nodes and CPU/GPU clusters:

Some promising results to appear on the 22nd ACM ICS’08 next
month

Optimizing co-occurrence matrices on graphics processors 28 Igual et al.

Conclusions and future work

Thank you...

For more information. . .
http://www3.uji.es/˜figual

figual@icc.uji.es

Optimizing co-occurrence matrices on graphics processors 29 Igual et al.

	General framework and motivation: Biomedical image analysis
	The co-occurrence matrix and its computations
	GPU platform and CUDA programming
	Our GPU implementation on sparse matrices
	Experimental results
	Conclusions and future work

