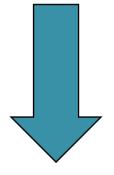
EnergySaving Cluster Roll: Power Saving System for Clusters

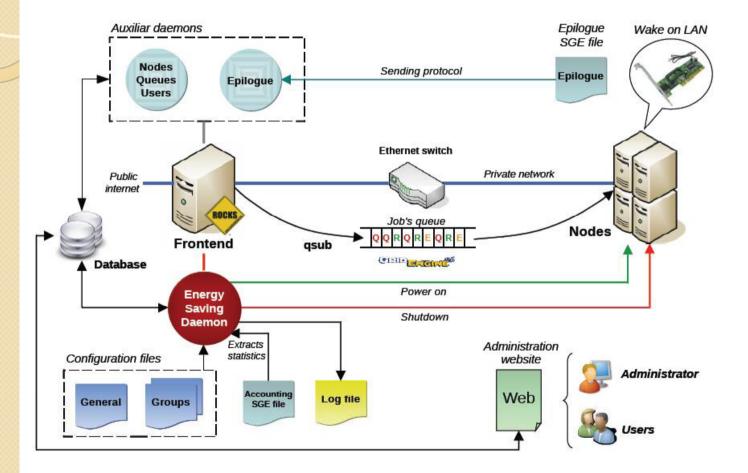
Manuel F. Dolz, Juan C. Fernández, Rafael Mayo, Enrique S. Quintana-Ortí

High Performance Computing & Architectures (HPCA) University Jaume I - Castellón (Spain)


Outline

Objectives

- Implementation of the Energy Saving Roll
- Experimental Results
- Conclusions


Objectives

Development of a middleware that implements energy saving policies to turn on/off nodes of a cluster taking into consideration past and future users' requests

EnergySaving Roll

Implementation of Energy Saving Roll

Implementation of Energy Saving Roll

• The module includes the following components:

- The database stores all information necessary to make decisions
- Three daemons to manage the database, collect statistics and execute the commands that power on/off the nodes
- The website interface to configure and administer users' groups and set the threshold to define the power saving policy

The three daemons

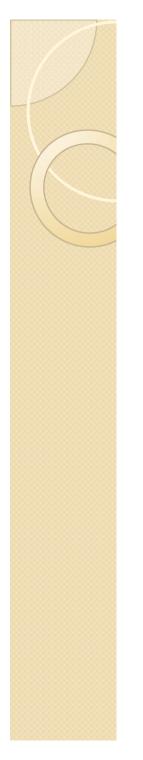
- Daemon for epilogue requests
 - To perform a series of updates in the energy saving database
- Daemon for the queues, users and nodes
 - To ensure that all information on users, nodes and queues is correctly reflected by the database
- Daemon for activation/deactivation actions and statistics
 - To activate/deactivate the nodes
 - To compare the threshold set by system administrator with the current values from the database to test if the activation/deactivation conditions are satisfied

Node activation conditions

- There are not enough appropriate active resources to run a job
- The average waiting time of a job in the queue exceeds a given threshold
- The number of jobs in the queue for a user exceeds the maximum value for its group

Options to select candidate nodes to turn on

- Ordered: By the name of the node
- Randomize: Randomly
- Balanced: Period that the nodes were active during the last t hours
- Prioritized: A priority assigned by the system administrator

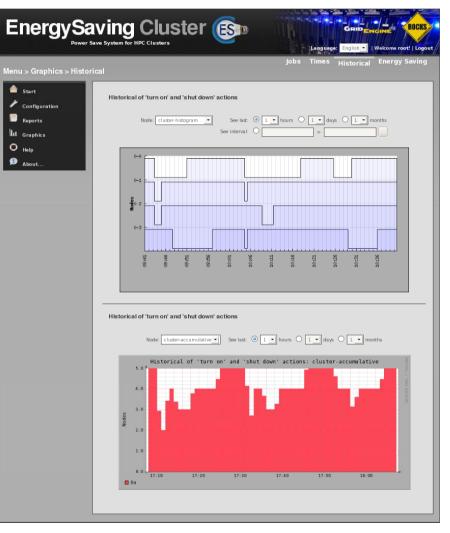

Options to specify a strict threshold to power on nodes

- No strict: Nodes are turned on to serve job request if there are not enough free slots on current active nodes
- Strict: Nodes are only turned on when the current active nodes do not provide enough slots (free or occupied) to serve requirements of the new job
- Strict and sequential: Nodes are only turned on to serve the job request when all current active nodes have their slots in free state

Node deactivation conditions

- The time that a node has been idle
- The average waiting time for user's jobs is less than a threshold set by the administrator
- Current jobs can be served by a smaller number of active nodes

Website interface


Checking and modifing configuration parameters

	ving Cluster 🚯	RID ENGINE
Power Sa	ve System for HPC Clusters Language: Er	nglish 🗾 Welcome root! Logout
Menu > Configuration > Ge	General	System Administration
 ▲ Start ✓ Configuration 	General parameters of configuration	Save changes
Reports	• Daemon cycles:	
Lu Graphics	NQU cycle: 50 seconds 🕹 Saving cycle: 3 seconds 🕹	
O _{Help}	• Node's shut down:	
About	Time without use: 60 seconds 🔮 Maximum timeout: 45 seconds 🥩	
	Node's power on:	
	Off Strict level: ③ Strict Strict and sequential	۲
	Node selection: Node selection: Balanced last 2 - hours By priority	ø
	Maximum timeout: 100 seconds 🥹	
	Condition's priority:	
	Down 1: Job without resources (Turn on)	🥑 Disable
	Up 2: Time idle (Shut down)	🥮 Disable
	3: Too many jobs queued (Turn on)	Enable
	4: Waiting time in queue low (Shut down) 5: Waiting time in queue high (Turn on)	 Enable Enable
	6: Minimum use of resources (Shut down)	 Enable
	Other parameters:	
	Network interface: eth0 🕶 😻	
	Path file LOG: /var/log/saving.log)
	Maximum file LOG size: 500 Kb 😕	
	Path of DB backups: //ar/log/)
	Maximum DB size: 6500 Kb 🥹	
	E-mail root: root@root.com)

Website interface

Monitoring the operation of the cluster

Website interface

Monitoring the energy savings

	ving Clus	ter 😰		Language:	GRID ENGI	ROCKS
Menu > Graphics > Energy	Saving		Jo	bs Times H	listorical Ei	nergy Saving
合 Start✓ Configuration	Percentaje of on and off a	iverage time				
Reports Lu Graphics O Help		See: O Always See last: O 4 -	hours O 1 📺 da	ays O 1 💌 mo	nths	
Dout	100 80 55 60 40 20 0	50.92 49.12	44.77 45.7 55.38 54.3			Off On
	cluster	compute-0-0	compute-0-1 compute-0-2	compute-0-3	odes	
	Node Total Turn time tim	on Shutdown Cons e time I	sumption without C EnergySaving	Consumption with EnergySaving	Cost without EnergySaving	Cost with EnergySaving
	compute-0-0 4:00:00 1:57:		2.80 KWh	1.38 KWh	0.22 Euro	0.11 Euro
	compute-0-1 4:00:00 2:12:		2.80 KWh	1.55 KWh	0.22 Euro	0.12 Euro
	compute-0-2 4:00:00 2:10: compute-0-3 4:00:00 2:06:		2.80 KWh 2.80 KWh	1.52 KWh 1.47 KWh	0.22 Euro 0.22 Euro	0.12 Euro 0.12 Euro
	Total 16:00:00 8:27:		11.20 KWh	5.92 KWh	0.22 Euro	0.47 Euro
				ARCS	2010	

 To evaluate the benefits of the system we have developed a flexible simulator that provides information on the system and various platform configurations and under realistic workloads

EnergySaving-SIM

- We have configured the simulator to emulate the system of queues of the HPC computing service at the University Jaume I:
 - Front-end: HP Proliant DL360 G5 with 2 dual core Intel Xeon 5160 processors
 - Group 1:26 nodes, Fujitsu Siemens RX200 with 2 Intel Xeon processors
 - Group 2: 27 nodes, HP Proliant DL360 G5 with 2 dual core Intel Xeon 5160 processors
 - Group 3: II nodes, HP Proliant BL460C with 2 quadcore Intel Xeon E5450 processors
 - Altix 3700 server with 48 Itanium2 processors

- The job benchmark was obtained from the real queue system logs of the computing facility at University Jaume I
- Composed by 10,415 jobs corresponding to the load submitted to the HPC during three months of 2009:
 - Number of processor required by the jobs: One processor (99.87%), 4 processors (0.12 %) and 8 processors (0.01%)
 - Jobs executed on: Group 1 (73,3%), group 2 (0%), group 3 (16.99%) and Altix server (9.7%)
 - The average execution time of the jobs is Iday, 2h, 53m

- We have evaluated the following policies:
 - No Policy (NP): Conventional cluster without energy saving
 - Nodes are permanently active
 - Policy I (PI):
 - Activation condition: job without resources
 - Deactivation condition: idle time of a node (60 sec.)
 - Node selection algorithm: ordered
 - Strict level: no strict
 - Policy 2 (P2): Same as PI, except strict level (strict)
 - Policy 3 (P3): Same as P1, except strict level (strict and sequential)

- Results are expressed by the following parameters:
 - Latency: Average time since jobs are submitted till their execution is completed (includes the time a job is enqueued as well as its execution time)
 - Power on time (%): Average fraction of the total time that the nodes remain turned on
 - Total time: Elapsed time since the first job is submitted till the last job completes its execution
 - Total consumption: In Mwatts-hour (we consider that a node consumes on average 250 Watts/hour)

Policy	Latency	Power on	Total time	Total
	8.	time		$\operatorname{consumption}$
NP	339 h, 44 m, 18 s	100.0%	4,022 h, 39 m, 50 s	65.37
P1	461 h, 54 m, 0 s	42.9%	4,022 h, 49 m, 15 s	29.51
$\mathbf{P2}$	12,387 h, 56 m, 34 s	5.8%	29,962 h, 2 m, 41 s	46.50
$\mathbf{P3}$	36,556 h, 28 m, 9 s	2.2%	86,712 h, 51 m, 31 s	85.73

Policy	Latency	Power on	Total time	Total
	5. 2	time		$\operatorname{consumption}$
NP	339 h, 44 m, 18 s	100.0%	4,022 h, 39 m, 50 s	65.37
P1	461 h, 54 m, 0 s	42.9%	4,022 h, 49 m, 15 s	29.51
$\mathbf{P2}$	12,387 h, 56 m, 34 s	5.8%	29,962 h, 2 m, 41 s	46.50
P3	36,556 h, 28 m, 9 s	2.2%	86,712 h, 51 m, 31 s	85.73

- Conclusions of these results:
 - Policy P1 increases the job latency from NP, but the nodes are powered on only 42.9%

Policy	Latency	Power on	Total time	Total
	8. 1	time		$\operatorname{consumption}$
NP	339 h, 44 m, 18 s	100.0%	4,022 h, 39 m, 50 s	65.37
P1	461 h, 54 m, 0 s	42.9%	4,022 h, 49 m, 15 s	29.51
$\mathbf{P2}$	12,387 h, 56 m, 34 s	5.8%	29,962 h, 2 m, 41 s	46.50
P3	36,556 h, 28 m, 9 s	2.2%	86,712 h, 51 m, 31 s	85.73

- Conclusions of these results:
 - Policy P2 produces worse results than P1
 - As most of the jobs of the benchmark require a single processor, policy P2 is not appropriate

Policy	Latency	Power on	Total time	Total
	S.	time		$\operatorname{consumption}$
NP	339 h, 44 m, 18 s	100.0%	4,022 h, 39 m, 50 s	65.37
P1	461 h, 54 m, 0 s	42.9%	4,022 h, 49 m, 15 s	29.51
$\mathbf{P2}$	12,387 h, 56 m, 34 s	5.8%	29,962 h, 2 m, 41 s	46.50
P3	36,556 h, 28 m, 9 s	2.2%	86,712 h, 51 m, 31 s	85.73

- Conclusions of these results:
 - Policy P3 presents a long response time, for this particular benchmark is not appropriate
 - Policies P2 and P3 can deliver better best results in case the jobs request multiple processors

• More results for policy PI:

Measure	Total	Per node
Number of shutdowns	206	3.17
Maximum active nodes	37 of 65	
Minimum active nodes	1 of 65	-
Active time	112,056 h, 24 m, 28 s	1,723 h, 56 m, 41 s
Inactive time	149,424 h, 46 m, 47 s	2,298 h, 50 m, 33 s
Active time with average of active intervals per node	25,462 h, 29 m, 0 s	391 h, 43 m, 49 s
Inactive time with average of inactive intervals per node	120,678 h, 57 m, 53 s	1,856 h, 35 m, 58 s

- Conclusions for policy PI (in 4,000 hours):
 - A node was activated and deactivated slightly more than 3 times
 - Nodes are turned on basically 1,723 h or 42.9% of the time.

More results for policy PI:

Measure	Total	Per node
Number of shutdowns	206	3.17
Maximum active nodes	37 of 65	
Minimum active nodes	1 of 65	-
Active time	112,056 h, 24 m, 28 s	1,723 h, 56 m, 41 s
Inactive time	149,424 h, 46 m, 47 s	2,298 h, 50 m, 33 s
Active time with average of active intervals per node	25,462 h, 29 m, 0 s	391 h, 43 m, 49 s
Inactive time with average of inactive intervals per node	120,678 h, 57 m, 53 s	1,856 h, 35 m, 58 s

- Conclusions for policy PI:
 - Nodes were down a considerable time for this particular workload (1,856h). This value indicates that nodes have been deactivated for long periods of time » the decision of keeping them down is feasible

More results for policy P1:

Measure	Total	Per node
Number of shutdowns	206	3.17
Maximum active nodes	37 of 65	-
Minimum active nodes	1 of 65	-
Active time	112,056 h, 24 m, 28 s	1,723 h, 56 m, 41 s
Inactive time	149,424 h, 46 m, 47 s	2,298 h, 50 m, 33 s
Active time with average of active intervals per node	25,462 h, 29 m, 0 s	391 h, 43 m, 49 s
Inactive time with average of inactive intervals per node	120,678 h, 57 m, 53 s	1,856 h, 35 m, 58 s

• Conclusions for policy PI:

 For this particular workload is more convenient to turn off nodes than to keep them active because the time needed to reactivate a node is insignificant compared with the period of time they remain inactive

Summary and Conclusions

- EnergySaving Roll may yield substantial energy savings by turning on only those nodes that are actually needed at a given time during the execution of jobs
- This module is flexible:
 - There are three conditions to turn on the nodes and three conditions to turn off the nodes
 - There are also options to select candidate nodes to be powered on

Summary and Conclusions

- Choosing the best policy depends on the type of the jobs that are submitted to the system and the configuration of the cluster
- This module is currently in operation in the HPC clusters of the High Perfomance Computing & Architectures research group of University Jaume I

EnergySaving Cluster Roll: Power Saving System for Clusters

