Parallel Preconditioning of Linear Systems based on ILUPACK for
Multithreaded Architectures

J.I. Aliagal M. Bollhéfer?> A.F. Martin
E.S. Quintana-Ortit

1Deparment of Computer Science and Engineering, Univ. Jaume | (Spain)
{al i aga, martina , qui nt ana} @icc.uji.es

2Institute of Computational Mathematics, TU-Braunschweig (Germany)
m bol | hoef er @ u- br aunschwei g. de

March, 2009

UNIVERSITAT
JAUME-I

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Motivation and Introduction

Motivation and Introduction

@ We consider the efficient solution of linear systems
Ax=b

where

@ AcR™isalarge and sparse SPD coefficient matrix
@ x € R" is the sought-after solution
@ b e R"is a given r.h.s. vector

@ The solution of this problem

@ Arises in very many large-scale application problems
@ Frequently the most time-consuming part of the computation

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Motivation and Introduction

Motivation and Introduction

We propose to solve Ax = b iteratively using
@ Preconditioned Conjugate Gradient (PCG)
@ Among the best iterative approaches to solve SPD linear systems
@ Lurack preconditioning techniques

@ Incomplete Cholesky (IC) factorization-based preconditioners
— Multilevel IC (MIC) preconditioners: Inverse-based approach

@ Successful for a wide range of large-scale application problems
with up to million of equations

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Motivation and Introduction

Motivation and Introduction

@ The large scale of the problems faced by iLurack makes it evident the
need to reduce the time-to-solution via parallel computing techniques

@ Development of iLurack-based solvers on shared-memory architectures

@ Parallelism revealed by nested dissection on adjacency graph Ga
— recursive application of vertex separator partitioning

@ Dynamic scheduling to improve load-balancing during execution
— run-time tuned for a specific platform/application problem

@ PCG operations conformal with the MIC parallelization

@ Implemented using standard tools: threads and OpenMP

Focus:
@ Parallelization approach preserves semantics of the MIC
@ Delivers a high-degree of concurrence for shared-memory architectures

Numerical results for two large-scale 3D application problems

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Motivation and Introduction

Outline

e Motivation and Introduction

e ILUPACK inverse-based MIC factorization preconditioners
e Parallel inverse-based MIC factorization preconditioners
@ Experimental Results

a Conclusions and Future Work

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

ILUPACK inverse-based MIC factorization preconditioners

Outline

e ILUPACK inverse-based MIC factorization preconditioners

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

ILUPACK inverse-based MIC factorization preconditioners

IC factorization preconditioners

@ The (root-free) sparse Cholesky decomp. computes L € R™", sparse
unit lower triangular, and D € R™", diagonal with positive entries s.t.

A=LDL"
@ In the IC factorization A is factored as
A=LDL" +E

where E € R™" is a “small” perturbation matrix consisting of those
entries dropped during factorization

@ M = LDL" is applied to the original system Ax = b in order to
accelerate the convergence of the PCG solver

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

ILUPACK inverse-based MIC factorization preconditioners

\J
Inverse-based IC factorization preconditioners !H

@ PCG solver converges quickly if the preconditioned matrix is close to |
571/2E71A|:7T 571/2 = + 571/2 |:71E|:7T 571/2
N—_——
F

@ ||D~Y2FD~Y?|| must be “small” to construct effective preconditioners

@ Inverse-based IC factorizations construct M = LDLT s.t. [|[L7}| < v

@ v =5 o0rv = 10 are good choices for many problems
@ Pivoting and multilevel methods are required in general

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

ILUPACK inverse-based MIC factorization preconditioners

Multilevel Inverse-based IC factorization

1st algebraic level

factorized [untouched i
bhvoted updated continue
el < v continue
! factorization
B Vi N
—
after several Ti-1 it
factorization steps leJ-*| >» postpone - bad - cosm pute
SN 7 continue pivots c
ol factorization 1t algebraic
pivots level completed

current factorization step

@ The IC decomp. employs Inverse-based pivoting
— Row/Col. k of L/ LT obtained at step k along with estimation t ~ |le] L[|
— Row/Col. s.t. tx > v are moved to the bottom/right-end of the matrix
— Considered “bad” pivots with respect to the constraint ||L =1 < v

@ The IC factorization stops when the trailing principal only contains bad pivots
— The computation of the approximate Schur complement S¢c completes ...

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

ILUPACK inverse-based MIC factorization preconditioners

Multilevel Inverse-based IC factorization

1st algebraic level

factorized [untouched i
bhvoted updated continue
el < v continue
! factorization
B Vi N
—
after several Ti-1 it
factorization steps leJ-*| >» postpone - bad - cosm pute
SN 7 continue pivots c
ol factorization 1t algebraic
pivots level completed

current factorization step

@ ... apartial IC decomp. of a permuted system with L * satisfying ||L5 || < v

P B FT ig 0 Dg O T o
PTAP = =(B B2 =B E
(F C) (LI)(0 Sc Lo +

@ The whole method is restarted on S¢ leading to a multilevel approach

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

ILUPACK inverse-based MIC factorization preconditioners

Multilevel Inverse-based IC factorization

The MIC factorization can be expressed algorithmically as follows
Q Reorder A — PTAP = A by some fill-reducing ordering matrix P
© Compute a partial IC decomp. as by-product of inverse-based pivoting

st (B OFT Y\ Lg 0 Dg O (g 0
(2)=(e V)T &)(E V)

9 Proceed to the next level by repeating steps 1 and 2 with A = Se until
S is void or “dense enough” to be handled by a dense Cholesky solver

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

ILUPACK inverse-based MIC factorization preconditioners

Multilevel Inverse-based IC factorization

MIC factorization of five-point matrix arising from Laplace PDE discretization

ILUPACK mulilevel preconditioner (5 levels)

2000 i

i ¢
a000 !

! \i [
o000 : J !
: ! B

i i

8000 ! £

i ¢

i f

10000 . X,

12000
¥

000

16000k w o ae i = s
0 2000 4000 6000 8000
n2=350797

10000 121

v =5and r = 107° leads to a MIC factorization with 5 levels

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

Outline

e Parallel inverse-based MIC factorization preconditioners

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

Nested dissection preprocessing step

A Ga

02 6y 0

>

N
&

—_— eI
I

1
l

@) Gy @y

@ Parallelism revealed by nested dissection on adjacency graph Ga
— fast and efficient multilevel (MLND) variants provided by SCOTCH package

@ Parallelization driven by the dependencies “captured” in the task tree
— subdomains first eliminated independently, then separators (2,1) and (2,2)
in parallel, finally the root separator (3,1)

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

Parallel Multilevel Inverse-based IC factorization

Al2) AL3) AlL4)

|

nran A

AL2)

contribution
e blocks

@ Disassemble MT Al into a sum of submatrices, one per leaf node

@ The factorization of the diagonal blocks of MT Al can proceed in parallel as well
as the updates on the blocks corresponding to all ancestor nodes

@ The contribution blocks of each submatrix hold the updates on ancestor nodes
during the factorization of the leading block

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

Parallel Multilevel Inverse-based IC factorization

The tasks compute a local MIC restricted to the leading block of the submatrix

1st local algebraic level

continue
[factorized [untouched @ @
Dpivoted [updated NS 1st local algebraic @ @ @
level completed @

lefE2 < v

continue _ onlybadpivots ___ compute
factorization on the leading block Se
after several B
factorization steps 5 7 lef L > g
N

1
locally updated entries

contribution
blocks

Y
NN

current factorization step

@ The IC decomp. employs restricted Inverse-Based pivoting
— Bad pivots are only moved to the bottom/right-end of the leading block

@ The IC decomp. stops if the trailing of the leading block only contains bad pivots
— Postponed pivots still “resolved” inside the task by entering next MIC level

/7

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

rallel Multilevel Inverse-based IC factorization !H

The tasks compute a local MIC restricted to the leading block of the submatrix

kth local algebraic level

&
D) fe2)
sy @ © ©® ©

continue

2 factorized [untouched
D pivoted [updated

| llefi-Y < v
I ~
- continue
factorization only bad pivots __., compute
after several . ., com
faciorzion deps ontheleading block &
—] -
n|[——
' 1[N 1
contribution S locally updated entries
blocks =

current factorization step

@ When the set of bad pivots is “small enough” the local MIC stops
— The task “sends” the local contributions to the parent task

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

Parallel Multilevel Inverse-based IC factorization

Merge Contributions

A1) A1)

@ The parent task merge contributions resulting from its children

@ A new submatrix is constructed for the local MIC decomp. of the separator task
— Bad pivots resulting from its children moved on top of the leading block
— Contributions blocks added

/7

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

Parallel Multilevel Inverse-based IC factorization

The computation of a leaf node (i,j) can be expressed algorithmically as follows
© cConstruct task submatrix A() from N7 AN

@ Reorder Al — (PENTAGDP () = Alh) by some fill-reducing ordering matrix
P (1)) restricted to the leading block of Al:)

@ Compute a partial IC decomp. as by-product of inverse-based pivoting restricted
to the leading block of A1)

0 Proceed to the next local level by repeating steps 2 and 3 until the set of bad
pivots is “small enough”

Q “Send” local contributions to the parent task

/7

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

U
Parallel Multilevel Inverse-based IC factorization !H

For a separator intermediate task (i,j) ...
© construct task submatrix A(-) by merging contributions of its children

@ Reorder Al — (PENTAGDP () = Alh) by some fill-reducing ordering matrix
P (1)) restricted to the leading block of Al:)

@ Compute a partial IC decomp. as by-product of inverse-based pivoting restricted
to the leading block of A1)

0 Proceed to the next local level by repeating steps 2 and 3 until the set of bad
pivots is “small enough”

Q “Send” local contributions to the parent task

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

U
Parallel Multilevel Inverse-based IC factorization !H

For the separator roottask (i, j) ...
0 Construct task submatrix Al-) by merging contributions of its children

© Reorder A — (PELTAGDP () = A() by some fill-reducing ordering matrix
P (1.1 restricted to the leading block of A1)

Q Compute a partial IC decomp. as by-product of inverse-based pivoting restricted
to the leading block of A(:)

Q Proceed to the next local level by repeating steps 2 and 3 until the approximate
Schur complement is “dense enough” or void

e MIC factorization finished

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization precon ners

factorized [untouched
pivoted 3 updated

v N) 8

’ ‘\ [
bad pivots

1st algebraic
postpone level completed
— —
continue
factorization
postpone
—
postpone
— <
continue s
g o S continue
" 7) factorization
continue
—
|
N
Spi B 1st algebraic
factorlzed N pivoted [untouched updaeq lovel cgmp\e(ed
Parallel MIC

CSE09@MS97-Preconditioni

Parallel inverse-based MIC factorization preconditioners

How does MIC behave when applied to a system reordered by MLND?

@ |lef Lo defined as max), _1 lef L'z

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

How does MIC behave when applied to a system reordered by MLND?

@ |lef Lo defined as max), _1 lef L'z

@ Estimators t, ~ ||eT L1l are computed step by step along with IC decomp
— Compute specific vector 2 s.t. t, = |ef L~12| close to max), 1 [ef L~1z]
— Z is computed while solving Ly = Z by column-oriented forward substitution

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

How does MIC behave when applied to a system reordered by MLND?

@ |lef Lo defined as max), _1 lef L'z

@ Estimators t, ~ ||e[£=1|le are computed step by step along with IC decomp.
— Compute specific vector 2 s.t. t, = |ef L~12| close to max), 1 [ef L~1z]
— Z is computed while solving Ly = Z by column-oriented forward substitution

@ At step k of this forward substitution process . ..
1. tx = |yk| is computed by selecting Zy = 1or 7, = —1
2. Vector y is updated by y; := yj — fjyk forj > k s.t. T # 0

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

How does MIC behave when applied to a system reordered by MLND?

@ |lef Lo defined as max), _1 lef L'z
@ Estimators t, ~ ||e[£=1|le are computed step by step along with IC decomp.
— Compute specific vector 2 s.t. t, = |ef L~12| close to max), 1 [ef L~1z]
— Z is computed while solving Ly = Z by column-oriented forward substitution
@ At step k of this forward substitution process . ..
1. tx = |yk| is computed by selecting 2k =1lorz = -1
2. Vector y is updated by y; :=y; — lxyk forj > k s.t. Iy # 0
@ 2 (y«) is selected to maximize |y;| after the update

— Likely that |y;| becomes large if involved in many updates
— Separator nodes expected to lead to more fill-in than subdoma in nodes

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

How does MIC behave when applied to a system reordered by MLND?

@ |lef Lo defined as max), _1 lef L'z

@ Estimators t, ~ ||e[£=1|le are computed step by step along with IC decomp.
— Compute specific vector 2 s.t. t, = |ef L~12| close to max), 1 [ef L~1z]
— Z is computed while solving Ly = Z by column-oriented forward substitution

@ At step k of this forward substitution process . ..
1. tx = |yk| is computed by selecting Zy = 1or 7, = —1
2. Vector y is updated by y; := yj — fjyk forj > k s.t. T # 0
@ 2 (y«) is selected to maximize |y;| after the update
— Likely that |y;| becomes large if involved in many updates
— Separator nodes expected to lead to more fill-in than subdoma in nodes

When the MIC is applied to a system reordered by MLND it is likely that separator
nodes are initially rejected more often

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Parallel inverse-based MIC factorization preconditioners

MIC applied to MLND-reordered finite-difference grid discretization of 2D Laplace PDE

@ 1st MIC level
— 87% of separator nodes rejected, only 30% of subdomain nodes rejected

#¥x¥ent . s % ¥

e separator node rejected

o separator node accepted

X subdomain node rejected
subdomain node accepted

@ 2nd MIC level
— 92% of separator nodes rejected, only 35% of subdomain nodes rejected

@ This tendency continues until the bulk of subdomain nodes has been accepted
— Only after that the MIC begins to accept most of the separator nodes

In the parallel MIC separator nodes are rejected by construc tion

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Experimental Results

Outline

@ Experimental Results

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Experimental Results

Experimental Framework

@ SGI Altix 350 ccNUMA shared-memory multiprocessor:

@ 8 nodes, 2-processor-per-node, Intel ltanium2 1.5 GHz
@ 32 GBytes of RAM shared via a SGI NUMAIlink interconnect

— 4 GBytes per node

@ Intel Compiler OpenMP 2.5 compliance
— -03 optimization level

@ One thread binded per CPU + no thread migration during execution

@ |EEE double precision

J. I. Aliaga et. al.

CSE09@MS97-Preconditioning Techniques

Experimental Results

Experimental Framework

MLND MLND HAMD HAMD

-
A

MLND MLND HAMD HAMD

U

ND- HAMD- A ND- HAMD- B

Two different approaches for the MLND preprocessing step and MIC reordering:

@ ND HAMD- A

@ Subdomains reordered by MLND recursively in the preprocessing step
@ HAMD as MIC reordering except for the initial level of the leaf nodes

@ ND- HAMD- B:
@ Truncated MLND stops if the degree of hw. parallelism matched
@ HAMD as MIC reordering
— Subdomains ordered by HAMD at initial MIC level of the leaf nodes
— This can be already done in parallel exploiting implicit parallelism

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Experimental Results

First Example Benchmark

We consider the Laplacian PDE equation
—Au=f
in a 3D unit cube Q = [0, 1]% with Dirichlet boundary conditions u = g on 99

For the discretization . . .
@ Qreplaced by a Nx x Ny x Nz uniform grid

@ Au approximated by centered finite differences
— seven-point-star difference stencil

We consider four SPD benchmark linear systems from this problem

[Nx xNy xNz | n [nnza/n |
100 x 100 x 100 | 1,000,000 7
125 x 125 x 125 | 1,953,125 7
150 x 150 x 150 | 3,375,000 7
200 x 200 x 200 | 8,000,000 7

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Experimental Results

ILUPACK-based solvers execution time

ILUPACK-based solvers performance for laplace_125 matrix ILUPACK-based solvers performance for laplace_150 malrix
T T T T

T ND-HAMD-A
(I MIC ND-HAMD-A
PCG ND-HAMD-A 50

D-8

T ND-HAVD-A
[MIC ND-HAMD-A

250 MIC ND-HAMD-B
PCG ND-HAMD-B 400

& & 300
g g
T 1 E 250
H 2200
g £
8 i 8

150|

125 x 125 x 125 Grid 150 x 150 x 150 Grid
n =1,953,125 n =3,375,000

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Experimental Results

MLND MIC PCG
n P Option T nnzp T, Sp #lter. T, Sp

ND- HAMD- X (sec.) x10° (sec.) (TW/Tp) (sec.) (T\/Ty)
1 A 19.8 5. 30.0 1.0 61.3 1.0
8 A 19.8 15.2 4.0 7.5 67 74 8.3
100° 16 A 19.8 / 15.3 2.5 12.3 67 43 14.1
1 B 0.0 13.6 36.0 1.0 57 49.9 1.0
8 B 5.7 14.0 4.9 7.4 63 6.6 7.6
16 B 7.1 14.2 29 12.5 66 4.0 12.2
1 A 42.8 29. 60.9 1.0 . 1%6.0 1.0
8 A 42.8 29.8 8.2 7.5 81 8.4 7.5
sy 16 A 4, / 300] 48 127 82 \ 10y 13.7
- 1 B .0 26.8 73.7 1.0 68 6. 1.0
8 B ZI 27.5 10.0 7.4 72 l_.& 74
number of nonzero -3 280 56 13.2 78 g2 —r

entries of IC factor [JST1] 1080 10 068N NMumber of PCG

S i 2 sis| 143 7.5 91 55 iterations

1503 16 A 82 52.0 8.1 13.3 93 2].5/ 13.8
- 1 B 0.1 46.6 1389 1.0 79 24() 1.0
8 B 24.7 47.8 17.8 7.8 83 8 7.3
16 B 30.6 48.2 10.0 14.0 87 18.9 12.7
1 A 247.0 \ 121.9y 303.3 1.0 117 /1,332.0 1.0
8 A 247.0 123.2 35.2 8.6 118 12222 10.9
200° 16 A 247.0 123.9) 19.6 15.5 117 69.4 19.2
- 1 B 0.0 1111 366.0 1.0 103 1,010.2 1.0
8 B 89.7 113.4 459 8.0 107 104.2 9.7
16 B 108.0 114.6 249 14.7 107 57.7 17.5

@ The nnz slightly changes and # of iterations only increase slightly with p
— the parallelization approach preserves the semantics of th e MIC

J. I. Aliaga et. al. CSE09@MS97-Preconditioni

Experimental Results

Second Example Benchmark

The second example addresses an irregular 3D PDE problem
—div (Agradu) =f

in Q where A(x, y, z) is chosen with positive random coefficients

For the discretization . . .
@ Linear finite elements are used

@ Q replaced by NETGEN-tool-generated mesh
— 5 levels of mesh refinement: VC, C, M, F, VF
— Each mesh refined further up to 3 times

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Experimental Results

We consider 12 SPD benchmark linear systems from this second example

[1d. | Code | Initial Mesh | #refs. | n | nnza | nnza/n |
1 VC very coarse 0 1,709 16,669 9.75
2 C coarse 0 9,583 112,563 11.75
3 M moderate 0 32,429 412,251 12.71
4 F fine 0 101,296 1,368,594 13.51
5 VC2 | very coarse 2 271,272 3,686,268 13.59
6 M1 moderate 1 297,927 4,134,255 13.88
7 VF very fine 0 658,609 9,294,721 14.11
8 F1 fine 1 882,824 | 12,562,880 14.23
9 Cc2 coarse 2 906,882 | 12,854,824 14.17
10 | VC3 | very coarse 3 2,382,864 | 34,128,924 14.32
11 M2 moderate 2 2,539,954 | 36,768,808 14.48
12 1

VF1 very fine 5,413,520 | 78,935,174 14.58

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Experimental Results

ILUPACK-based solvers execution time

ILUPACK-based solvers performance for very_coarse_refined_3 matrix
T T

300

‘Computational time (secs.)

J. I. Aliaga et. al.

T ND-HAMD-A

(I MIC ND-HAMD-A
PCG ND-HAMD-A

ID-HAMD-B

IC ND-HAMD-5

PCG ND-HAMD-B

4
#processors

VC3 (3 refinements)
n=2,382,864

Computational ime (secs.)

ILUPACK-based solvers performance for very_coarse_refined_3 matrix

800

700

600

500

00

300

B VIC ND-HAMD-B
I PCG ND-HAMD-8|

VF1 (1 refinement)
n=5,413,520

CSE09@MS97-Preconditioning Techniques

Experimental Results

MLND MIC PCG
n P Option T nnzy, T, Sp #lter. T, Sp
ND HAMD X (sec.) x10° (sec) (TW/T)) (sec.) (TW/Tp)
1 A 23 K 2.3 1.0 22 1.8 1.0
8 A 2.3 1.6 0.4 6.0 24 0.3 6.4
F 16 A 23 / 1.6 0.3 8.7 24 0.2 8.9
1 B 0.0 1.5 2.6 1.0 23 1.8 1.0
8 B 0.7 1.5 0.4 6.2 23 0.3 6.9
16 B 0.9 1.5 0.3 9.4 23 .2 9.3
1 A 8.0 X 8.0 1.0 29 3 1.0
8 A 8.0, 5.1 1.3 6.2 29 1. 7.2
My 16 A 8. / si] o8 10.1 30 \0. 103
1 B 0, 4.7 9.8 1.0 28 7 1.0
8 B [0 4.8 1.4 7.2 28 1. 6.5
number of nonzero 27 48 09 1.1 29 08 an
= B number of PCG
entries of IC factor 'N\ 449 839 1.0 52 | 1368 N N
o 1 a0l 12 7.5 52 - iterations
ve3 16 A 8’2\.{ 44.9 6.5 13.0 53 10.0 13.7
N 1 B 0.0 452 108.8 1.0 50 132. 1.0
8 B 21.5 45.0 133 8.2 52 171 7.7
16 B 25.1 449 7.5 14.6 52 9.8 13.5
1 A 198.9 105.3) 234.8 1.0 64 |/502.8 1.0
8 A 198.9 104.2 27.0 8.7 63 51.7 9.7
VFI 16 A 198.9 104.0 15.2 15.4 4 29.2 17.2
1 B 0.0 100.7 279.7 1.0 60 3623 1.0
8 B 50.6 98.7 32.0 8.7 62 49.3 74
16 B 60.9 99.1 17.4 16.1 62 27.7 13.3

@ The nnz slightly changes and # of iterations only increase slightly with p
— the parallelization approach preserves the semantics of th e MIC

J. I. Aliaga et. al. CSE09@MS97-Preconditioni

Experimental Results

MIC and PCG stages parallel efficiency

Parallel MIC performance for Example 3

Parallel PCG performance for Example 3

Speed-up vs. sequential MIC

Speed-up vs. sequential PCG

1 2 3 4 5 6 1
Matrix identiier

MIC Speed-Up

1 2 3 4 5 6 1
Matrix identiier

PCG Speed-Up

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Experimental Results

PARDISO vs. ILUPACK-based solvers

8
#processors

F mesh M1 (1 refinement)
n=101,296 n=297,927

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Experimental Results

PARDISO vs. ILUPACK-based solvers

PARDISO vs. ILUPACK-based solvers performance laplace_100 malrix PARDISO vs. ILUPACK-based solvers performance laplace.

100 x 100 x 100 Grid 125 x 125 x 125 Grid
n=1,000,000 n=1,953,125

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Conclusions and Future Work

Conclusions and Future work

The OpenMP ILUPACK parallelization . . .
@ Preserves the semantics of the method in ILUPACK

@ Delivers a high-degree of concurrence for shared-memory multiprocessors for
the MIC and PCG stages

@ The partitioning stage starts dominating the overall computation time as p
increases

Ongoing work . . .
@ Use parallel solutions for partitioning sparse matrices (PT-SCOTCH, ParMETIS)
@ Extend the parallelization approach for the indefinite case

@ Move to platforms with higher number of processors and larger scale problems to
analyze the challenges to be faced and the limits of the parallelization approach

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

Conclusions and Future Work

Questions?

J. I. Aliaga et. al. CSE09@MS97-Preconditioni

Conclusions and Future Work

Algorithm: computes parallel MIC decomp. of the reordered system A — MT Al

[N, T]+« nested_dissection(Ga) > obtain task tree T and permutation I
Q — { leaves(T) } > initialize Q with dl leaves of T
mark all tasks of T as not executed

Begin parallel region
pid — get_process_identifier()

repeat

while pending tasks in Q do
tid < dequeue(Q) > remove ready task from the head of Q
map [tid] < pid > process pid in charge of task tid
execute(tid) > construct tid’s submatrix and compute local MIC
mark tid as executed
if all dependencies of parent(tid) have been resolved then

enqueue(parent(tid), Q) > insert new ready task at the tail of Q

end

end

until not all tasks executed
End parallel region

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques

	Motivation and Introduction
	ILUPACK inverse-based MIC factorization preconditioners
	Parallel inverse-based MIC factorization preconditioners
	Experimental Results
	Conclusions and Future Work

