Parallel Preconditioning of Linear Systems based on ILUPACK for Multithreaded Architectures

J.I. Aliaga¹ M. Bollhöfer² A.F. Martín¹ E.S. Quintana-Ortí¹

¹Deparment of Computer Science and Engineering, Univ. Jaume I (Spain) {aliaga, martina, quintana}@icc.uji.es

²Institute of Computational Mathematics, TU-Braunschweig (Germany) m.bollhoefer@tu-braunschweig.de

March, 2009

We consider the efficient solution of linear systems

$$Ax = b$$

where

- $A \in \mathbb{R}^{n,n}$ is a **large** and **sparse** SPD coefficient matrix
- $x \in \mathbb{R}^n$ is the sought-after solution
- $b \in \mathbb{R}^n$ is a given r.h.s. vector
- The solution of this problem
 - Arises in very many large-scale application problems
 - Frequently the most time-consuming part of the computation

We propose to solve Ax = b iteratively using

- Preconditioned Conjugate Gradient (PCG)
 - Among the best iterative approaches to solve SPD linear systems
- ILUPACK preconditioning techniques
 - Incomplete Cholesky (IC) factorization-based preconditioners
 Multilevel IC (MIC) preconditioners: Inverse-based approach
 - Successful for a wide range of large-scale application problems with up to million of equations

- The large scale of the problems faced by ILUPACK makes it evident the need to reduce the time-to-solution via parallel computing techniques
- Development of ILUPACK-based solvers on shared-memory architectures
 - Parallelism revealed by nested dissection on adjacency graph G_A
 - \rightarrow recursive application of vertex separator partitioning
 - Dynamic scheduling to improve load-balancing during execution — run-time tuned for a specific platform/application problem
 - PCG operations conformal with the MIC parallelization
 - Implemented using standard tools: threads and OpenMP

Focus:

- Parallelization approach preserves semantics of the MIC
- Delivers a high-degree of concurrence for shared-memory architectures

Numerical results for two large-scale 3D application problems

- 2 ILUPACK inverse-based MIC factorization preconditioners
- 3 Parallel inverse-based MIC factorization preconditioners
- 4 Experimental Results
- 5 Conclusions and Future Work

2 ILUPACK inverse-based MIC factorization preconditioners

3 Parallel inverse-based MIC factorization preconditioners

- Experimental Results
- 5 Conclusions and Future Work

IC factorization preconditioners

The (root-free) sparse Cholesky decomp. computes *L* ∈ ℝ^{n,n}, sparse unit lower triangular, and *D* ∈ ℝ^{n,n}, diagonal with positive entries s.t.

$$A = LDL^T$$

• In the IC factorization A is factored as

$$A = \tilde{L}\tilde{D}\tilde{L}^{T} + E$$

where $E \in \mathbb{R}^{n,n}$ is a "small" perturbation matrix consisting of those entries dropped during factorization

M = LDL^T is applied to the original system Ax = b in order to accelerate the convergence of the PCG solver

Inverse-based IC factorization preconditioners

PCG solver converges quickly if the preconditioned matrix is close to I

$$\tilde{D}^{-1/2}\tilde{L}^{-1}A\tilde{L}^{-T}\tilde{D}^{-1/2} = I + \tilde{D}^{-1/2}\underbrace{\tilde{L}^{-1}E\tilde{L}^{-T}}_{F}\tilde{D}^{-1/2}$$

• $\|\tilde{D}^{-1/2}F\tilde{D}^{-1/2}\|$ must be "small" to construct effective preconditioners

- Inverse-based IC factorizations construct $M = \tilde{L}\tilde{D}\tilde{L}^T$ s.t. $\|\tilde{L}^{-1}\| \leq \nu$
 - $\nu = 5$ or $\nu = 10$ are good choices for many problems
 - Pivoting and **multilevel** methods are required in general

- The IC decomp. employs Inverse-based pivoting
 - \rightarrow Row/Col. *k* of \tilde{L}/\tilde{L}^{T} obtained at step *k* along with estimation $t_{k} \approx \|e_{k}^{T}\tilde{L}^{-1}\|$
 - \rightarrow Row/Col. s.t. $t_k > \nu$ are moved to the bottom/right-end of the matrix
 - \rightarrow Considered "bad" pivots with respect to the constraint $\|\tilde{L}^{-1}\| \leq \nu$

• The IC factorization stops when the trailing principal only contains bad pivots

 \rightarrow The computation of the approximate Schur complement \tilde{S}_c completes \ldots

• The whole method is restarted on \tilde{S}_c leading to a **multilevel** approach

The MIC factorization can be expressed algorithmically as follows

- **()** Reorder $A \rightarrow P^T A P = \hat{A}$ by some fill-reducing ordering matrix P
- Compute a partial IC decomp. as by-product of inverse-based pivoting

$$\hat{P}^{T}\hat{A}\hat{P} \equiv \left(\begin{array}{cc}B & F^{T}\\F & C\end{array}\right) = \left(\begin{array}{cc}\tilde{L}_{B} & 0\\\tilde{L}_{F} & I\end{array}\right) \left(\begin{array}{cc}\tilde{D}_{B} & 0\\0 & \tilde{S}_{c}\end{array}\right) \left(\begin{array}{cc}\tilde{L}_{B}^{T} & 0\\\tilde{L}_{F}^{T} & I\end{array}\right) + E$$

Solution Proceed to the next level by repeating steps 1 and 2 with $A \equiv \tilde{S}_c$ until \tilde{S}_c is void or "dense enough" to be handled by a dense Cholesky solver

MIC factorization of five-point matrix arising from Laplace PDE discretization

 $\nu=5$ and $\tau=10^{-3}$ leads to a MIC factorization with 5 levels

Ĵī

Outline

Motivation and Introduction

2 ILUPACK inverse-based MIC factorization preconditioners

3 Parallel inverse-based MIC factorization preconditioners

Experimental Results

5 Conclusions and Future Work

Nested dissection preprocessing step

- Parallelism revealed by nested dissection on adjacency graph G_A
 - \rightarrow fast and efficient multilevel (MLND) variants provided by SCOTCH package
- Parallelization driven by the dependencies "captured" in the task tree
 - \rightarrow subdomains **first** eliminated independently, **then** separators (2,1) and (2,2) in parallel, **finally** the root separator (3,1)

- Disassemble $\Pi^T A \Pi$ into a sum of submatrices, one per leaf node
- The factorization of the diagonal blocks of Π^TAΠ can proceed in parallel as well as the updates on the blocks corresponding to all ancestor nodes
- The contribution blocks of each submatrix hold the updates on ancestor nodes during the factorization of the leading block

The tasks compute a local MIC restricted to the leading block of the submatrix

- The IC decomp. employs restricted Inverse-Based pivoting
 - \rightarrow Bad pivots are only moved to the bottom/right-end of the leading block
- The IC decomp. stops if the trailing of the leading block only contains bad pivots → Postponed pivots still "resolved" inside the task by entering next MIC level

The tasks compute a local MIC restricted to the leading block of the submatrix

● When the set of bad pivots is "small enough" the local MIC stops → The task "sends" the local contributions to the parent task

- The parent task merge contributions resulting from its children
- A new submatrix is constructed for the local MIC decomp. of the separator task
 - \rightarrow Bad pivots resulting from its children moved on top of the leading block
 - \rightarrow Contributions blocks added

The computation of a leaf node (i, j) can be expressed algorithmically as follows

- **Onstruct task submatrix** $A^{(i,j)}$ from $\Pi^T A \Pi$
- **2** Reorder $A^{(i,j)} \rightarrow (P^{(i,j)})^T A^{(i,j)} P^{(i,j)} = \hat{A}^{(i,j)}$ by some fill-reducing ordering matrix $P^{(i,j)}$ restricted to the leading block of $A^{(i,j)}$
- 3 Compute a partial IC decomp. as by-product of inverse-based pivoting restricted to the leading block of $A^{(i,j)}$
- Proceed to the next local level by repeating steps 2 and 3 until the set of bad pivots is "small enough"
 - "Send" local contributions to the parent task

For a separator intermediate task $(i, j) \dots$

- Construct task submatrix $A^{(i,j)}$ by merging contributions of its children
- **2** Reorder $A^{(i,j)} \rightarrow (P^{(i,j)})^T A^{(i,j)} P^{(i,j)} = \hat{A}^{(i,j)}$ by some fill-reducing ordering matrix $P^{(i,j)}$ restricted to the leading block of $A^{(i,j)}$
- 3 Compute a partial IC decomp. as by-product of inverse-based pivoting restricted to the leading block of $A^{(i,j)}$
- Proceed to the next local level by repeating steps 2 and 3 until the set of bad pivots is "small enough"
 - "Send" local contributions to the parent task

For the **separator root task** $(i, j) \dots$

- Construct task submatrix $A^{(i,j)}$ by merging contributions of its children
- **2** Reorder $A^{(i,j)} \rightarrow (P^{(i,j)})^T A^{(i,j)} P^{(i,j)} = \hat{A}^{(i,j)}$ by some fill-reducing ordering matrix $P^{(i,j)}$ restricted to the leading block of $A^{(i,j)}$
- **3** Compute a partial IC decomp. as by-product of inverse-based pivoting restricted to the leading block of $A^{(i,j)}$
- Proceed to the next local level by repeating steps 2 and 3 until the approximate Schur complement is "dense enough" or void
- MIC factorization finished

• $\|e_k^T \tilde{L}^{-1}\|_{\infty}$ defined as $\max_{\|z\|_{\infty}=1} |e_k^T \tilde{L}^{-1} z|$

- Estimators $t_k \approx \|e_k^T \tilde{L}^{-1}\|_{\infty}$ are computed step by step along with IC decomp.
 - \rightarrow Compute specific vector \hat{z} s.t. $t_k = |e_k^T \tilde{L}^{-1} \hat{z}|$ close to max $_{\|z\|_{\infty}=1} |e_k^T \tilde{L}^{-1} z|$
 - $\rightarrow \hat{z}$ is computed while solving $\tilde{L}y = \hat{z}$ by column-oriented forward substitution
- At step k of this forward substitution process
 - 1. $t_k = |y_k|$ is computed by selecting $\hat{z}_k = 1$ or $\hat{z}_k = -1$
 - 2. Vector y is updated by $y_j := y_j \tilde{l}_{jk}y_k$ for j > k s.t. $\tilde{l}_{jk} \neq 0$
- $\hat{z}_k(y_k)$ is selected to maximize $|y_j|$ after the update
 - \rightarrow Likely that $|y_i|$ becomes large if involved in many updates
 - ightarrow Separator nodes expected to lead to more fill-in than subdomain nodes

•
$$\|e_k^T \tilde{L}^{-1}\|_{\infty}$$
 defined as $\max_{\|z\|_{\infty}=1} |e_k^T \tilde{L}^{-1} z|$

• Estimators $t_k \approx \|e_k^T \tilde{L}^{-1}\|_{\infty}$ are computed step by step along with IC decomp.

- \rightarrow Compute specific vector \hat{z} s.t. $t_k = |e_k^T \tilde{L}^{-1} \hat{z}|$ close to $\max_{\|z\|_{\infty}=1} |e_k^T \tilde{L}^{-1} z|$
- $ightarrow \hat{z}$ is computed while solving $\tilde{L}y = \hat{z}$ by column-oriented forward substitution
- At step k of this forward substitution process
 - 1. $t_k = |y_k|$ is computed by selecting $\hat{z}_k = 1$ or $\hat{z}_k = -1$
 - 2. Vector y is updated by $y_j := y_j l_{jk}y_k$ for j > k s.t. $l_{jk} \neq 0$
- $\hat{z}_k(y_k)$ is selected to maximize $|y_i|$ after the update
 - \rightarrow Likely that $|y_i|$ becomes large if involved in many updates
 - ightarrow Separator nodes expected to lead to more fill-in than subdomain nodes

- $\|e_k^T \tilde{L}^{-1}\|_{\infty}$ defined as $\max_{\|z\|_{\infty}=1} |e_k^T \tilde{L}^{-1} z|$
- Estimators $t_k \approx \|e_k^T \tilde{L}^{-1}\|_{\infty}$ are computed step by step along with IC decomp.
 - \rightarrow Compute specific vector \hat{z} s.t. $t_k = |\mathbf{e}_k^T \tilde{L}^{-1} \hat{z}|$ close to $\max_{\|\boldsymbol{z}\|_{\infty}=1} |\mathbf{e}_k^T \tilde{L}^{-1} \boldsymbol{z}|$
 - $ightarrow \hat{z}$ is computed while solving $\tilde{L}y = \hat{z}$ by column-oriented forward substitution
- At step k of this forward substitution process ...
 - 1. $t_k = |y_k|$ is computed by selecting $\hat{z}_k = 1$ or $\hat{z}_k = -1$
 - 2. Vector y is updated by $y_j := y_j \tilde{l}_{jk}y_k$ for j > k s.t. $\tilde{l}_{jk} \neq 0$
- $\hat{z}_k(y_k)$ is selected to maximize $|y_i|$ after the update
 - \rightarrow Likely that $|y_i|$ becomes large if involved in many updates
 - ightarrow Separator nodes expected to lead to more fill-in than subdomain nodes

- $\|e_k^T \tilde{L}^{-1}\|_{\infty}$ defined as $\max_{\|z\|_{\infty}=1} |e_k^T \tilde{L}^{-1} z|$
- Estimators $t_k \approx \|e_k^T \tilde{L}^{-1}\|_{\infty}$ are computed step by step along with IC decomp.
 - \rightarrow Compute specific vector \hat{z} s.t. $t_k = |\mathbf{e}_k^T \tilde{L}^{-1} \hat{z}|$ close to $\max_{\|\boldsymbol{z}\|_{\infty}=1} |\mathbf{e}_k^T \tilde{L}^{-1} \boldsymbol{z}|$
 - $ightarrow \hat{z}$ is computed while solving $\tilde{L}y = \hat{z}$ by column-oriented forward substitution
- At step k of this forward substitution process ...
 - 1. $t_k = |y_k|$ is computed by selecting $\hat{z}_k = 1$ or $\hat{z}_k = -1$
 - 2. Vector y is updated by $y_j := y_j \tilde{l}_{jk}y_k$ for j > k s.t. $\tilde{l}_{jk} \neq 0$
- $\hat{z}_k(y_k)$ is selected to maximize $|y_j|$ after the update
 - \rightarrow Likely that $|y_j|$ becomes large if involved in many updates
 - \rightarrow Separator nodes expected to lead to more fill-in than subdomain nodes

- $\|e_k^T \tilde{L}^{-1}\|_{\infty}$ defined as $\max_{\|z\|_{\infty}=1} |e_k^T \tilde{L}^{-1} z|$
- Estimators $t_k \approx \|e_k^T \tilde{L}^{-1}\|_{\infty}$ are computed step by step along with IC decomp.
 - \rightarrow Compute specific vector \hat{z} s.t. $t_k = |e_k^T \tilde{L}^{-1} \hat{z}|$ close to $\max_{\|z\|_{\infty}=1} |e_k^T \tilde{L}^{-1} z|$
 - $ightarrow \hat{z}$ is computed while solving $ilde{L}y=\hat{z}$ by column-oriented forward substitution
- At step k of this forward substitution process ...
 - 1. $t_k = |y_k|$ is computed by selecting $\hat{z}_k = 1$ or $\hat{z}_k = -1$
 - 2. Vector y is updated by $y_j := y_j \tilde{l}_{jk}y_k$ for j > k s.t. $\tilde{l}_{jk} \neq 0$
- $\hat{z}_k(y_k)$ is selected to maximize $|y_j|$ after the update
 - \rightarrow Likely that $|y_j|$ becomes large if involved in many updates
 - \rightarrow Separator nodes expected to lead to more fill-in than subdomain nodes

MIC applied to MLND-reordered finite-difference grid discretization of 2D Laplace PDE

1st MIC level

 $\rightarrow 87\%$ of separator nodes rejected, only 30% of subdomain nodes rejected

2nd MIC level

- \rightarrow 92% of separator nodes rejected, only 35% of subdomain nodes rejected
- This tendency continues until the **bulk** of subdomain nodes has been accepted → Only after that the MIC begins to accept most of the separator nodes

In the parallel MIC separator nodes are rejected by construction

Outline

Motivation and Introduction

2 ILUPACK inverse-based MIC factorization preconditioners

3 Parallel inverse-based MIC factorization preconditioners

Experimental Results

5 Conclusions and Future Work

Experimental Framework

- SGI Altix 350 ccNUMA shared-memory multiprocessor:
 - 8 nodes, 2-processor-per-node, Intel Itanium2 1.5 GHz
 - 32 GBytes of RAM shared via a SGI NUMAlink interconnect
 - \rightarrow 4 GBytes per node
- Intel Compiler OpenMP 2.5 compliance
 - \rightarrow -O3 optimization level
- One thread binded per CPU + no thread migration during execution
- IEEE double precision

Experimental Framework

Two different approaches for the MLND preprocessing step and MIC reordering:

- ND-HAMD-A:
 - Subdomains reordered by MLND recursively in the preprocessing step
 - HAMD as MIC reordering **except** for the initial level of the leaf nodes
- ND-HAMD-B:
 - Truncated MLND stops if the degree of hw. parallelism matched
 - HAMD as MIC reordering
 - \rightarrow Subdomains ordered by HAMD at initial MIC level of the leaf nodes
 - \rightarrow This can be already done in parallel exploiting implicit parallelism

First Example Benchmark

We consider the Laplacian PDE equation

 $-\Delta u = f$

in a 3D unit cube $\Omega = [0, 1]^3$ with Dirichlet boundary conditions u = g on $\partial \Omega$

For the discretization ...

- Ω replaced by a $N_x \times N_y \times N_z$ uniform grid
- Δu approximated by centered finite differences \rightarrow seven-point-star difference stencil

We consider four SPD benchmark linear systems from this problem

$N_x imes N_y imes N_z$	n	nnz _A /n
$100\times100\times100$	1,000,000	7
125 imes 125 imes 125	1,953,125	7
150 imes 150 imes 150	3,375,000	7
$200\times200\times200$	8,000,000	7

ILUPACK-based solvers execution time

		MLND		MIC			PCG			
n	р	Option	Т	nnz_L	T_p	S_p	#Iter.	T_p	S_p	
		ND HAMD X	(sec.)	×10 ⁻⁶	(sec.)	(T_1/T_p)		(sec.)	(T_1/T_p)	
	1	А	19.8	15.0	30.0	1.0	64	61.3	1.0	
	8	А	19.8	15.2	4.0	7.5	67	7.4	8.3	
1003	16	А	19.8	15.3	2.5	12.3	67	4.3	14.1	
100	1	В	0.0	13.6	36.0	1.0	57	49.9	1.0	
	8	в	5.7	14.0	4.9	7.4	63	6.6	7.6	
	16	В	7.1	14.2	2.9	12.5	66	4.0	12.2	
	- 1	А	42.8	29.5	60.9	1.0	78	146.0	1.0	
	8	А	42.8	★ 29.8	8.2	7.5	81	19.4	7.5	
1253	16	А	42.8	30.0	4.8	12.7	82	10,7	13.7	
125	1	В	9.0	26.8	73.7	1.0	68	N16.8	1.0	
	8	В	_1¢.ø	27.5	10.0	7.4	72	1\$.8\	7.4	
	Inum	ber of nonze	ro Ø.3	28.0	5.6	13.2	78	9. X	12.4	
	entr	ries of IC fact	or 52:3	51.1	108.0	1.0	90	296.8	numbe	r of PCG
	L_8_	А		> 51.8	14.3	7.5	91	< <u>₹ 38.5</u>	itera	ations
1503	16	А	82\2	52.0	8.1	13.3	93	21.5/	13.8	
150	1	В	0.0	46.6	138.9	1.0	79	240/1	1.0	
	8	В	24.7	47.8	17.8	7.8	83	72.8	7.3	
	16	В	30.6	48.2	10.0	14.0	87	/18.9	12.7	
-	1	А	247.0	121.9	303.3	1.0	117	1,332.0	1.0	
	8	А	247.0	123.2	35.2	8.6	118	122.2	10.9	
2003	16	А	247.0	123.9	19.6	15.5	117	69.4	19.2	
200	1	В	0.0	111.1	366.0	1.0	103	1,010.2	1.0	
	8	В	89.7	113.4	45.9	8.0	107	104.2	9.7	
	16	В	108.0	114.6	24.9	14.7	107	57.7	17.5	

The nnz slightly changes and # of iterations only increase slightly with p → the parallelization approach preserves the semantics of the MIC

Second Example Benchmark

The second example addresses an irregular 3D PDE problem

 $-\operatorname{div}(A \operatorname{grad} u) = f$

in Ω where A(x, y, z) is chosen with positive random coefficients

For the discretization ...

- Linear finite elements are used
- Ω replaced by NETGEN-tool-generated mesh
 - \rightarrow 5 levels of mesh refinement: VC, C, M, F, VF
 - \rightarrow Each mesh refined further up to 3 times

Ω

We consider 12 SPD benchmark linear systems from this second example

ld.	Code	Initial Mesh	# refs.	n	nnz _A	nnz _A /n
1	VC	very coarse	0	1,709	16,669	9.75
2	С	coarse	0	9,583	112,563	11.75
3	М	moderate	0	32,429	412,251	12.71
4	F	fine	0	101,296	1,368,594	13.51
5	VC2	very coarse	2	271,272	3,686,268	13.59
6	M1	moderate	1	297,927	4,134,255	13.88
7	VF	very fine	0	658,609	9,294,721	14.11
8	F1	fine	1	882,824	12,562,880	14.23
9	C2	coarse	2	906,882	12,854,824	14.17
10	VC3	very coarse	3	2,382,864	34,128,924	14.32
11	M2	moderate	2	2,539,954	36,768,808	14.48
12	VF1	very fine	1	5,413,520	78,935,174	14.58

ILUPACK-based solvers execution time

MLND			MIC			PCG	PCG			
п	p	Option	Т	nnz_L	T_p	S _p	#Iter.	T_p	S _p	
		ND HAMD X	(sec.)	×10 ⁻⁶	(sec.)	(T_1/T_p)		(sec.)	(T_1/T_p)	
-	1	А	2.3	1.6	2.3	1.0	22	1.8	1.0	
	8	А	2.3	₄ 1.6	0.4	6.0	24	0.3	6.4	
F	16	А	2.3	1.6	0.3	8.7	24	0.2	8.9	
г	1	В	0.0	1.5	2.6	1.0	23	1.8	1.0	
	8	В	0.7	1.5	0.4	6.2	23	0.3	6.9	
	16	В	0.9	1.5	0.3	9.4	23	0.2	9.3	
	1	А	8.0	5.0	8.0	1.0	29	83	1.0	
	8	А	8.0/	≠ 5.1	1.3	6.2	29	1.2	7.2	
MI	16	А	8.0	5.1	0.8	10.1	30	0.8	10.3	
IVIII	1	В	0/0 /	4.7	9.8	1.0	28	7.7	1.0	
	8	В	_11	4.8	1.4	7.2	28	1.3	6.5	
	number of nonzero 2.7			4.8	0.9	11.1	29	0.8		
	ent	ries of IC fact	or 2.1	44.9	83.9	1.0	52	136.8	7 numb	per of PCG
	8	A	- 82.1	∽ 44.9	11.2	7.5	52	< 17.1	- ite	rations
	16	А	82.	44.9	6.5	13.0	53	10.0	13.7	
VC5	1	В	0.0	45.2	108.8	1.0	50	132.6	1.0	
	8	В	21.5	45.0	13.3	8.2	52	17/1	7.7	
	16	В	25.1	44.9	7.5	14.6	52	/9.8	13.5	
	1	А	198.9	105.3	234.8	1.0	64	502.8	1.0	
VF1 -	8	А	198.9	104.2	27.0	8.7	63	51.7	9.7	
	16	А	198.9	104.0	15.2	15.4	64	29.2	17.2	
	1	В	0.0	100.7	279.7	1.0	60	362.3	1.0	
	8	В	50.6	98.7	32.0	8.7	62	49.3	7.4	
	16	В	60.9	99.1	17.4	16.1	62	27.7	13.3	

The nnz slightly changes and # of iterations only increase slightly with p → the parallelization approach preserves the semantics of the MIC

MIC and PCG stages parallel efficiency

PARDISO vs. ILUPACK-based solvers

PARDISO vs. ILUPACK-based solvers

Conclusions and Future work

The OpenMP ILUPACK parallelization

- Preserves the semantics of the method in ILUPACK
- Delivers a high-degree of concurrence for shared-memory multiprocessors for the MIC and PCG stages
- The partitioning stage starts dominating the overall computation time as p increases

Ongoing work ...

- Use parallel solutions for partitioning sparse matrices (PT-SCOTCH, ParMETIS)
- Extend the parallelization approach for the indefinite case
- Move to platforms with higher number of processors and larger scale problems to analyze the challenges to be faced and the limits of the parallelization approach

Questions?

Algorithm: computes parallel MIC decomp. of the reordered system $A \to \Pi^T A \Pi$					
$[\Pi, T] \leftarrow \text{nested}_\text{dissection}(G_A)$	\triangleright obtain task tree T and permutation Π				
$Q \leftarrow \{ leaves(T) \}$	\triangleright initialize Q with all leaves of T				
mark all tasks of T as not executed					
Begin parallel region pid ← get_process_identifier()					
repeat while pending tasks in Q o tid ← dequeue(Q)	do \triangleright remove ready task from the head of Q				
map [tid] ← pid	⊳ process pid in charge of task tid				
execute(tid)	▷ construct tid's submatrix and compute local MIC				
mark tid as executed					
if all dependencies of enqueue(parent(f parent(tid) <i>have been resolved</i> then tid), Q) ▷ insert new ready task at the tail of Q				
end					
end					
until not all tasks executed					

End parallel region