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Motivation and Introduction

Motivation and Introduction

@ We consider the efficient solution of linear systems
Ax=b

where

@ AcR™isalarge and sparse SPD coefficient matrix
@ x € R" is the sought-after solution
@ b e R"is a given r.h.s. vector

@ The solution of this problem

@ Arises in very many large-scale application problems
@ Frequently the most time-consuming part of the computation
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Motivation and Introduction

Motivation and Introduction

We propose to solve Ax = b iteratively using
@ Preconditioned Conjugate Gradient (PCG)
@ Among the best iterative approaches to solve SPD linear systems
@ Lurack preconditioning techniques

@ Incomplete Cholesky (IC) factorization-based preconditioners
— Multilevel IC (MIC) preconditioners: Inverse-based approach

@ Successful for a wide range of large-scale application problems
with up to million of equations
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Motivation and Introduction

Motivation and Introduction

@ The large scale of the problems faced by iLurack makes it evident the
need to reduce the time-to-solution via parallel computing techniques

@ Development of iLurack-based solvers on shared-memory architectures

@ Parallelism revealed by nested dissection on adjacency graph Ga
— recursive application of vertex separator partitioning

@ Dynamic scheduling to improve load-balancing during execution
— run-time tuned for a specific platform/application problem

@ PCG operations conformal with the MIC parallelization

@ Implemented using standard tools: threads and OpenMP

Focus:
@ Parallelization approach preserves semantics of the MIC
@ Delivers a high-degree of concurrence for shared-memory architectures

Numerical results for two large-scale 3D application problems
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Motivation and Introduction

Outline

e Motivation and Introduction

e ILUPACK inverse-based MIC factorization preconditioners
e Parallel inverse-based MIC factorization preconditioners
@ Experimental Results

a Conclusions and Future Work
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ILUPACK inverse-based MIC factorization preconditioners

Outline

e ILUPACK inverse-based MIC factorization preconditioners
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ILUPACK inverse-based MIC factorization preconditioners

IC factorization preconditioners

@ The (root-free) sparse Cholesky decomp. computes L € R™", sparse
unit lower triangular, and D € R™", diagonal with positive entries s.t.

A=LDL"
@ In the IC factorization A is factored as
A=LDL" +E

where E € R™" is a “small” perturbation matrix consisting of those
entries dropped during factorization

@ M = LDL" is applied to the original system Ax = b in order to
accelerate the convergence of the PCG solver
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ILUPACK inverse-based MIC factorization preconditioners

\J
Inverse-based IC factorization preconditioners !H

@ PCG solver converges quickly if the preconditioned matrix is close to |
571/2E71A|:7T 571/2 = + 571/2 |:71E|:7T 571/2
N—_——
F

@ ||D~Y2FD~Y?|| must be “small” to construct effective preconditioners

@ Inverse-based IC factorizations construct M = LDLT s.t. [|[L7}| < v

@ v =5 o0rv = 10 are good choices for many problems
@ Pivoting and multilevel methods are required in general
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ILUPACK inverse-based MIC factorization preconditioners

Multilevel Inverse-based IC factorization

1st algebraic level

factorized [ untouched i
bhvoted updated continue
el < v continue
! factorization
B Vi N
—
after several Ti-1 it
factorization steps leJ-*| >»  postpone - bad - cosm pute
SN 7 continue pivots c
ol factorization 1t algebraic
pivots level completed

current factorization step

@ The IC decomp. employs Inverse-based pivoting
— Row/Col. k of L/ LT obtained at step k along with estimation t ~ |le] L[|
— Row/Col. s.t. tx > v are moved to the bottom/right-end of the matrix
— Considered “bad” pivots with respect to the constraint ||L =1 < v

@ The IC factorization stops when the trailing principal only contains bad pivots
— The computation of the approximate Schur complement S¢c completes ...
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ILUPACK inverse-based MIC factorization preconditioners

Multilevel Inverse-based IC factorization

1st algebraic level

factorized [ untouched i
bhvoted updated continue
el < v continue
! factorization
B Vi N
—
after several Ti-1 it
factorization steps leJ-*| >»  postpone - bad - cosm pute
SN 7 continue pivots c
ol factorization 1t algebraic
pivots level completed

current factorization step

@ ... apartial IC decomp. of a permuted system with L * satisfying ||L5 || < v

P B FT ig 0 Dg O T o
PTAP = =( B B2 =B E
( F C ) ( LI )( 0 Sc Lo +

@ The whole method is restarted on S¢ leading to a multilevel approach
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ILUPACK inverse-based MIC factorization preconditioners

Multilevel Inverse-based IC factorization

The MIC factorization can be expressed algorithmically as follows
Q Reorder A — PTAP = A by some fill-reducing ordering matrix P
© Compute a partial IC decomp. as by-product of inverse-based pivoting

st (B OFT Y\ Lg 0 Dg O (g 0
(2 )=(e V)T &)(E V)

9 Proceed to the next level by repeating steps 1 and 2 with A = Se until
S is void or “dense enough” to be handled by a dense Cholesky solver
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ILUPACK inverse-based MIC factorization preconditioners

Multilevel Inverse-based IC factorization

MIC factorization of five-point matrix arising from Laplace PDE discretization

ILUPACK mulilevel preconditioner (5 levels)
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v =5and r = 107° leads to a MIC factorization with 5 levels
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Parallel inverse-based MIC factorization preconditioners

Outline

e Parallel inverse-based MIC factorization preconditioners
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Parallel inverse-based MIC factorization preconditioners

Nested dissection preprocessing step
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@ Parallelism revealed by nested dissection on adjacency graph Ga
— fast and efficient multilevel (MLND) variants provided by SCOTCH package

@ Parallelization driven by the dependencies “captured” in the task tree
— subdomains first eliminated independently, then separators (2,1) and (2,2)
in parallel, finally the root separator (3,1)
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Parallel inverse-based MIC factorization preconditioners

Parallel Multilevel Inverse-based IC factorization

Al2) AL3) AlL4)

|

nran A

AL2)

contribution
e blocks

@ Disassemble MT Al into a sum of submatrices, one per leaf node

@ The factorization of the diagonal blocks of MT Al can proceed in parallel as well
as the updates on the blocks corresponding to all ancestor nodes

@ The contribution blocks of each submatrix hold the updates on ancestor nodes
during the factorization of the leading block
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Parallel inverse-based MIC factorization preconditioners

Parallel Multilevel Inverse-based IC factorization

The tasks compute a local MIC restricted to the leading block  of the submatrix

1st local algebraic level

continue
[ factorized [ untouched @ @
Dpivoted [ updated NS 1st local algebraic @ @ @
level completed @

lefE2 < v

continue _ onlybadpivots ___ compute
factorization on the leading block Se
after several B
factorization steps 5 7 lef L > g
N

1
locally updated entries

contribution
blocks

Y
NN

current factorization step

@ The IC decomp. employs restricted Inverse-Based pivoting
— Bad pivots are only moved to the bottom/right-end of the leading block

@ The IC decomp. stops if the trailing of the leading block only contains bad pivots
— Postponed pivots still “resolved” inside the task by entering next MIC level

/7
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Parallel inverse-based MIC factorization preconditioners

rallel Multilevel Inverse-based IC factorization !H

The tasks compute a local MIC restricted to the leading block  of the submatrix

kth local algebraic level

&
D) fe2)
sy @ © ©® ©

continue

2 factorized [ untouched
D pivoted [ updated

| llefi-Y < v
I ~
- continue
factorization only bad pivots __., compute
after several . ., com
faciorzion deps ontheleading block &
—] -
n|[——
' 1[N 1
contribution S locally updated entries
blocks =

current factorization step

@ When the set of bad pivots is “small enough” the local MIC stops
— The task “sends” the local contributions to the parent task
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Parallel inverse-based MIC factorization preconditioners

Parallel Multilevel Inverse-based IC factorization

Merge Contributions

A1) A1)

@ The parent task merge contributions resulting from its children

@ A new submatrix is constructed for the local MIC decomp. of the separator task
— Bad pivots resulting from its children moved on top of the leading block
— Contributions blocks added

/7
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Parallel inverse-based MIC factorization preconditioners

Parallel Multilevel Inverse-based IC factorization

The computation of a leaf node (i,j) can be expressed algorithmically as follows
© cConstruct task submatrix A() from N7 AN

@ Reorder Al — (PENTAGDP () = Alh) by some fill-reducing ordering matrix
P (1)) restricted to the leading block of Al:)

@ Compute a partial IC decomp. as by-product of inverse-based pivoting restricted
to the leading block of A1)

0 Proceed to the next local level by repeating steps 2 and 3 until the set of bad
pivots is “small enough”

Q “Send” local contributions to the parent task

/7
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Parallel inverse-based MIC factorization preconditioners

U
Parallel Multilevel Inverse-based IC factorization !H

For a separator intermediate task  (i,j) ...
© construct task submatrix A(-) by merging contributions of its children

@ Reorder Al — (PENTAGDP () = Alh) by some fill-reducing ordering matrix
P (1)) restricted to the leading block of Al:)

@ Compute a partial IC decomp. as by-product of inverse-based pivoting restricted
to the leading block of A1)

0 Proceed to the next local level by repeating steps 2 and 3 until the set of bad
pivots is “small enough”

Q “Send” local contributions to the parent task
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Parallel inverse-based MIC factorization preconditioners

U
Parallel Multilevel Inverse-based IC factorization !H

For the separator roottask (i, j) ...
0 Construct task submatrix Al-) by merging contributions of its children

© Reorder A — (PELTAGDP () = A() by some fill-reducing ordering matrix
P (1.1 restricted to the leading block of A1)

Q Compute a partial IC decomp. as by-product of inverse-based pivoting restricted
to the leading block of A(:)

Q Proceed to the next local level by repeating steps 2 and 3 until the approximate
Schur complement is “dense enough” or void

e MIC factorization finished
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Parallel inverse-based MIC factorization precon ners

factorized [ untouched
pivoted 3 updated

v N ) 8

’ ‘\ [
bad pivots

1st algebraic
postpone level completed
— —
continue
factorization
postpone
—
postpone
— <
continue s
g o S continue
" 7) factorization
continue
—
|
N
Spi B 1st algebraic
factorlzed N pivoted [ untouched updaeq lovel cgmp\e(ed
Parallel MIC

CSE09@MS97-Preconditioni



Parallel inverse-based MIC factorization preconditioners

How does MIC behave when applied to a system reordered by MLND?

@ |lef Lo defined as max ), _1 lef L'z
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Parallel inverse-based MIC factorization preconditioners

How does MIC behave when applied to a system reordered by MLND?

@ |lef Lo defined as max ), _1 lef L'z

@ Estimators t, ~ ||eT L1l are computed step by step along with IC decomp
— Compute specific vector 2 s.t. t, = |ef L~12| close to max ), 1 [ef L~1z]
— Z is computed while solving Ly = Z by column-oriented forward substitution
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Parallel inverse-based MIC factorization preconditioners

How does MIC behave when applied to a system reordered by MLND?

@ |lef Lo defined as max ), _1 lef L'z

@ Estimators t, ~ ||e[ £=1|le are computed step by step along with IC decomp.
— Compute specific vector 2 s.t. t, = |ef L~12| close to max ), 1 [ef L~1z]
— Z is computed while solving Ly = Z by column-oriented forward substitution

@ At step k of this forward substitution process . ..
1. tx = |yk| is computed by selecting Zy = 1or 7, = —1
2. Vector y is updated by y; := yj — fjyk forj > k s.t. T # 0
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Parallel inverse-based MIC factorization preconditioners

How does MIC behave when applied to a system reordered by MLND?

@ |lef Lo defined as max ), _1 lef L'z
@ Estimators t, ~ ||e[ £=1|le are computed step by step along with IC decomp.
— Compute specific vector 2 s.t. t, = |ef L~12| close to max ), 1 [ef L~1z]
— Z is computed while solving Ly = Z by column-oriented forward substitution
@ At step k of this forward substitution process . ..
1. tx = |yk| is computed by selecting 2k =1lorz = -1
2. Vector y is updated by y; :=y; — lxyk forj > k s.t. Iy # 0
@ 2 (y«) is selected to maximize |y;| after the update

— Likely that |y;| becomes large if involved in many updates
— Separator nodes expected to lead to more fill-in than subdoma in nodes
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Parallel inverse-based MIC factorization preconditioners

How does MIC behave when applied to a system reordered by MLND?

@ |lef Lo defined as max ), _1 lef L'z

@ Estimators t, ~ ||e[ £=1|le are computed step by step along with IC decomp.
— Compute specific vector 2 s.t. t, = |ef L~12| close to max ), 1 [ef L~1z]
— Z is computed while solving Ly = Z by column-oriented forward substitution

@ At step k of this forward substitution process . ..
1. tx = |yk| is computed by selecting Zy = 1or 7, = —1
2. Vector y is updated by y; := yj — fjyk forj > k s.t. T # 0
@ 2 (y«) is selected to maximize |y;| after the update
— Likely that |y;| becomes large if involved in many updates
— Separator nodes expected to lead to more fill-in than subdoma in nodes

When the MIC is applied to a system reordered by MLND it is likely that separator
nodes are initially rejected more often
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Parallel inverse-based MIC factorization preconditioners

MIC applied to MLND-reordered finite-difference grid discretization of 2D Laplace PDE

@ 1st MIC level
— 87% of separator nodes rejected, only 30% of subdomain nodes rejected

#¥x¥ent . s % ¥

e  separator node rejected

o  separator node accepted

X subdomain node rejected
subdomain node accepted

@ 2nd MIC level
— 92% of separator nodes rejected, only 35% of subdomain nodes rejected

@ This tendency continues until the bulk of subdomain nodes has been accepted
— Only after that the MIC begins to accept most of the separator nodes

In the parallel MIC separator nodes are rejected by construc tion

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques



Experimental Results

Outline

@ Experimental Results
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Experimental Results

Experimental Framework

@ SGI Altix 350 ccNUMA shared-memory multiprocessor:

@ 8 nodes, 2-processor-per-node, Intel ltanium2 1.5 GHz
@ 32 GBytes of RAM shared via a SGI NUMAIlink interconnect

— 4 GBytes per node

@ Intel Compiler OpenMP 2.5 compliance
— -03 optimization level

@ One thread binded per CPU + no thread migration during execution

@ |EEE double precision

J. I. Aliaga et. al.
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Experimental Results

Experimental Framework

MLND MLND HAMD HAMD

-
A

MLND MLND HAMD HAMD

U

ND- HAMD- A ND- HAMD- B

Two different approaches for the MLND preprocessing step and MIC reordering:

@ ND HAMD- A

@ Subdomains reordered by MLND recursively in the preprocessing step
@ HAMD as MIC reordering except for the initial level of the leaf nodes

@ ND- HAMD- B:
@ Truncated MLND stops if the degree of hw. parallelism matched
@ HAMD as MIC reordering
— Subdomains ordered by HAMD at initial MIC level of the leaf nodes
— This can be already done in parallel exploiting implicit parallelism
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Experimental Results

First Example Benchmark

We consider the Laplacian PDE equation
—Au=f
in a 3D unit cube Q = [0, 1]% with Dirichlet boundary conditions u = g on 99

For the discretization . . .
@ Qreplaced by a Nx x Ny x Nz uniform grid

@ Au approximated by centered finite differences
— seven-point-star difference stencil

We consider four SPD benchmark linear systems from this problem

[ Nx xNy xNz | n [ nnza/n |
100 x 100 x 100 | 1,000,000 7
125 x 125 x 125 | 1,953,125 7
150 x 150 x 150 | 3,375,000 7
200 x 200 x 200 | 8,000,000 7
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Experimental Results

ILUPACK-based solvers execution time

ILUPACK-based solvers performance for laplace_125 matrix ILUPACK-based solvers performance for laplace_150 malrix
T T T T

T ND-HAMD-A
(I MIC ND-HAMD-A
PCG ND-HAMD-A 50

D-8

T ND-HAVD-A
[ MIC ND-HAMD-A

250 MIC ND-HAMD-B
PCG ND-HAMD-B 400

& & 300
g g
T 1 E 250
H 2200
g £
8 i 8

150|

125 x 125 x 125 Grid 150 x 150 x 150 Grid
n =1,953,125 n =3,375,000
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Experimental Results

MLND MIC PCG
n P Option T nnzp T, Sp #lter. T, Sp

ND- HAMD- X (sec.) x10°  (sec.) (TW/Tp) (sec.) (T\/Ty)
1 A 19.8 5. 30.0 1.0 61.3 1.0
8 A 19.8 15.2 4.0 7.5 67 74 8.3
100° 16 A 19.8 / 15.3 2.5 12.3 67 43 14.1
1 B 0.0 13.6 36.0 1.0 57 49.9 1.0
8 B 5.7 14.0 4.9 7.4 63 6.6 7.6
16 B 7.1 14.2 29 12.5 66 4.0 12.2
1 A 42.8 29. 60.9 1.0 . 1%6.0 1.0
8 A 42.8 29.8 8.2 7.5 81 8.4 7.5
sy 16 A 4, / 300] 48 127 82 \ 10y 13.7
- 1 B .0 26.8 73.7 1.0 68 6. 1.0
8 B ZI 27.5 10.0 7.4 72 l_.& 74
number of nonzero -3 280 56 13.2 78 g2 —r

entries of IC factor [ JST1] 1080 10 068N NMumber of PCG

S i 2 sis| 143 7.5 91 55 iterations

1503 16 A 82 52.0 8.1 13.3 93 2].5/ 13.8
- 1 B 0.1 46.6 1389 1.0 79 24() 1.0
8 B 24.7 47.8 17.8 7.8 83 8 7.3
16 B 30.6 48.2 10.0 14.0 87 18.9 12.7
1 A 247.0 \ 121.9y 303.3 1.0 117 /1,332.0 1.0
8 A 247.0 123.2 35.2 8.6 118 12222 10.9
200° 16 A 247.0 123.9) 19.6 15.5 117 69.4 19.2
- 1 B 0.0 1111 366.0 1.0 103 1,010.2 1.0
8 B 89.7 113.4 459 8.0 107 104.2 9.7
16 B 108.0 114.6 249 14.7 107 57.7 17.5

@ The nnz slightly changes and # of iterations only increase slightly with p
— the parallelization approach preserves the semantics of th e MIC
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Experimental Results

Second Example Benchmark

The second example addresses an irregular 3D PDE problem
—div (Agradu) =f

in Q where A(x, y, z) is chosen with positive random coefficients

For the discretization . . .
@ Linear finite elements are used

@ Q replaced by NETGEN-tool-generated mesh
— 5 levels of mesh refinement: VC, C, M, F, VF
— Each mesh refined further up to 3 times
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Experimental Results

We consider 12 SPD benchmark linear systems from this second example

[ 1d. | Code | Initial Mesh | #refs. | n | nnza | nnza/n |
1 VC very coarse 0 1,709 16,669 9.75
2 C coarse 0 9,583 112,563 11.75
3 M moderate 0 32,429 412,251 12.71
4 F fine 0 101,296 1,368,594 13.51
5 VC2 | very coarse 2 271,272 3,686,268 13.59
6 M1 moderate 1 297,927 4,134,255 13.88
7 VF very fine 0 658,609 9,294,721 14.11
8 F1 fine 1 882,824 | 12,562,880 14.23
9 Cc2 coarse 2 906,882 | 12,854,824 14.17
10 | VC3 | very coarse 3 2,382,864 | 34,128,924 14.32
11 M2 moderate 2 2,539,954 | 36,768,808 14.48
12 1

VF1 very fine 5,413,520 | 78,935,174 14.58
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Experimental Results

ILUPACK-based solvers execution time

ILUPACK-based solvers performance for very_coarse_refined_3 matrix
T T

300

‘Computational time (secs.)

J. I. Aliaga et. al.

T ND-HAMD-A

(I MIC ND-HAMD-A
PCG ND-HAMD-A

ID-HAMD-B

IC ND-HAMD-5

PCG ND-HAMD-B

4
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n=2,382,864

Computational ime (secs.)

ILUPACK-based solvers performance for very_coarse_refined_3 matrix
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Experimental Results

MLND MIC PCG
n P Option T nnzy, T, Sp #lter. T, Sp
ND HAMD X (sec.) x10°  (sec) (TW/T)) (sec.)  (TW/Tp)
1 A 23 K 2.3 1.0 22 1.8 1.0
8 A 2.3 1.6 0.4 6.0 24 0.3 6.4
F 16 A 23 / 1.6 0.3 8.7 24 0.2 8.9
1 B 0.0 1.5 2.6 1.0 23 1.8 1.0
8 B 0.7 1.5 0.4 6.2 23 0.3 6.9
16 B 0.9 1.5 0.3 9.4 23 .2 9.3
1 A 8.0 X 8.0 1.0 29 3 1.0
8 A 8.0, 5.1 1.3 6.2 29 1. 7.2
My 16 A 8. / si] o8 10.1 30 \0. 103
1 B 0, 4.7 9.8 1.0 28 7 1.0
8 B [0 4.8 1.4 7.2 28 1. 6.5
number of nonzero 27 48 09 1.1 29 08 an
= B number of PCG
entries of IC factor 'N\ 449 839 1.0 52 | 1368 N N
o 1 a0l 12 7.5 52 - iterations
ve3 16 A 8’2\.{ 44.9 6.5 13.0 53 10.0 13.7
N 1 B 0.0 452 108.8 1.0 50 132. 1.0
8 B 21.5 45.0 133 8.2 52 171 7.7
16 B 25.1 449 7.5 14.6 52 9.8 13.5
1 A 198.9 105.3) 234.8 1.0 64 |/502.8 1.0
8 A 198.9 104.2 27.0 8.7 63 51.7 9.7
VFI 16 A 198.9 104.0 15.2 15.4 4 29.2 17.2
1 B 0.0 100.7  279.7 1.0 60 3623 1.0
8 B 50.6 98.7 32.0 8.7 62 49.3 74
16 B 60.9 99.1 17.4 16.1 62 27.7 13.3

@ The nnz slightly changes and # of iterations only increase slightly with p
— the parallelization approach preserves the semantics of th e MIC
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Experimental Results

MIC and PCG stages parallel efficiency

Parallel MIC performance for Example 3

Parallel PCG performance for Example 3

Speed-up vs. sequential MIC

Speed-up vs. sequential PCG

1 2 3 4 5 6 1
Matrix identiier

MIC Speed-Up

1 2 3 4 5 6 1
Matrix identiier

PCG Speed-Up
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Experimental Results

PARDISO vs. ILUPACK-based solvers

8
#processors

F mesh M1 (1 refinement)
n=101,296 n=297,927
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Experimental Results

PARDISO vs. ILUPACK-based solvers

PARDISO vs. ILUPACK-based solvers performance laplace_100 malrix PARDISO vs. ILUPACK-based solvers performance laplace.

100 x 100 x 100 Grid 125 x 125 x 125 Grid
n=1,000,000 n=1,953,125
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Conclusions and Future Work

Conclusions and Future work

The OpenMP ILUPACK parallelization . . .
@ Preserves the semantics of the method in ILUPACK

@ Delivers a high-degree of concurrence for shared-memory multiprocessors for
the MIC and PCG stages

@ The partitioning stage starts dominating the overall computation time as p
increases

Ongoing work . . .
@ Use parallel solutions for partitioning sparse matrices (PT-SCOTCH, ParMETIS)
@ Extend the parallelization approach for the indefinite case

@ Move to platforms with higher number of processors and larger scale problems to
analyze the challenges to be faced and the limits of the parallelization approach
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Conclusions and Future Work

Questions?
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Conclusions and Future Work

Algorithm: computes parallel MIC decomp. of the reordered system A — MT Al

[N, T ]+« nested_dissection(Ga) > obtain task tree T and permutation I
Q — { leaves(T) } > initialize Q with dl leaves of T
mark all tasks of T as not executed

Begin parallel region
pid — get_process_identifier()

repeat

while pending tasks in Q do
tid < dequeue(Q) > remove ready task from the head of Q
map [ tid ] < pid > process pid in charge of task tid
execute(tid) > construct tid’s submatrix and compute local MIC
mark tid as executed
if all dependencies of parent(tid) have been resolved then

enqueue(parent(tid), Q) > insert new ready task at the tail of Q

end

end

until not all tasks executed
End parallel region

J. I. Aliaga et. al. CSE09@MS97-Preconditioning Techniques
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