

Optimization of Dense Linear Systems on Platforms with Multiple Hardware Accelerators

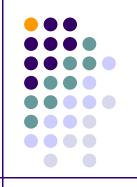
Enrique S. Quintana-Ortí

- Not a course on how to program dense linear algebra kernels on GPUs
 - Where have you been Monday-Wednesday?

- V. Volkov et al. "Benchmarking GPUs to tune dense linear algebra", SC08
- L-S. Chien, "Hand-tuned SGEMM on GT200 GPU", TR Tsing Hua Univ., Taiwan
- Sorry if the performance numbers of some "products" do not look so good...

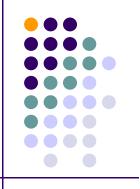
Large-scale linear systems: Estimation of Earth's gravity field

- GRACE project
 <u>www.csr.utexas.edu/grace</u>
- Solve $y = H x_0 + \epsilon$, dense $H \rightarrow m x n$ m = 66.000 observations n = 26.000 parameters for a model of resolution 250km



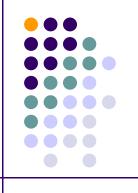
- Dense linear algebra is at the bottom of the "food chain" for many scientific and engineering apps.
- Molecular dynamics simulations
- BEM for electromagnetism and fast acoustic scattering problems
- Analysis of dielectric polarization of nanostructures
- Model reduction of VLSI circuits

Large-scale linear systems



- Dense matrix computations feature a high computational cost
 - Solving Ax = b, with dense $A \rightarrow n \times n$ requires $O(n^3)$ flops

...but GPUs love large, costly problems with regular pattern accesses

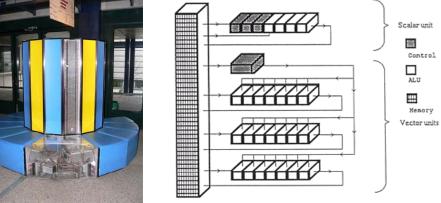


- Dense linear algebra libraries
- Optimizations for single-GPU platforms
- Programming multi-GPU platforms:
 - Shared memory
 - Clusters equipped with GPUs

- Dense linear algebra libraries
- Optimizations for single-GPU platforms
- Programming multi-GPU platforms:
 - Shared memory
 - Clusters equipped with GPUs

Dense linear algebra libraries: BLAS-1 & BLAS-2

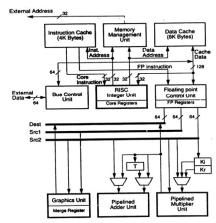
- Once upon a time, vector processors were mainstream...



- ...cast most computations as vector operations
 - BLAS-1: axpy $(y := y + \alpha x)$, dot $(y := x^T y)$
 - BLAS-2: gemv ($y := \alpha y + \beta A x$), trsv ($x := T^{-1} b$)

Dense linear algebra libraries: BLAS-3

• "The attack of the killer micros", Brooks, 1989...

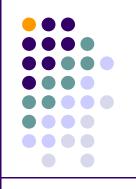


- ...cast most computations in terms of operations with high data reuse
 - BLAS-3: gemm ($C := \alpha C + \beta A B$), trsm ($X := T^{-1} B$)

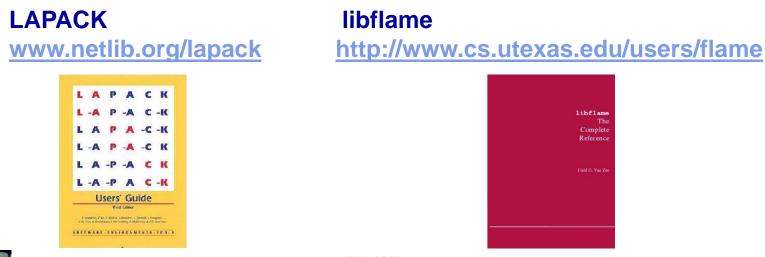
Dense linear algebra libraries: Importance of BLAS

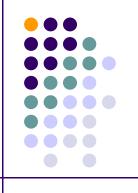
- Provide portable performance
- Recognized by hardware vendors
 - Intel MKL
 - ACM ACML
 - IBM ESSL
 - GotoBLAS (K. Goto now with Microsoft)
 - NVIDIA CUBLAS

Dense linear algebra libraries



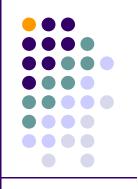
- More complex linear algebra operations:
 - Linear systems
 - Linear least-squares problems
 - Eigenvalues
 - Singular values and numerical rank





- Dense linear algebra libraries
- Optimizations for single-GPU platforms
 - Basic performance
 - Padding
 - Matrix multiply as a building block
 - Hybrid computations for linear systems
 - Iterative refinement
 - Data transfer
- Programming multi-GPU platforms

Initial considerations



- Compute XYZ in the CPU or in the GPU?
 - Problem size
 - "Nature" of XYZ
 - Overheads:
 - Allocate/free memory in GPU
 - Data transfer between CPU and GPU
 - Invoke CUDA/CUBLAS

Experimental setup

General-purpose

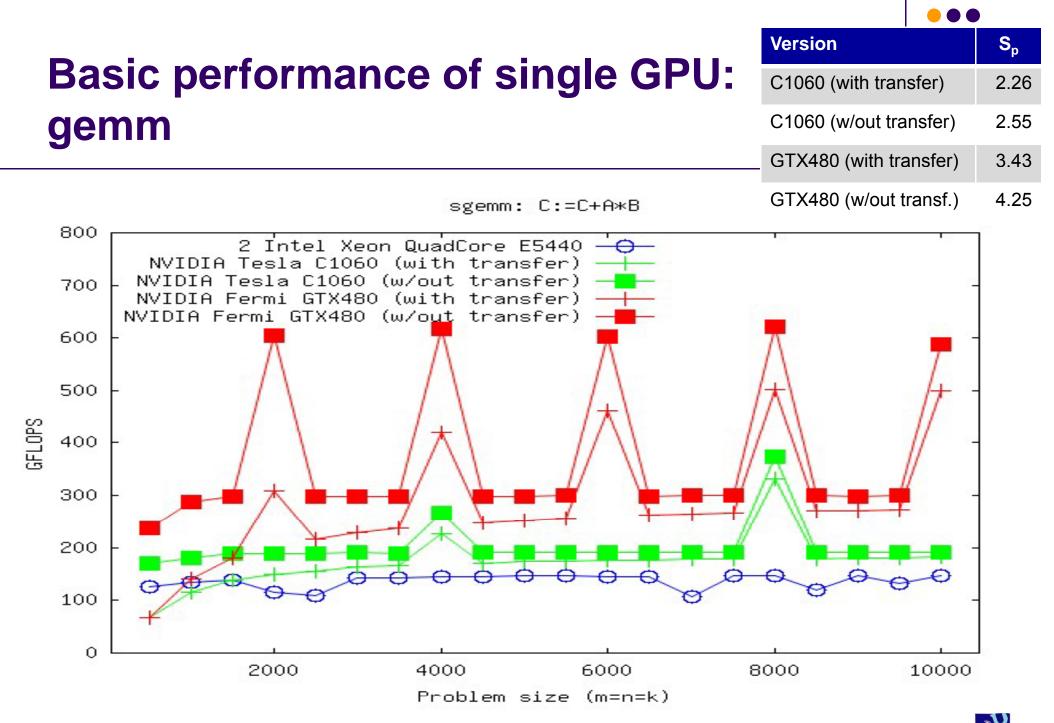
- Intel Dual Xeon Quad-Core E5410
 - 8 cores@2.33 GHz
 - SP/DP peak 149/75 GFLOPS
 - 8 GB FB-DIMM
 - GotoBLAS2 1.11
- AMD Phenom Quad-Core
 - 4 cores@2.2 GHz
 - 4 GB DDR2
 - GotoBLAS 1.26

NVIDIA

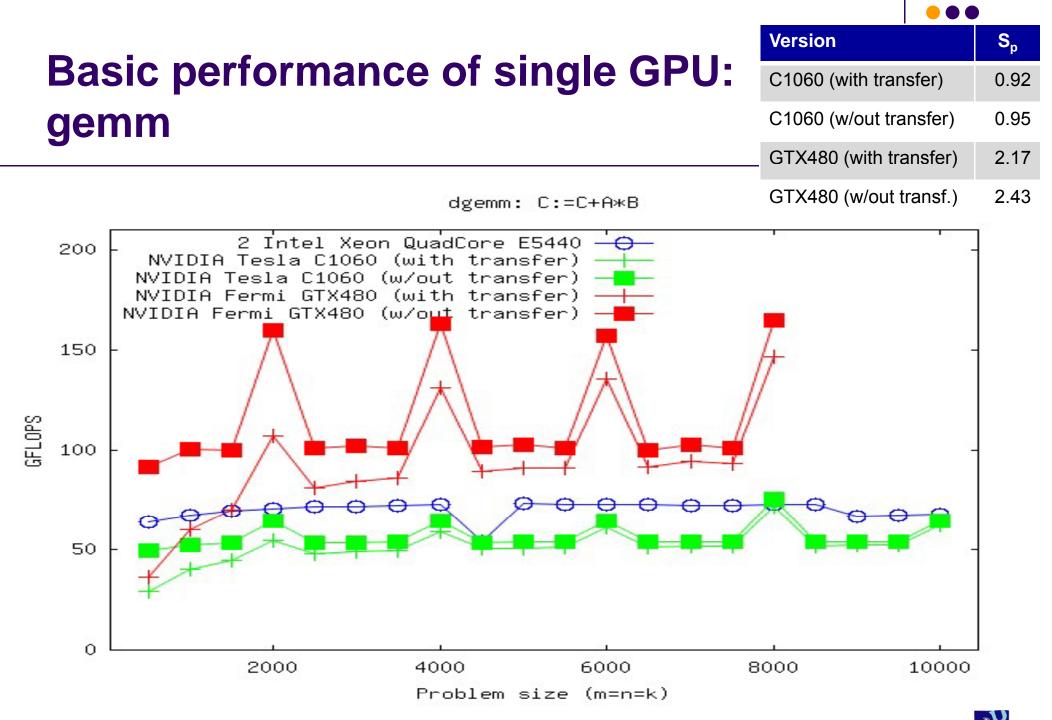
- Tesla C1060 (x4 = S1070)
 - 240 SP cores@1.3 GHz
 - SP/DP peak 933/78 GFLOPS
 - 4 GB DDR3
 - CUBLAS 2.3
- Fermi GTX480
 - 480 SP cores@1.4 GHz
 - 1.5 GB GDDR5
 - CUBLAS 2.3

Basic performance of single GPU: gemm C := C + A * B

- High data reuse 2n³ flops vs. 3 n x n data
- Variants:
 - 3 matrix dimensions: *m*, *n*, *k*
 - A or B can be transposed

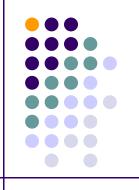


UNIVERSITA JAUME

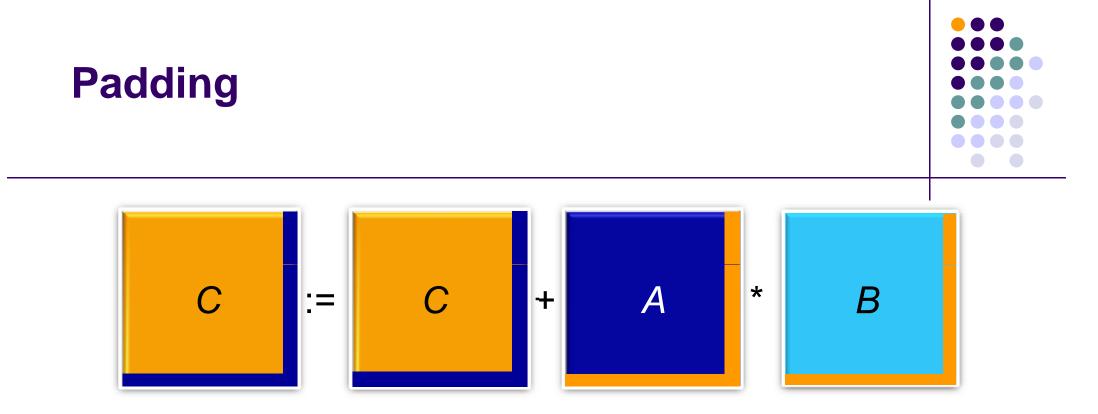


UNIVERSITA JAUME

Basic performance of single GPU: gemm

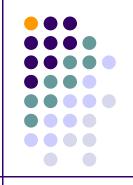


- Conclusions
 - CUBLAS irregularly optimized (use of V. Volkov gemm for problem of dimension 32k)
 - Data transfer amortized for large problems

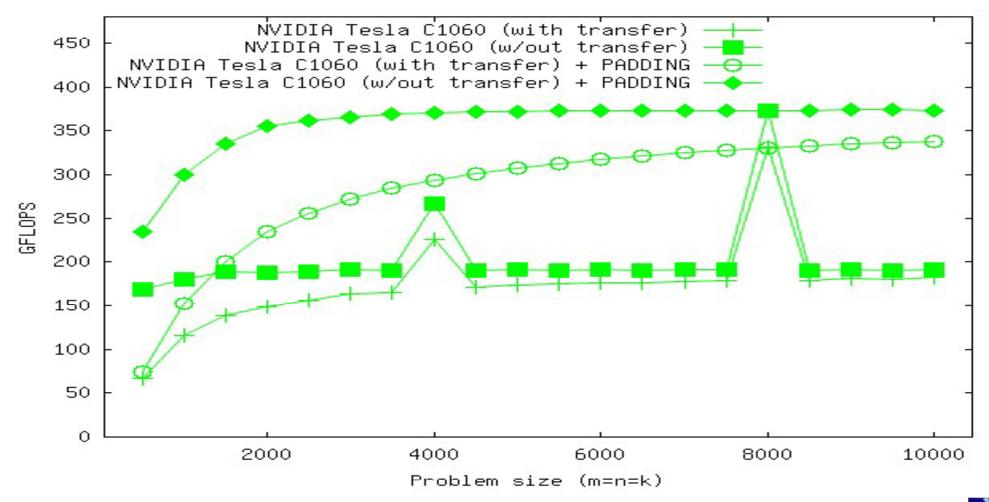


- Adds negligible cost: $2n^3 \rightarrow 2n^3 + \epsilon$ flops
- Applicable to many other operations
- Can be made transparent to the user

Padding



sgemm: C:=C+A*B

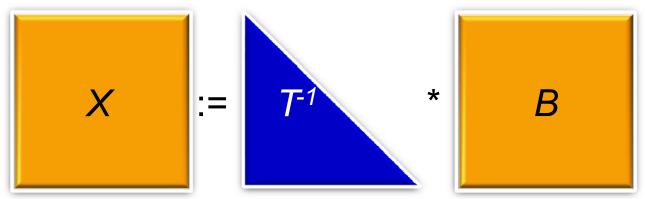


Matrix multiply as a building block

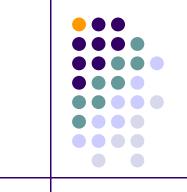


- Other BLAS-3
 - Variants of matrix-matrix product: trmm, symm
 - Triangular system solve: trsm
 - Symmetric rank-k update: syrk
 - Symmetric rank-2k update: syr2k
- Same ratio computation/communication (data) as gemm

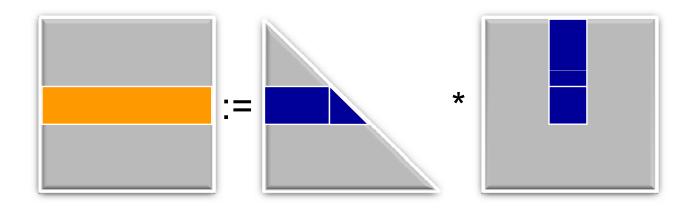
Matrix multiply as a building block: trsm



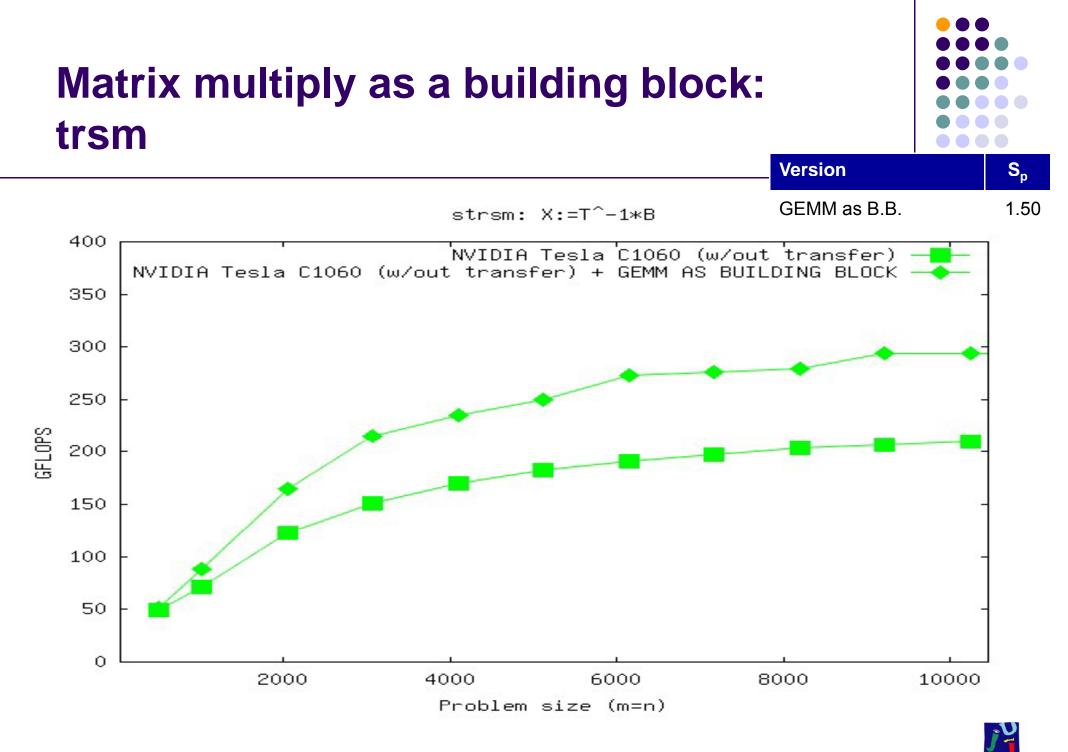
- High data reuse $O(n^3)$ flops vs. $O(n^2)$ data
- Variants:
 - 2 matrix dimensions: *m*, *n*
 - T can be transposed, appear on the right/left of B, be upper or lower triangular

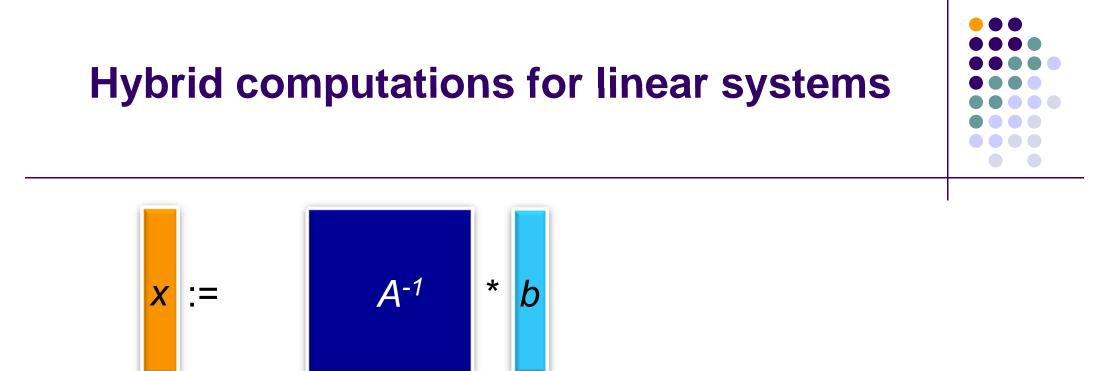


Matrix multiply as a building block: trsm



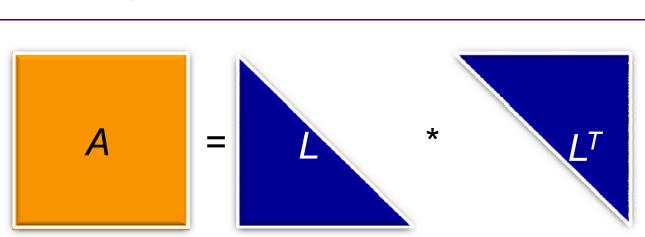
- Build trsm as a series of gemm plus small trsm
- "Poormen" BLAS: cast operations as gemm





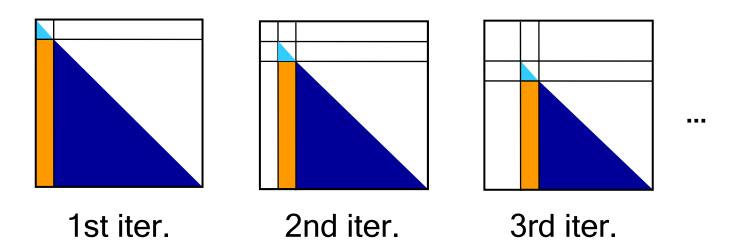
- For dense *A*, decompose it into simpler factors
- Several factorization methods:
 - LU factorization (Gaussian elimination) for general A
 - Cholesky factorization for s.p.d. A
 - QR factorization for overdetermined A (linear least squares)

Hybrid computations: Cholesky factorization



- At each iteration, compute one more block of columns (panel) of L
- Overwrite (lower triangle of) A with L

Hybrid computations: Cholesky factorization

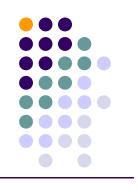


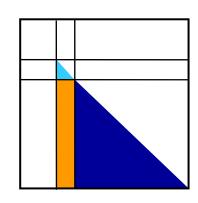
$$A_{11} = L_{11} L_{11}^{T}$$

$$A_{21} = L_{21} := A_{21} L_{11}^{-T}$$

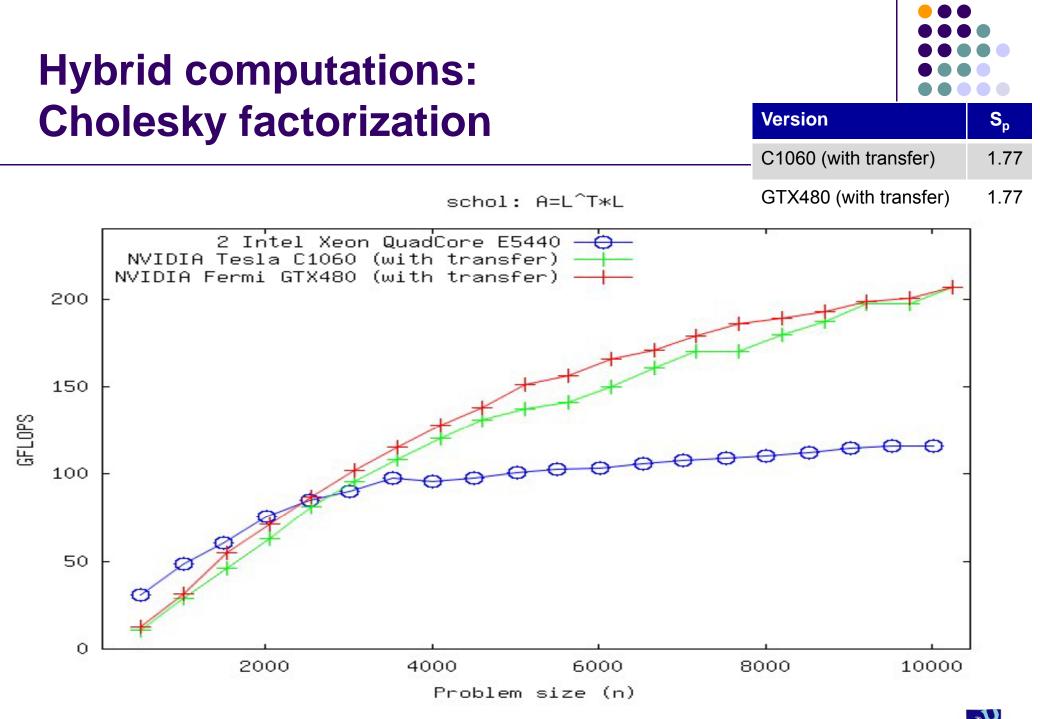
$$A_{22} := A_{22} - L_{21} L_{21}^{T}$$

Hybrid computations: Cholesky factorization

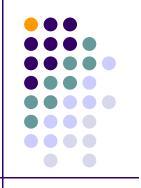




- Insight:
 - Off-load non-computationally intensive operations to CPU
- Initially, move all A to GPU
- At each iteration:
 - Move A₁₁ to CPU, factor block there, and send results back to GPU
 - Update A₂₁ and A₂₂ on the GPU

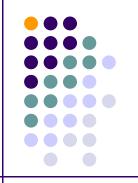


Iterative refinement



- For most apps., double precision is the norm
 - ...but GPUs (before Fermi) are significantly faster with single precision arithmetic
- For linear systems, iterative refinement is a cheap method to recover double precision from a single precision approximation!

Iterative refinement



$$A_{s} = L_{s} L_{s}^{T}$$

$$x_{s} := L_{s}^{-T} (L_{s}^{-1} b_{s})$$

$$x := x_{s}$$
repeat
$$r := b - A x$$

$$r_{s} := r$$

$$z_{s} := L_{s}^{-T} (L_{s}^{-1} r_{s})$$

$$z := z_{s}$$

$$x := x + z$$

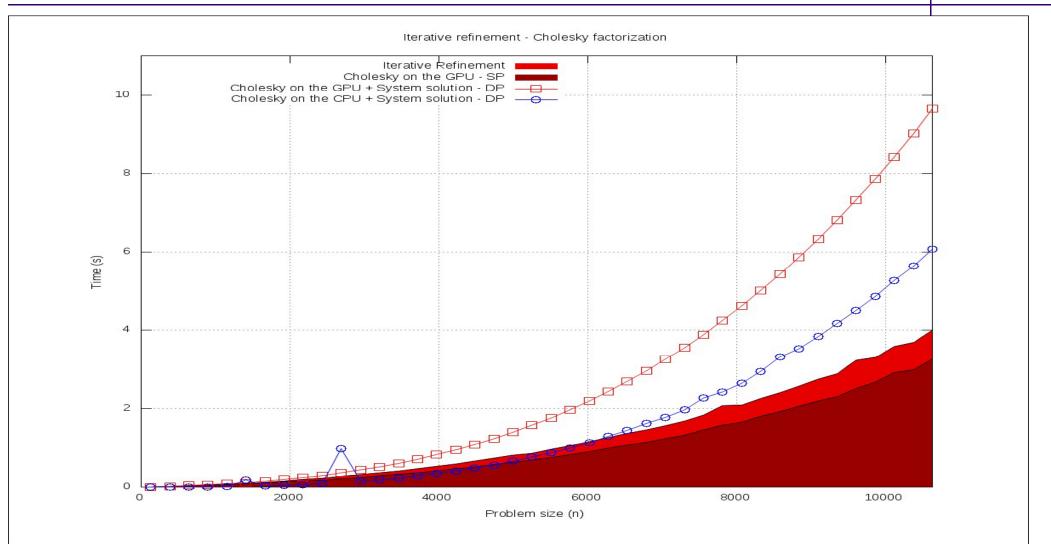
Single precision; $O(n^3)$ flops Single precision; $O(n^2)$ flops

Double precision; $O(n^2)$ flops

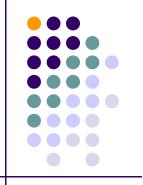
Single precision; $O(n^2)$ flops

Double precision; O(n) flops

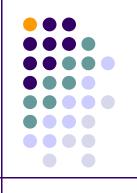
Iterative refinement



Data transfer



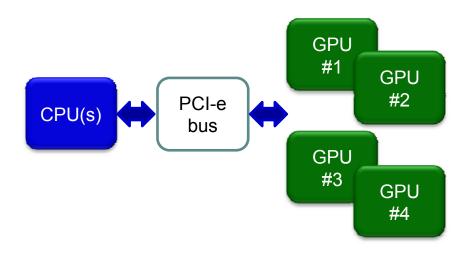
- Who is in control of data transfers between GPU and CPU?
 - User (programmer) via CUDA API
 - System: part of a runtime
 - GMAC
 - SuperMatrix/libflame
 - GPUSs



- Dense linear algebra libraries
- Optimizations for single-GPU platforms
- Programming multi-GPU platforms:
 - Multi-GPU platforms
 - Clusters equipped with GPUs

Programming multi-GPU platforms

How do we program these?



View as a...

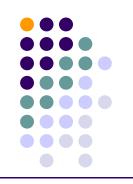
- Shared-memory multiprocessor
- Cluster (distributed-memory)

Programming multi-GPU platforms

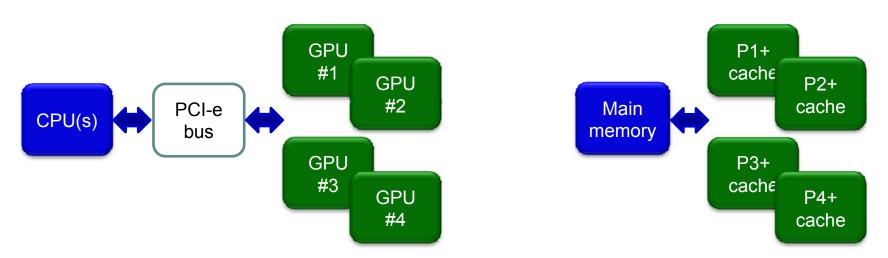
Shared memory multiprocessor view

Not straight-forward:

- Heterogeneous system: n CPUs + m GPUs
- Multiple address spaces: 1 + *m*

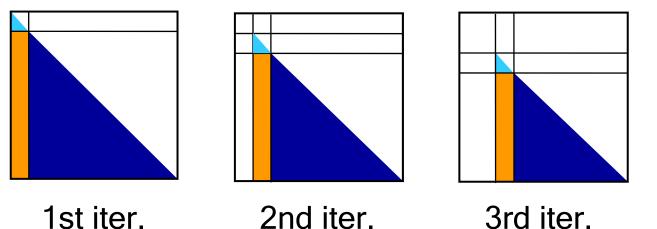


Shared memory multiprocessor view



Not straight-forward \rightarrow Run-time system!

- Heterogeneous system: Task scheduling (temporal+spatial)
- Multiple address spaces: Data movement



$$A_{11} = L_{11} L_{11}^{T}$$

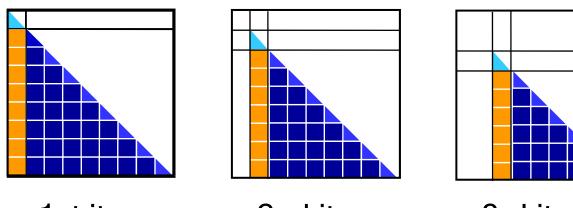
$$A_{21} = L_{21} := A_{21} L_{11}^{-T}$$

$$A_{22} := A_{22} - L_{21} L_{21}^{T}$$

JAUME

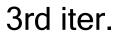
...

Plenty of tasks...

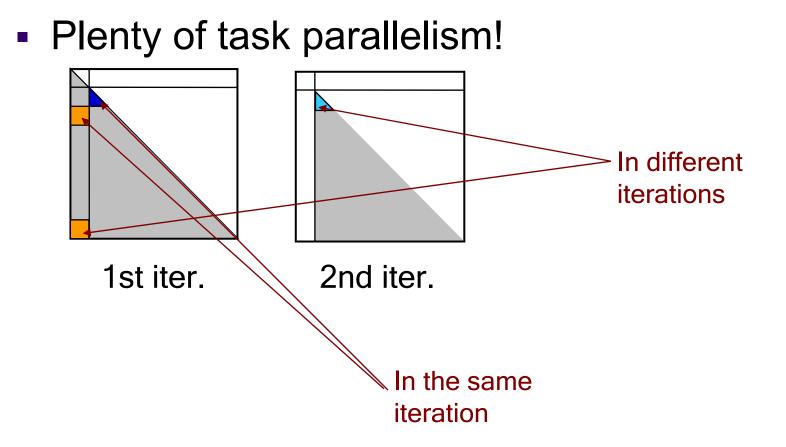


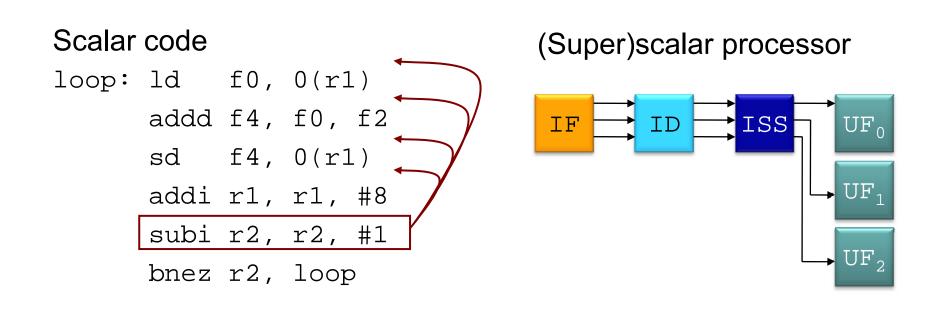
1st iter.

2nd iter.

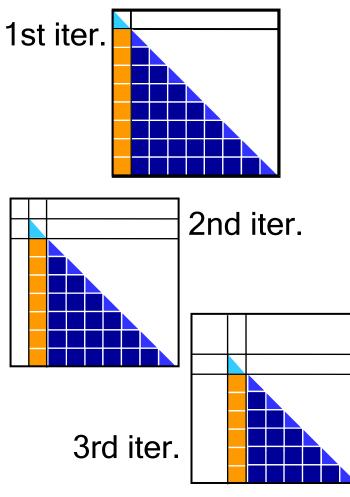


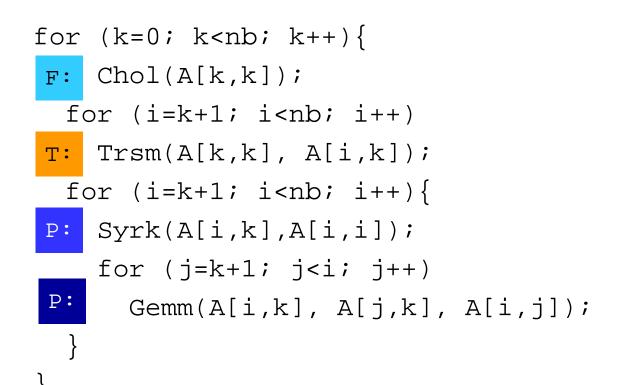
...

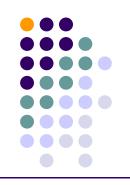




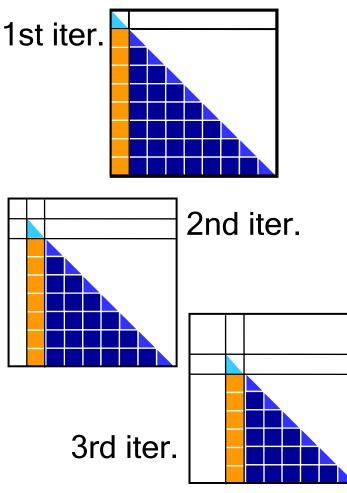
Something similar for (dense) linear algebra?







Something similar for (dense) linear algebra?

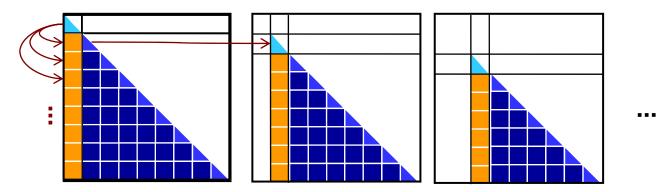


- Apply "scalar" techniques at the block level
- Software implementation
- Thread/Task-level parallelism
- Target the cores/GPUs of the platform

loop: ld (f0), 0(r1) for (k=0; k<nb; k++){ addd f4, (f0), f2 Chol(A[k,k)); addi r1, r1, #8 ...

sd f4, 0(r1) for (i=k+1; i<nb; i++) Trsm(A[k,k], A[i,k]);

Dependencies form a task tree



Blocked code:

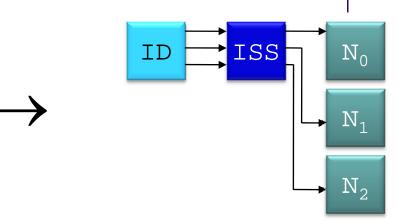
for (k=0; k<nb; k++){
 Chol(A[k,k]);
 for (i=k+1; i<nb; i++)
 Trsm(A[k,k], A[i,k]); ...</pre>

Multi-core/multi-GPU

- How do we generate the task tree?
- What needs to be taken into account to execute the tasks in the tree?

■ Use of a *runtime*:

- Decode (ID): Generate the task tree with a "symbolic analysis" of the code at execution time
- Issue (ISS): Architectureaware execution of the tasks in the tree

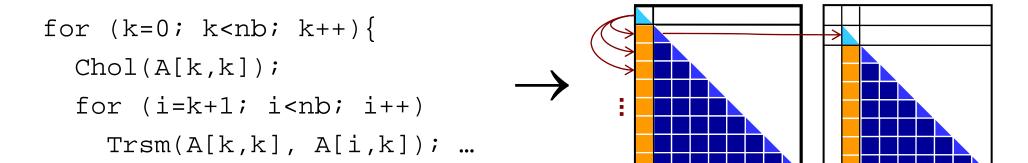


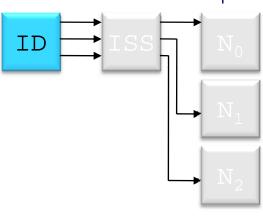
Blocked code:

Decode stage:

"Symbolic analysis" of the code

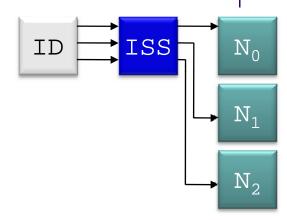
Task tree:

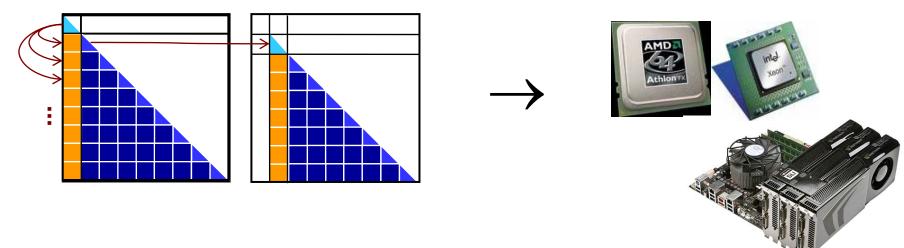




Issue stage:

- Temporal scheduling of tasks, attending to dependencies
- Mapping (spatial scheduling) of tasks to resources, aware of locality



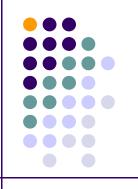


Shared memory multiprocessor view

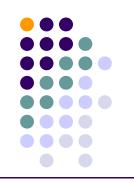


Not straight-forward \rightarrow Run-time system!

- Heterogeneous system: Task scheduling (temporal+spatial)
- Multiple address spaces: Data movement

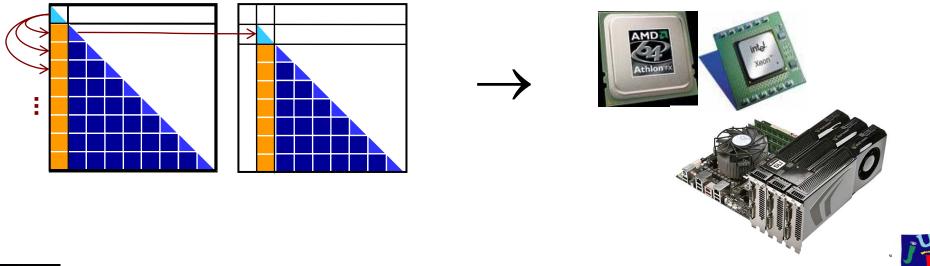


- Software Distributed-Shared Memory (DSM)
 - Underlying distributed memory hidden from the users
 - Well-known approach, not too efficient as a middleware for general apps.
 - Regularity of dense linear algebra operations makes a difference!

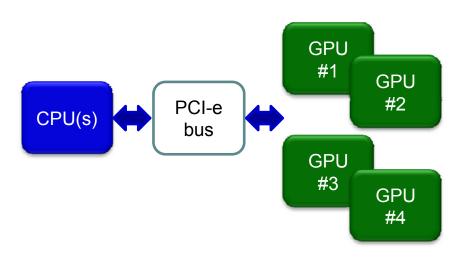


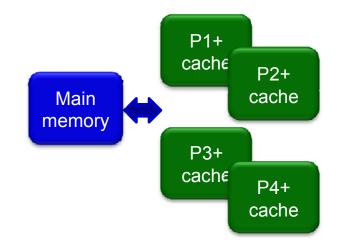
Naive approach:

- Before executing a kernel, copy input data to GPU memory
- After execution, retrieve results back to CPU memory
- Easy to program (wrappers to kernels)
- *O*(*n*³) Transfers between CPU and GPU



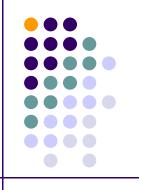
Shared memory multiprocessor view



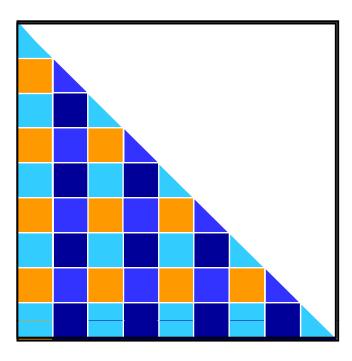


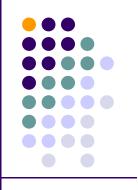
Key to reduce #data transfers!

- Static mapping/dynamic scheduling
- Software cache
- Cache/memory coherence policies



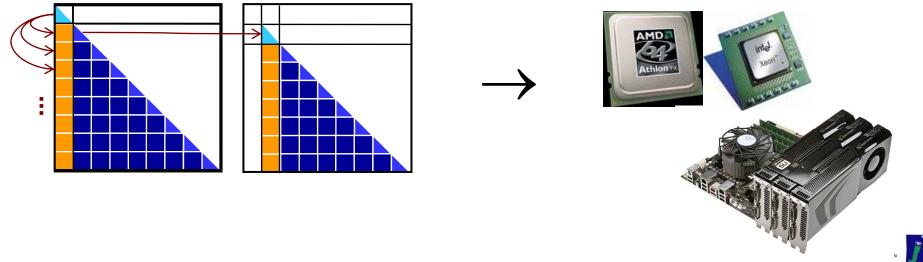
- Where? Static mapping of tasks to resources
 - Writes to a given block are always performed by the same resource (owner-computes rule)
 - Cyclic mappings: row, column, 2-D



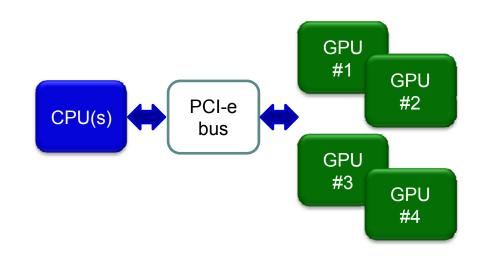


AUME+

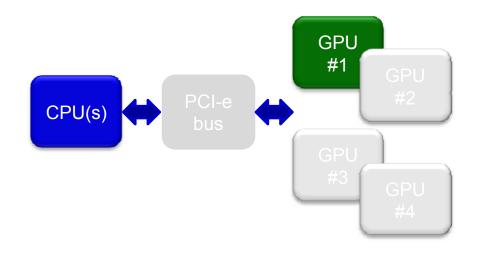
- When? Dynamic scheduling of tasks
 - As soon as data dependencies are fulfilled...
 - Possibility of prioritizing tasks in the critical path



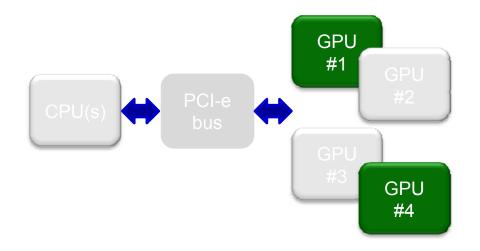
- Software cache (flexibility vs. efficiency)
 - Maintain a map of memory
 - Operate at the block level (amortize software handling with #flops)
 - Once data is in the GPU mem., keep it there as long as possible
 - LRU (or more advanced)



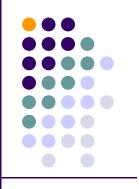
- Coherence between GPU and main memories
 - Write-back



- Coherence among GPU memories
 - Write-invalidate
 - Requires transfer via main memory



Run-time implementations

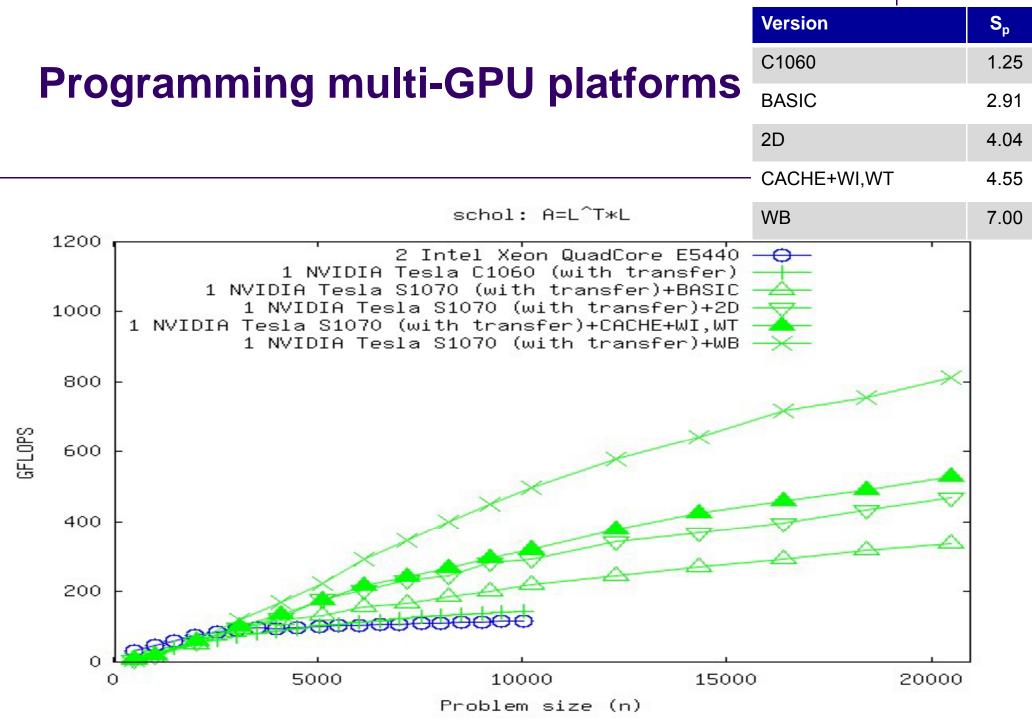


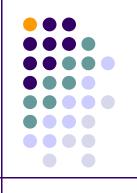
- SuperMatrix (UT@Austin and UJI)
 - Read/written blocks defined implicitly by the operations
 - Only valid for dense linear algebra operations encoded in libflame
- SMPSs (BSC) and GPUSs (BSC and UJI)
 - OpenMP-like languages

#pragma css task inout(A[b*b])

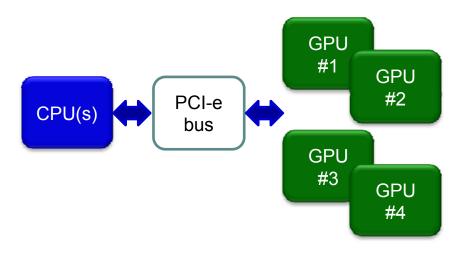
```
void Chol(double *A);
```

 Applicable to task-parallel codes on different platforms: multi-core, multi-GPU, multi-accelerators, Grid,...





- Dense linear algebra libraries
- Optimizations for single-GPU platforms
- Programming multi-GPU platforms:
 - Multi-GPU platforms
 - Clusters equipped with GPUs



View as a...

- Shared-memory multiprocessor
- Cluster (distributed-memory): valid also for true clusters!

P1+

mem.

P3+

mem.

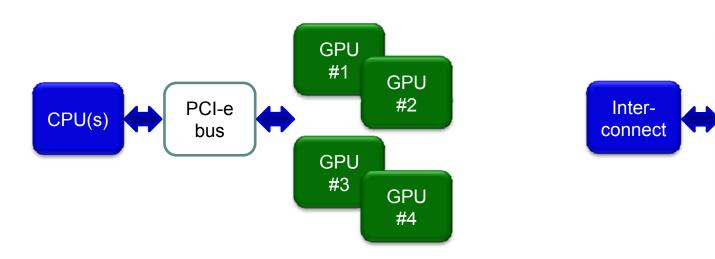
P2+

mem.

P4+

mem.

Cluster view

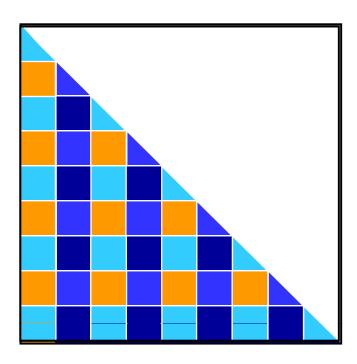


Differences:

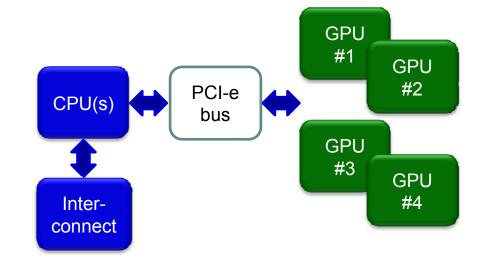
- Processes instead of threads
- Message-passing (MPI) application



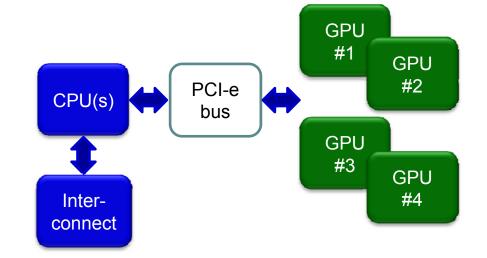
- Where and where?
 - Static mapping of data and tasks to resources
 - Data transfers embedded in the MPI code



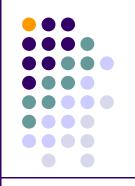
- Naïve approach: Data in node main memory
 - Before executing a kernel, copy input data to GPU memory
 - After execution, retrieve results back to node main memory
 - Easy to program (wrappers to kernels)
 - Copies linked to kernel execution: O(n³) transfers between CPU and GPU



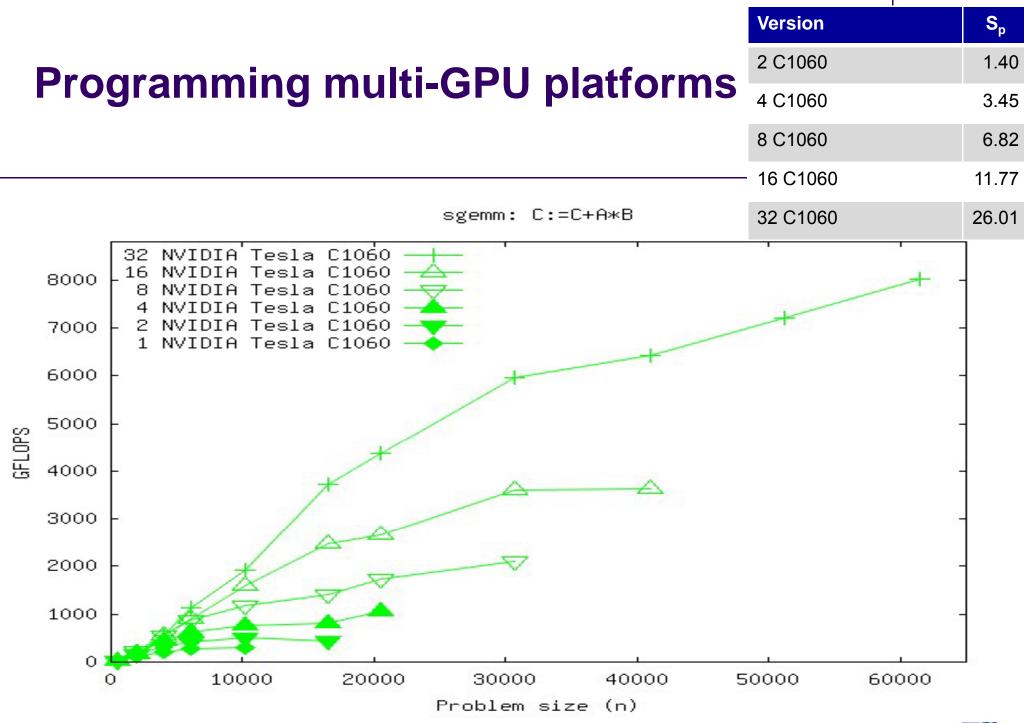
- Alternative approach:
 Data in GPU memory
 - Before sending a piece of data, retrieve it back to node main memory (compact on the fly)
 - After reception, copy contents to GPU memory
 - Easy to program (wrappers to MPI calls)
 - Copies linked to communication, not kernel execution: O(n²) transfers between CPU and GPU

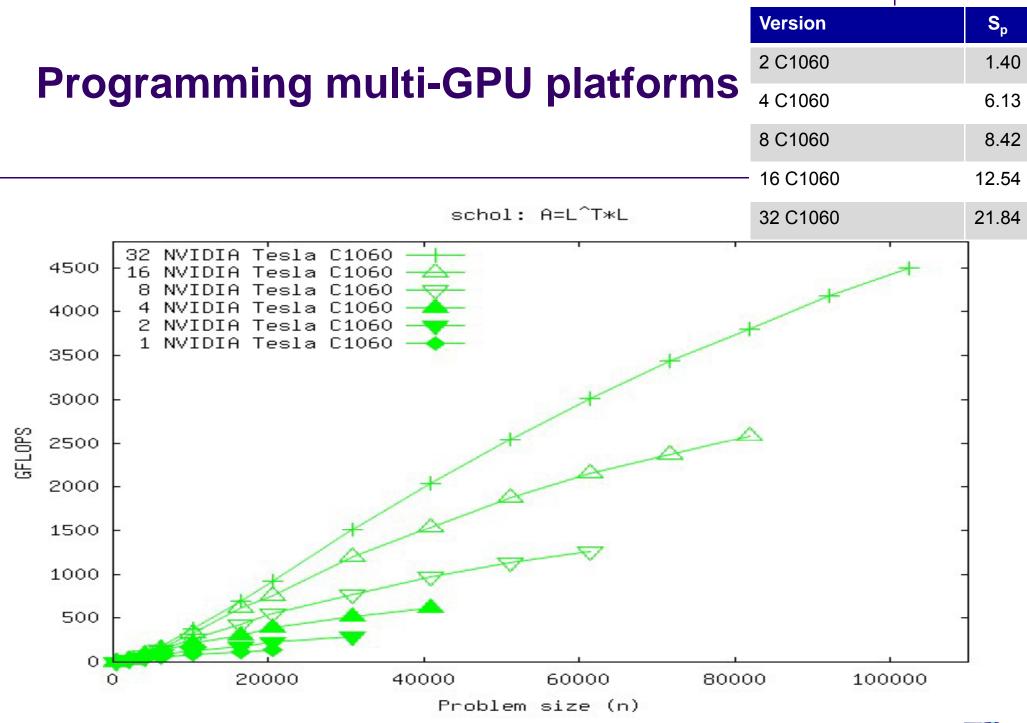


Message-passing implementations

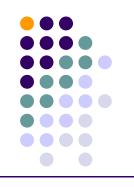


- PLAPACK (UT@Austin)
 - Use of objects (PLA_Obj), vectors, matrices, projected vectors, etc., with layout embedded
 - PMB distribution
 - Layered and modular design: all communication is done via copies (PLA_Copy) and reductions (PLA_Reduce) from one object type to another
- Elemental (Jack Poulson)
 - Based on PLAPACK, but C++
 - Element-wise cyclic data layout



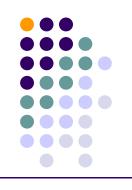


Acks. & support

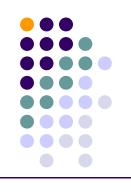


- UJI
 - F. Igual, G. Quintana
- UT
 - The FLAME team
- BSC
 - Computer Sciences
 Department

More information...



- libflame (UT & UJI)
 - http://www.cs.utexas.edu/users/flame
- GPUSs (BSC & UJI)
 - http://www.bsc.es
 - http://www.bsc.es/plantillaG.php?cat_id=385



Thanks for your attention!*

*Hope you enjoyed this as much as Barcelona's beach

UNIVERSITAT JAUME •