| X J
0000
0000
00
(X)
o
Optimization of Dense Linear Systems on
Platforms with Multiple Hardware Accelerators
Enrique S. Quintana-Orti
H HPC A
u}':l'\"l’;‘_';" High Performance Eﬂmputing and Architectures
7

m July, 2010 UNIVERSITAT
JAUME:1

Disclaimer

= Not a course on how to program dense linear
algebra kernels on GPUs

Where have you been Monday-Wednesday?

V. Volkov et al. “Benchmarking GPUs to tune dense linear algebra”, SC08
L-S. Chien, “Hand-tuned SGEMM on GT200 GPU”, TR Tsing Hua Univ., Taiwan

« Sorry if the performance numbers of some
“products” do not look so good...

July, 2010 UNIVERSITAT

Large-scale linear systems:

Estimation of Earth's gravity field

« GRACE project

= Solve y=H x, + ¢,
dense H - m xn
m = 66.000 observations

n = 26.000 parameters for
a model of resolution
250km

July, 2010

HOME

GAMES

The GGMO2
Models

Science Data

| Gitivity Recoleryind:Climate Experiment

SCIENCE OPERATIONS MISSION FLIGHT SYSTEMS CSR

search
EDUCATION PUBLICATIONS GALLERY SEARCH

GRACE, twin satellites launched in March 2002, are making
detailed measurements of Earth's gravity field which will lead to
discoveries about gravity and Earth's natural systems. These
discoveries could have far-reaching benefits to society and the

Products world's papulation.
Level-3 Data
Products
GRACE
Science
Team
Meeting
Mission ; Current Orbit Data
Overview = - — —
== Orbiting Twins - The GRAGE satellites Mission Elapsed Time
GRACE D H
Launch ays ours
Fels]]

— A0S | OH
Mewsletter
GRAGE GRACE in the News
Pariners GRACE offers broad snapshot of groundwater

Mew satellite data showcased at the American Geophysical Union meeting this week in San
PO.DAAC Francisco illustrated the degree to which groundwater has dropped over the past several years

in California's Central Valley.
ISDC

GRACE, the Gravity Recovery and Climate Experiment, through a partnership with MASA and
GRACE the German Aerospace Center, fracks the monthly changes in the earth's gravity field caused
Tellus by the movement of watar.
Science Learn More
Citatians

W
AL, e SliEs | EDUCATION | PUBLICATIONS. | GALLERY | SEARCH |
5 5

THE UNIVERSITY OF

TEXAS

AT AUSTIN

The GRACE mission is jointly i mplementad by NASA and DLR under
the NASA Earth System Seience Pathfinder Program.

Last Medified: Wed Jan 08, 2010
CSRTSGC Team Web

UNIVERSITAT
JAUME:1

Large-scale linear systems

= Dense linear algebra is at the bottom of the “food
chain” for many scientific and engineering apps.

= Molecular dynamics simulations

« BEM for electromagnetism and fast acoustic
scattering problems

= Analysis of dielectric polarization of
nanostructures

= Model reduction of VLSI circuits

July, 2010

Large-scale linear systems o

« Dense matrix computations feature a high
computational cost
Solving Ax = b, with dense A — n x n requires O(n3) flops

« ...but GPUs love large, costly problems with
regular pattern accesses

July, 2010 UNIVERSITAT

JAUME:1

Outline o

« Dense linear algebra libraries
« Optimizations for single-GPU platforms

« Programming multi-GPU platforms:
Shared memory
Clusters equipped with GPUs

July, 2010 UNIVERSITAT

JAUME:1

QOutline oo

« Dense linear algebra libraries

July, 2010 UNIVERSITAT

Dense linear algebra libraries: ose’
BLAS-1 & BLAS-2 .

» Once upon a time, vector processors were

mainstream.. D ey
= = J
}g‘! . 3

« ...cast most computations as vector operations
BLAS-1: axpy (y .=y + a x), dot (y ;= x" y)
BLAS-2: gemv (y :=ay +BAXx), trsv(x:=T7'hb)

m July, 2010 UNIVERSITAT
JAUME:1

Dense linear algebra libraries:
BLAS-3

= “The attack of the killer micros”, Brooks, 1989...

= ...cast most computations in terms of operations

with high data reuse
BLAS-3: gemm (C:=a C+BAB), trsm (X:=T'B)

July, 2010

Dense linear algebra libraries: 0o
Importance of BLAS

» Provide portable performance

= Recognized by hardware vendors
Intel MKL
ACM ACML
IBM ESSL
GotoBLAS (K. Goto now with Microsoft)

NVIDIA CUBLAS

0000
. . . 0000
Dense linear algebra libraries 000
®
= More complex linear algebra operations:
Linear systems
Linear least-squares problems
Eigenvalues
Singular values and numerical rank
LAPACK libflame

u RS

Outline o

« Dense linear algebra libraries

= Optimizations for single-GPU platforms
Basic performance
Padding
Matrix multiply as a building block
Hybrid computations for linear systems
lterative refinement
Data transfer

July, 2010 u

JAUME:1

Initial considerations o

« Compute XYZ in the CPU or in the GPU?

Problem size
“Nature” of XYZ

Overheads:
- Allocate/free memory in GPU
- Data transfer between CPU and GPU
- Invoke CUDA/CUBLAS

July, 2010 u

JAUME:1

o0
0000
; 0000
Experimental setup 000
o
= (General-purpose NVIDIA
Intel Dual Xeon Quad-Core E5410 - Tesla C1060 (x4 = S1070)
8 cores@2.33 GHz . 240 SP cores@1.3 GHz
SP/DP peak 149/75 GFLOPS - SP/DP peak 933/78 GFLOPS
8 GB FB-DIMM - 4GB DDR3
GotoBLAS2 1.11 - CUBLAS 2.3
AMD Phenom Quad-Core - Fermi GTX480
4 cores@2.2 GHz - 480 SP cores@1.4 GHz
4 GB DDR2 - 1.5 GB GDDR5
GotoBLAS 1.26 - CUBLAS 2.3

July, 2010 UNIVERSITAT

Basic performance of single GPU:
gemm

-

» High data reuse 2n° flops vs. 3 n x n data

= Variants:
3 matrix dimensions: m, n, k
A or B can be transposed

July, 2010

JAUME:1

Version

Basic performance of Slngle GPU: cioeo with transfer) 2.26
g e m m C1060 (w/out transfer) 2.55
GTX480 (with transfer) 3.43
sgemm: C:=C+FA+B GTX480 (w/out transf.) 4.25
g0 T T
2 Thntel Xeon EuadEDPE ESdd —{3——
MWYIDIA Tesla C1lo60 (with transfer) :
o0 b MYWIDIA Tesla Cl060 (wsout transfer) - _
MNWYIDIA Fermi GTA4S0 (with transfer) ——+——
MWIDIA Fermi GTHASO0 [(wAo transfer) —E—
600 | - \ .- N m
SO0 I:'I I'ul I,'I \ IIlI IlII II|I _,'I',_II'. .'II_I-I_]
| A | { A { I" II'. '.I IlI II|I
E II|I I|II II| + II|I Ekl". I|II i ['I |II II' I|'I
E 400 / \ f N I'| fFf { I". \ I.' =]
Lljl_ I|| I|I I|I .l," l". \ I|I I." '.I I|I j LA I|I II"
II| |II II| ..'. ok III J s I",. |II ['.II I'. IIIII.
300 N B, . - e L = .
m J N _.Jr.-—-'—l'i +—" = FoOE
200 | = = g - . mmm -
& _{I;—ckg_e/e S am = W
100 | P e
2
[:l 1 1 1 1 1
S0 G000 G000 S0 10000
Froblem size (m=n=k)
75
UNIVERSITAT

July, 2010

JAUME:1

Basic performance of single GPU:

gemm

Version

C1060 (with transfer) 0.92
C1060 (w/out transfer) 0.95

GFLOPS

2000

150

100

S0

cdgemm: C:=C+AxB

GTX480 (with transfer) 217
GTX480 (w/out transf.) 243

2 Thntel Xeon EuadEDPE ESdd —{3——
MYIDIA Tesla C1060 (with transfer) -
MWYIDIA Tesla C1lo60 (wAout transfer)
MNWIDIA Fermi GTA4S0 (with transfer) ——+——

MWIDIA Fermi GTHASO0 [wAo transfer) —E—

]
- 7\ s
/ f fﬁ [|
." \ y ..." '-," I|I Ill' ...' ".I
f —.L__— L] I/
P = AN o oo | - -51 g
mE ¥y i —— g -
B e
9’_’?_%_9) —61\ /B‘B—E'—B‘B—lei—a\ere__ﬁ
o]
- an : i & —N . i
_ri-.l'
2000 G0 G000 S0 10000

Froblem size [(m=n=k]

July, 2010

UNIVERSITAT
JAUME:1

Basic performance of single GPU:
gemm

= Conclusions

- CUBLAS irregularly optimized (use of V. Volkov gemm for

problem of dimension 32k)
- Data transfer amortized for large problems

July, 2010

Padding

- Adds negligible cost: 2n® — 2n3+ € flops
= Applicable to many other operations
« Can be made transparent to the user

Paddlng 000

GFLOPS

s=gemm: [C:=C+AxB

MNVIDTIA Tesla C1060 (with transfer) — '
430 MYIDIA Tesla Cl060 {(wrsout transfer) —B—]
MYIDIA Tesla C1060 (with transfer) + PADDIMG — 3 —
ann FMHYIDIA Tesla C1l060 (wsout transfer) + FPRADDING —@— =
P >0 % *>——9—9 »—9 P
a5o b .
o o oo o9
I00 & e .
250 b A g
<& ¥ ;’4%1
20 pAmmwsd @Sssssd SEew
- A T
150 | o e L, "
100 F i
o | £
[:l 1 1 1 1 1
2000 GO0 G000 2000 10000

Froblem size [(m=n=k]

H
m July, 2010 UNIVERSITAT
JAUME:1

Matrix multiply as a building block o

= Other BLAS-3

- Variants of matrix-matrix product: trmm, symm
- Triangular system solve: trsm

- Symmetric rank-k update: syrk

- Symmetric rank-2k update: syr2k

« Same ratio computation/communication (data) as
gemm

July, 2010 UNIVERSITAT

JAUME:1

Matrix multiply as a building block: o
trsm

« High data reuse O(n?) flops vs. O(n?) data

= Variants:
2 matrix dimensions: m, n

T can be transposed, appear on the right/left of B, be upper
or lower triangular

July, 2010 UNIVERSITAT

JAUME:1

Matrix multiply as a building block: o
trsm

=l

= Build trsm as a series of gemm plus small trsm
« "Poormen” BLAS: cast operations as gemm

July, 2010 UNIVERSITAT

JAUME:1

Matrix multiply as a building block: o

trsm

GFLOPS

gele

350

S0

250

20

150

100

S0

Version

strsm: Y¥:-=T —1:xB GEMM as B.B. 1.50

MWIDIA Tesla Cloo0

MVIDIA Tesla C1060 (wsout transfer)
(wsout transfer) + GEMM AS BUILDIMNG BLOCK

2000

G0 G000 S0 10000

Froblem =size (m=n)
75|

July, 2010 UNIVERSITAT
JAUME:1

Hybrid computations for linear systems o

¢
i

« For dense A, decompose it into simpler factors

= Several factorization methods:
LU factorization (Gaussian elimination) for general A
Cholesky factorization for s.p.d. A
QR factorization for overdetermined A (linear least squares)

July, 2010 UNIVERSITAT

JAUME:1

Hybrid computations: o
Cholesky factorization

» At each iteration, compute one more block of
columns (panel) of L

= Overwrite (lower triangle of) A with L

JAUME:1

Hybrid computations: 0co
Cholesky factorization

1st iter. 2nd iter. 3rd iter.

Ay = Ay —Ly Ly T

July, 2010 UNIVERSITAT

JAUME:1

Hybrid computations: 3T
Cholesky factorization

= |nsight:

Off-load non-computationally intensive
operations to CPU

= Initially, move all A to GPU

= At each iteration:

Move to CPU, factor block there, and
send results back to GPU

Update and A,, on the GPU

July, 2010 u

Hybrid computations: 0co

Cholesky factorization

Version

GFLOPS

200

150

100

=1

C1060 (with transfer) 1.77
schol s A=L " T=*L GTX480 (with transfer) 1.77

2 Thntel Xeon QuadCore ES440 —3—
MWIDIA Tesla Cloe0 (with transfer) !
MNWIDIA Fermi GTHE4E0 (with transfer) ——

2000 G0 G000 S0 10000

Froblem size (Nl
75|

July, 2010 UNIVERSITAT
JAUME:1

lterative refinement

« For most apps., double precision is the norm

- ...but GPUs (before Fermi) are significantly faster with
single precision arithmetic

« For linear systems, iterative refinement is a cheap
method to recover double precision from a single
precision approximation!

July, 2010 UNIVERSIT, AT

coco
. . 0000
Iterative refinement 000
o
A =L LT Single precision; O(n3) flops
X, =LST (LT b Single precision; O(n?) flops
X =X
repeat
r, ;=r
z.:=L T (L 7r) Single precision; O(n?) flops
z =z

July, 2010 UNIVERSITAT

Ilterative refinement

Time ()

10

Iterative refinement - Cholesky factorization

Iterative I!Eefinement
Cholesky on the GFU - SF
Cholesky on the GFU + System solution - DF
Cholesky on the CFRU + System solution - DF

|
| Co—]
—E—
e

G000
Froblem size (n)

8000

10000

July, 2010

UNIVERSITAT
JAUME-1

Data transfer o

= Who is in control of data transfers between GPU
and CPU?
User (programmer) via CUDA API

System: part of a runtime

- GMAC
- SuperMatrix/libflame

- GPUSs

July, 2010 UNIVERSITAT

JAUME:1

Outline

« Programming multi-GPU platforms:
Multi-GPU platforms
Clusters equipped with GPUs

July, 2010

Programming multi-GPU platforms 000

« How do we program these?

GPU
GPU
PCI -e
bus
GPU

GPU
#4

View as a...
Shared-memory multiprocessor

u RS
B C W| Jly, 2010 T

Programming multi-GPU platforms

« Shared memory multiprocessor view

GPU
GPU
PCI -e
bus
GPU
GPU
#4

Not straight-forward:
Heterogeneous system: n CPUs + m GPUs
Multiple address spaces: 1 + m

P3+

Programming multi-GPU platforms 000

« Shared memory multiprocessor view

GPU
GPU
PCI -e
bus
GPU
GPU
#4

Not straight-forward — Run-time system!
Heterogeneous system: Task scheduling (temporal+spatial)
Multiple address spaces: Data movement

P3+

m July, 2010 UNIVERSITAT
JAUME:1

Task scheduling in multi-GPU platforms | e

= Cholesky factorization

1st iter. 2nd iter. 3rd iter.

Ay = Ap—Ly Ly T

July, 2010 UNIVERSITAT

JAUME:1

Task scheduling in multi-GPU platforms

= Plenty of tasks...

A
| [N
| [N
HEE.
| [| IN

HEEEE.

1st iter.

2nd iter.

July, 2010

3rd iter.

Task scheduling in multi-GPU platforms

= Plenty of task parallelism!

1st iter.

> In different

| iterations

2nd iter.

In the same
iteration

July, 2010

Task scheduling in multi-GPU platforms | ese

Scalar code (Super)scalar processor

loop: Id 0, O(rl)
addd f4, f0, 2 Lli_ > 1D
sd 4, 0(rl)]
addr rl1, rl1, #8

subt r2, r2, #1
bnez r2, loop

H
m July, 2010 UNIVERSITAT
JAUME:1

Task scheduling in multi-GPU platforms

s Something similar for (dense) linear algebra?

1stiter.['x

3rd iter.

for (k=0; k<nb; k++){
F: Chol(A[k,kD):
for (1=k+1; i1<nb; 1++)
T: Trsm(A[k,k], AL[i.k]);
for (1=k+1; i<nb; 1++){
BB syrk(ALi.K1.ALLiD);
for (g=k+1; j<i; j++)

Gemm(A[i,k], AL[§.kK1. AL[i.J1);

July, 2010

UNIVERSITAT

JAUME:1

Task scheduling in multi-GPU platforms | e

s Something similar for (dense) linear algebra?

1st iter.

N

| [[L

3rd iter.

Apply “scalar” techniques at the block level
Software implementation
Thread/Task-level parallelism

Target the cores/GPUs of the platform

July, 2010 u

JAUME:1

Task scheduling in multi-GPU platforms | eee

s Read/written blocks determine dependencies, as in scalar case

loop: Id (fQ, 0(r1) for (k=0; k<nb; k++){
addd f4, (f0) f2 Chol ALK.K1);

sd f4, 0(rl) for (i=k+Y; i<nb; i++)

addi rl, rl, #8 ... Trsm@Ik.K), ALi.K1);

Dependencies form a task tree

N

July, 2010 u

JAUME:1

Task scheduling in multi-GPU platforms | ese

s Blocked code: Multi-core/muilti
for (k=0; k<nb; k++){ o <
Chol (ALK, KD);
for (1=k+1; i<nb; i++)
Trsm(A[K,K], A[i.KD); ...

-GPU

=
B

= How do we generate the task tree?

s \What needs to be taken into account to execute the tasks in the
tree?

B C W July, 2010 WA

Task scheduling in multi-GPU platforms

m Use of a runtime: ‘ ID—

- Decode (ID): Generate AN
the task tree with a
“symbolic analysis” of the
code at execution time

. Issue (ISS): Architecture-
aware execution of the
tasks in the tree

(| X)
0000
. . . X XX
Task scheduling in multi-GPU platforms | eee
o
» Decode stage: mg -
= “Symbolic analysis” of the code]
Blocked code: Task tree:
for (k=0; k<nb; k++){ Cgé S
Chol (ALK, K1) ; N
for (i=k+1; i<nb; i++) — s
Trsm(ALK.K]. A[i.KD: .. =

|
[| L
| |

;2 m W

g1 \C v

July, 2010

[=
]
<
m
-~
&
=1

Task scheduling in multi-GPU platforms | ese

m |ssue stage:

m Temporal scheduling of tasks,
attending to dependencies

s Mapping (spatial scheduling) of
tasks to resources, aware of
locality

S

Programming multi-GPU platforms

« Shared memory multiprocessor view

GPU
GPU
PCI -e
bus
GPU
GPU
#4

Not straight-forward — Run-time system!

P3+

Multiple address spaces: Data movement

Multiple address spaces o

» Software Distributed-Shared Memory (DSM)

Underlying distributed memory hidden from the users

Well-known approach, not too efficient as a middleware for
general apps.

Regularity of dense linear algebra operations makes a
difference!

July, 2010 UNIVERSITAT
JAUME:1

Multiple address spaces

= Naive approach:

m Before executing a kernel, copy input data to GPU memory
m After execution, retrieve results back to CPU memory

m Easy to program (wrappers to kernels)

s O(nd) Transfers between CPU and GPU

July, 2010

Multiple address spaces °oo

« Shared memory multiprocessor view

GPU
GPU
PCI -e
bus
GPU

GPU
#4

Key to reduce #data transfers!

Static mapping/dynamic scheduling
Software cache
Cache/memory coherence policies

m July, 2010 UNIVERSITAT
JAUME:1

Multiple address spaces °oo

= Where”? Static mapping of tasks to resources

Writes to a given block are always performed by the same
resource (owner-computes rule)

Cyclic mappings: row, column, 2-D

L
|
| 4

A
o N . NN

July, 2010 UNIVERSIT, AT

Multiple address spaces

« When? Dynamic scheduling of tasks
As soon as data dependencies are fulfilled...
Possibility of prioritizing tasks in the critical path

July, 2010

Multiple address spaces

= Software cache
(flexibility vs. efficiency)

Maintain a map of
memory

Operate at the block level
(amortize software
handling with #flops)

Once data is in the GPU
mem., keep it there as
long as possible

LRU (or more advanced)

July, 2010

Multiple address spaces

= Coherence between
GPU and main
memories

Write-back

July, 2010

Multiple address spaces

= Coherence among GPU
memories

Write-invalidate

Requires transfer via
main memory

B C W July, 2010

Run-time implementations

- SuperMatrix (UT@Austin and UJI)

Read/written blocks defined implicitly by the operations

- Only valid for dense linear algebra operations encoded in
1ibflame

« SMPSs (BSC) and GPUSs (BSC and UJI)

- OpenMP-like languages
#pragma css task 1nout(A[b*b])
void Chol(double *A);

- Applicable to task-parallel codes on different platforms:
multi-core, multi-GPU, multi-accelerators, Grid,...

July, 2010 UNIVERSIT, AT

Version

Programming multi-GPU platforms .
rogramming multi platforms _,__ -
2D 4.04
CACHE+WIWT 4.55
schol @ A=L7 Tkl WB 7.00
12010 T T T T
2 Intel Heon QuadCore ES5d40 ——
1 NWIDIA Tesla C1060 (with transfer)
1 NWIDIA Tesla S1070 (with transfer)+BRASIC
1000 1 NVIDIA Tesla 51070 (with transfer)+2D -
1 NYIDIA Tesla S1070 (with transfer)+ CACHE+WI, WT
1 WNVYIDIA Tesla S1070 (with tPaHSFEP)+NB
SO0 -
[}
o
S soo | =
L
| ML
400 -
200 - -
{153;?@Eﬁ:ﬁ%ﬁ{?ﬁﬁﬂﬁﬁEﬁ3€ﬁ5EJ
[:] E; 1 1 1 1
0 SO0 100 15000 20000

Froblem size (Rl

July, 2010

UNIVERSITAT
JAUME:1

Outline

« Programming multi-GPU platforms:
Multi-GPU platforms
Clusters equipped with GPUs

July, 2010

Programming multi-GPU platforms 000

« How do we program these?

GPU
GPU
PCI -e
bus
GPU

GPU
#4

View as a...

Cluster (distributed-memory): valid also for true clusters!

m July, 2010 UNIVERSITAT
JAUME:1

Programming multi-GPU platforms 000

= Cluster view

(3PU
(3PU
PCIe
bus
(3PU
GPU
#4
Differences:

Processes instead of threads
Message-passing (MPI) application

P1+
mem.

P2+
Inter- mem.
connect

P3+

m July, 2010 UNIVERSITAT
JAUME:1

Programming multi-GPU platforms

= Where and where?

Static mapping of data and tasks to resources
Data transfers embedded in the MPI code

L
|
| 4

July, 2010

Programming multi-GPU platforms 000

= Nalve approach: Data in

node main memory

m Before executing a kernel,
copy input data to GPU
memory

m After execution, retrieve results
back to node main memory

Inter-
s Easy to program (wrappers to connect

kernels)

m Copies linked to kernel
execution: O(n3) transfers
between CPU and GPU

July, 2010 UNIVERSITAT

Programming multi-GPU platforms 000

= Alternative approach:
Data in GPU memory

m Before sending a piece of data,
retrieve it back to node main
memory (compact on the fly)

m After reception, copy contents
to GPU memory

Inter-
s Easy to program (wrappers to connect

MPI calls)

m Copies linked to
communication, not kernel
execution: O(n?) transfers
between CPU and GPU

July, 2010 UNIVERSITAT

Message-passing implementations o

. PLAPACK (UT@Austin)
- Use of objects (PLA_Obj), vectors, matrices, projected
vectors, etc., with layout embedded

PMB distribution

Layered and modular design: all communication is done via
copies (PLA Copy) and reductions (PLA Reduce) from one

object type to another

« Elemental (Jack Poulson)
- Based on PLAPACK, but C++
Element-wise cyclic data layout

July, 2010 UNIVERSITAT
JAUME:1

Version

. | . G | f 2 C1060 1.40
Programming multi-GPU plattorms , ., 245
8 C1060 6.82
16 C1060 11.77
sgemm: L:=L+A+B 32 C1060 26.01
32 WVIDIA Tesla C1060 ' ! ' '
sooa L 16 MYIDIA Tesla C1l060 1
g MWVIDIA Tesla ClOg0
g MWIDIA Tesla ClO0s0
Jooo - 2 MYIDIA Tesla ClOs0 4
1 MNVIDIA Tesla ClO0s0
BoO0O0]
L 5000 | _
O
=i
e qooo F -
000 - =]
2000 - _
1000 -]
D 1 1 1 1 1 1
2 10000 ety SO000 S aele =Taraale STaleyele

Froblem size (Rl

ﬂ
July, 2010 UNIVERSITAT
JAUME:1

Version

. | . G | f 2 C1060 1.40
Programming multi-GPU platforms ., o
8 C1060 8.42
16 C1060 12.54
schol: A=L Tl 32 C1060 21.84
32 MVIDIA Tesla ClO60 — ' ' '
45300 F95 WNWIDIA Tesla C1060 .
5 MVYIDIA Tesla C1060
gqonn - o4 NVIDIA Tesla Cloe0 2]
= MWIDIA Tesla C1060
1 MWIDIA Tesla C1060
S500 b 2
s000 b 2
[
o 2son | 2
i |
0=
=000 b 3
1500 b 2
1000 b 2
so0 | 2
[:l 1 1 1 1 1
0 20000 G000 EO000 S0000 100000

Froblem size (Rl

ﬂ
July, 2010 UNIVERSITAT
JAUME:1

Acks. & support o

= UJI
- UT NVIDIA
The FLAME team Micresoft
- BSC
Computer Sciences
Department -
LR N e @
» E INNOVACION Y
75|

X X)
. . eece
More information... °o0
o
= libflame (UT & UJI)
http://www.cs.utexas.edu/users/flame
. GPUSs (BSC & UJI)
http://www.bsc.es
http://www.bsc.es/plantillaG.php?cat 1d=385
m July, 2010 u%;a

Farewell eoo

Thanks for your attention!*

*Hope you enjoyed this as much as Barcelona’s beach

B C W July, 2010

