
Optimization of Dense Linear Systems on
Platforms with Multiple Hardware Accelerators

Enrique S. Quintana-Ortí

July, 2010

DisclaimerDisclaimer

 Not a course on how to program dense linear
l b k l GPUalgebra kernels on GPUs

 Where have you been Monday-Wednesday?

 V. Volkov et al. “Benchmarking GPUs to tune dense linear algebra”, SC08
 L-S. Chien, “Hand-tuned SGEMM on GT200 GPU”, TR Tsing Hua Univ., Taiwan

 Sorry if the performance numbers of some
“products” do not look so good…

July, 2010

Large-scale linear systems:Large-scale linear systems:
Estimation of Earth's gravity field

 GRACE project
t d /www.csr.utexas.edu/grace

 Solve y = H x0 + Є,
dense H → m x n
m = 66.000 observations
n = 26 000 parameters forn = 26.000 parameters for
a model of resolution
250km250km

July, 2010

Large-scale linear systemsLarge-scale linear systems

 Dense linear algebra is at the bottom of the “food
h i ” f i tifi d i ichain” for many scientific and engineering apps.

 Molecular dynamics simulations
BEM f l t ti d f t ti BEM for electromagnetism and fast acoustic
scattering problems

 Analysis of dielectric polarization of
nanostructuresnanostructures

 Model reduction of VLSI circuits

July, 2010

Large-scale linear systemsLarge-scale linear systems

 Dense matrix computations feature a high
t ti l tcomputational cost

 Solving Ax = b, with dense A → n x n requires O(n3) flops

 ...but GPUs love large, costly problems with
regular pattern accessesregular pattern accesses

July, 2010

OutlineOutline

 Dense linear algebra libraries
 Optimizations for single-GPU platforms
 Programming multi-GPU platforms:Programming multi GPU platforms:

 Shared memory
Clusters equipped with GPUs Clusters equipped with GPUs

July, 2010

OutlineOutline

 Dense linear algebra libraries
 Optimizations for single-GPU platforms
 Programming multi-GPU platforms:Programming multi GPU platforms:

 Shared memory
Clusters equipped with GPUs Clusters equipped with GPUs

July, 2010

Dense linear algebra libraries:Dense linear algebra libraries:
BLAS-1 & BLAS-2

 Once upon a time, vector processors were
i tmainstream…

 ...cast most computations as vector operationsp p
 BLAS-1: axpy (y := y + α x), dot (y := xT y)
 BLAS-2: gemv (y := α y + β A x), trsv (x := T-1 b)g (y y β), ()

July, 2010

Dense linear algebra libraries:Dense linear algebra libraries:
BLAS-3

 “The attack of the killer micros”, Brooks, 1989…

 …cast most computations in terms of operations
with high data reuse
 BLAS-3: gemm (C := α C + β A B), trsm (X := T-1 B)g (β), ()

July, 2010

Dense linear algebra libraries:Dense linear algebra libraries:
Importance of BLAS

 Provide portable performance
 Recognized by hardware vendors

 Intel MKL
 ACM ACML
 IBM ESSLIBM ESSL
 GotoBLAS (K. Goto now with Microsoft)

 NVIDIA CUBLAS

July, 2010

Dense linear algebra librariesDense linear algebra libraries

 More complex linear algebra operations:
 Linear systems
 Linear least-squares problems
 Eigenvalues
 Singular values and numerical rank

LAPACK libflameLAPACK
www.netlib.org/lapack

libflame
http://www.cs.utexas.edu/users/flame

July, 2010

OutlineOutline

 Dense linear algebra libraries
 Optimizations for single-GPU platforms

 Basic performancep
 Padding
 Matrix multiply as a building blockMatrix multiply as a building block
 Hybrid computations for linear systems
 Iterative refinementIterative refinement
 Data transfer

Programming multi GPU platforms Programming multi-GPU platforms

July, 2010

Initial considerationsInitial considerations

 Compute XYZ in the CPU or in the GPU?
 Problem size
 “Nature” of XYZ

 Overheads:
 Allocate/free memory in GPU
 Data transfer between CPU and GPU
 Invoke CUDA/CUBLAS

July, 2010

Experimental setupExperimental setup

 General-purpose
Intel Dual Xeon Quad Core E5410

 NVIDIA
Tesla C1060 (x4 = S1070) Intel Dual Xeon Quad-Core E5410

 8 cores@2.33 GHz
 SP/DP peak 149/75 GFLOPS

 Tesla C1060 (x4 = S1070)
 240 SP cores@1.3 GHz
 SP/DP peak 933/78 GFLOPS

 8 GB FB-DIMM
 GotoBLAS2 1.11

 4 GB DDR3
 CUBLAS 2.3

 AMD Phenom Quad-Core
 4 cores@2.2 GHz

 Fermi GTX480
 480 SP cores@1.4 GHz

 4 GB DDR2
 GotoBLAS 1.26

 1.5 GB GDDR5
 CUBLAS 2.3

July, 2010

Basic performance of single GPU:Basic performance of single GPU:
gemm

+ *:=C C BA

 High data reuse 2n3 flops vs. 3 n x n data
 Variants:Variants:

 3 matrix dimensions: m, n, k
 A or B can be transposed A or B can be transposed

July, 2010

Basic performance of single GPU:
Version Sp

C1060 (ith t f) 2 26Basic performance of single GPU:
gemm

C1060 (with transfer) 2.26

C1060 (w/out transfer) 2.55

GTX480 (with transfer) 3.43()

GTX480 (w/out transf.) 4.25

July, 2010

Basic performance of single GPU:
Version Sp

C1060 (ith t f) 0 92Basic performance of single GPU:
gemm

C1060 (with transfer) 0.92

C1060 (w/out transfer) 0.95

GTX480 (with transfer) 2.17()

GTX480 (w/out transf.) 2.43

July, 2010

Basic performance of single GPU:Basic performance of single GPU:
gemm

 Conclusions
 CUBLAS irregularly optimized (use of V. Volkov gemm for

problem of dimension 32k)
 Data transfer amortized for large problems

July, 2010

PaddingPadding

+ *:=C C BA

 Adds negligible cost: 2n3 → 2n3+ Є flops
 Applicable to many other operationsApplicable to many other operations
 Can be made transparent to the user

July, 2010

PaddingPadding

July, 2010

Matrix multiply as a building blockMatrix multiply as a building block

 Other BLAS-3
 Variants of matrix-matrix product: trmm, symm
 Triangular system solve: trsm
 Symmetric rank-k update: syrk
 Symmetric rank-2k update: syr2kSymmetric rank 2k update: syr2k

Same ratio computation/communication (data) as Same ratio computation/communication (data) as
gemm

July, 2010

Matrix multiply as a building block:Matrix multiply as a building block:
trsm

*:=X T-1 B

 High data reuse O(n3) flops vs. O(n2) data
 Variants:Variants:

 2 matrix dimensions: m, n
 T can be transposed appear on the right/left of B be upper T can be transposed, appear on the right/left of B, be upper

or lower triangular

July, 2010

Matrix multiply as a building block:Matrix multiply as a building block:
trsm

*:=

 Build trsm as a series of gemm plus small trsm
 “Poormen” BLAS: cast operations as gemmPoormen BLAS: cast operations as gemm

July, 2010

Matrix multiply as a building block:Matrix multiply as a building block:
trsm

Version Spp

GEMM as B.B. 1.50

July, 2010

Hybrid computations for linear systemsHybrid computations for linear systems

*:= A-1 bx

 For dense A, decompose it into simpler factors
 Several factorization methods:Several factorization methods:

 LU factorization (Gaussian elimination) for general A
 Cholesky factorization for s p d A Cholesky factorization for s.p.d. A
 QR factorization for overdetermined A (linear least squares)

July, 2010

Hybrid computations:Hybrid computations:
Cholesky factorization

A *= L LT

 At each iteration, compute one more block of
columns (panel) of L(p)

 Overwrite (lower triangle of) A with L

July, 2010

Hybrid computations:Hybrid computations:
Cholesky factorization

…

1st iter. 2nd iter. 3rd iter.

A11 = L11 L11
T

11 11 11

A21 = L21 := A21 L11
-T

A22 := A22 – L21 L21
T

22 22 21 21

July, 2010

Hybrid computations:Hybrid computations:
Cholesky factorization

 Insight:
Off load non computationally intensive Off-load non-computationally intensive
operations to CPU

 Initially, move all A to GPU
 At each iteration: At each iteration:

 Move A11 to CPU, factor block there, and
send results back to GPU

 Update A21 and A22 on the GPU

July, 2010

Hybrid computations:Hybrid computations:
Cholesky factorization Version Sp

C1060 (with transfer) 1.77C1060 (with transfer) 1.77

GTX480 (with transfer) 1.77

July, 2010

Iterative refinementIterative refinement

 For most apps., double precision is the norm
 …but GPUs (before Fermi) are significantly faster with

single precision arithmetic

 For linear systems, iterative refinement is a cheap y , p
method to recover double precision from a single
precision approximation!precision approximation!

July, 2010

Iterative refinementIterative refinement

As = Ls Ls
T Single precision; O(n3) flops

x := L -T (L -1 b) Single precision; O(n2) flopsxs := Ls
-T (Ls

-1 bs) Single precision; O(n2) flops
x := xs

trepeat

r := b – A x Double precision; O(n2) flops
rs := r
zs := Ls

-T (Ls
-1 rs) Single precision; O(n2) flops

z := zs

x := x + z Double precision; O(n) flops

July, 2010

Iterative refinementIterative refinement

July, 2010

Data transferData transfer

 Who is in control of data transfers between GPU
d CPU?and CPU?

 User (programmer) via CUDA API
 System: part of a runtime

 GMAC
 SuperMatrix/libflame
 GPUSsGPUSs

July, 2010

OutlineOutline

 Dense linear algebra libraries
 Optimizations for single-GPU platforms
 Programming multi-GPU platforms:Programming multi GPU platforms:

 Multi-GPU platforms
Clusters equipped with GPUs Clusters equipped with GPUs

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 How do we program these?

GPU
#1 GPU

#2
CPU(s) PCI-e

bus
#2

GPU
#3#3 GPU

#4

View as a…
 Shared-memory multiprocessor Shared memory multiprocessor
 Cluster (distributed-memory)

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Shared memory multiprocessor view

GPU
#1 GPU

#2

P1+
cache P2+

h
CPU(s) PCI-e

bus
#2

GPU
#3

cache

P3+
cache

Main
memory

#3 GPU
#4

cache P4+
cache

Not straight-forward:
 Heterogeneous system: n CPUs + m GPUs Heterogeneous system: n CPUs + m GPUs
 Multiple address spaces: 1 + m

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Shared memory multiprocessor view

GPU
#1 GPU

#2

P1+
cache P2+

h
CPU(s) PCI-e

bus
#2

GPU
#3

cache

P3+
cache

Main
memory

#3 GPU
#4

cache P4+
cache

Not straight-forward → Run-time system!
 Heterogeneous system: Task scheduling (temporal+spatial) Heterogeneous system: Task scheduling (temporal+spatial)
 Multiple address spaces: Data movement

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Cholesky factorization

…

1st iter. 2nd iter. 3rd iter.

A11 = L11 L11
T

A = L := A L -TA21 = L21 := A21 L11
-T

A22 := A22 – L21 L21
T

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Plenty of tasks…

…

1st iter. 2nd iter. 3rd iter.

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Plenty of task parallelism!

In differentIn different
iterations

1st iter. 2nd iter.

In the same
iteration

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

Scalar code (Super)scalar processor
loop: ld f0, 0(r1)

addd f4, f0, f2 IF ID ISS UF0

(p) p

sd f4, 0(r1)

addi r1, r1, #8

subi r2 r2 #1

UF1
subi r2, r2, #1

bnez r2, loop
UF2

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Something similar for (dense) linear algebra?

for (k=0; k<nb; k++){
1st iter.

Chol(A[k,k]);

for (i=k+1; i<nb; i++)

T (A[k k] A[i k])

F:

T Trsm(A[k,k], A[i,k]);

for (i=k+1; i<nb; i++){

Syrk(A[i,k],A[i,i]);

T:

P:

2nd iter.
Syrk(A[i,k],A[i,i]);

for (j=k+1; j<i; j++)

Gemm(A[i,k], A[j,k], A[i,j]);

P:

P:

}

}
3rd iter

July, 2010

3rd iter.

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Something similar for (dense) linear algebra?

 Apply “scalar” techniques at the block level
1st iter.

 Software implementation
 Thread/Task-level parallelism
 Target the cores/GPUs of the platform

2nd iter.

3rd iter

July, 2010

3rd iter.

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Read/written blocks determine dependencies, as in scalar case
l ld f0 0(1) f (k 0 k b k){loop: ld f0, 0(r1) for (k=0; k<nb; k++){

addd f4, f0, f2 Chol(A[k,k]);

sd f4 0(r1) for (i=k+1; i<nb; i++)sd f4, 0(r1) for (i=k+1; i<nb; i++)

addi r1, r1, #8 … Trsm(A[k,k], A[i,k]);

Dependencies form a task tree

… ……

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Blocked code: Multi-core/multi-GPU
for (k=0; k<nb; k++){for (k=0; k<nb; k++){

Chol(A[k,k]);

for (i=k+1; i<nb; i++)

Trsm(A[k,k], A[i,k]); …

 How do we generate the task tree?
Wh t d t b t k i t t t t th t k i th What needs to be taken into account to execute the tasks in the
tree?

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Use of a runtime: ID ISS N0
 Decode (ID): Generate

the task tree with a
“symbolic analysis” of the

 N1

symbolic analysis of the
code at execution time
Issue (ISS): Architecture

N2

 Issue (ISS): Architecture-
aware execution of the
tasks in the treetasks in the tree

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Decode stage: ID ISS N0
 “Symbolic analysis” of the code

N1

Blocked code: Task tree:

N2

Blocked code: Task tree:

for (k=0; k<nb; k++){

Chol(A[k,k]);

for (i=k+1; i<nb; i++) …

Trsm(A[k,k], A[i,k]); …

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Issue stage: ID ISS N0
 Temporal scheduling of tasks,

attending to dependencies
 Mapping (spatial scheduling) of

N1
 Mapping (spatial scheduling) of

tasks to resources, aware of
locality

N2

… 

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Shared memory multiprocessor view

GPU
#1 GPU

#2

P1+
cache P2+

h
CPU(s) PCI-e

bus
#2

GPU
#3

cache

P3+
cache

Main
memory

#3 GPU
#4

cache P4+
cache

Not straight-forward → Run-time system!
 Heterogeneous system: Task scheduling (temporal+spatial) Heterogeneous system: Task scheduling (temporal+spatial)
 Multiple address spaces: Data movement

July, 2010

Multiple address spacesMultiple address spaces

 Software Distributed-Shared Memory (DSM)
 Underlying distributed memory hidden from the users
 Well-known approach, not too efficient as a middleware for

general apps.

 Regularity of dense linear algebra operations makes a
difference!

July, 2010

Multiple address spacesMultiple address spaces

 Naive approach:
 Before executing a kernel, copy input data to GPU memory
 After execution, retrieve results back to CPU memory
 Easy to program (wrappers to kernels) Easy to program (wrappers to kernels)
 O(n3) Transfers between CPU and GPU

… 

July, 2010

Multiple address spacesMultiple address spaces

 Shared memory multiprocessor view

GPU
#1 GPU

#2

P1+
cache P2+

h
CPU(s) PCI-e

bus
#2

GPU
#3

cache

P3+
cache

Main
memory

#3 GPU
#4

cache P4+
cache

Key to reduce #data transfers!
 Static mapping/dynamic schedulingStatic mapping/dynamic scheduling
 Software cache
 Cache/memory coherence policies

July, 2010

Multiple address spacesMultiple address spaces

 Where? Static mapping of tasks to resources
 Writes to a given block are always performed by the same

resource (owner-computes rule)
C 2 Cyclic mappings: row, column, 2-D

July, 2010

Multiple address spacesMultiple address spaces

 When? Dynamic scheduling of tasks
 As soon as data dependencies are fulfilled…
 Possibility of prioritizing tasks in the critical path

… 

July, 2010

Multiple address spacesMultiple address spaces

 Software cache
(fl ibilit ffi i)(flexibility vs. efficiency)
 Maintain a map of

GPU
#1 GPU

#2memory
 Operate at the block level

(amortize software

CPU(s) PCI-e
bus

#2

GPU
#3(amortize software

handling with #flops)
Once data is in the GPU

#3 GPU
#4

 Once data is in the GPU
mem., keep it there as
long as possibleo g as poss b e

 LRU (or more advanced)

July, 2010

Multiple address spacesMultiple address spaces

 Coherence between
GPU d iGPU and main
memories GPU

#1 GPU
#2

 Write-back CPU(s) PCI-e
bus

#2

GPU
#3#3 GPU

#4

July, 2010

Multiple address spacesMultiple address spaces

 Coherence among GPU
imemories

 Write-invalidate
GPU
#1 GPU

#2
 Requires transfer via

main memory
CPU(s) PCI-e

bus
#2

GPU
#3#3 GPU

#4

July, 2010

Run-time implementationsRun-time implementations

 SuperMatrix (UT@Austin and UJI)
 Read/written blocks defined implicitly by the operations
 Only valid for dense linear algebra operations encoded in

ilibflame

 SMPSs (BSC) and GPUSs (BSC and UJI)
 OpenMP-like languages

#pragma css task inout(A[b*b])

void Chol(double *A);

A li bl t t k ll l d diff t l tf Applicable to task-parallel codes on different platforms:
multi-core, multi-GPU, multi-accelerators, Grid,…

July, 2010

Programming multi-GPU platforms
Version Sp

C1060 1.25Programming multi-GPU platforms BASIC 2.91

2D 4.04

CACHE+WI WT 4 55CACHE+WI,WT 4.55

WB 7.00

July, 2010

OutlineOutline

 Dense linear algebra libraries
 Optimizations for single-GPU platforms
 Programming multi-GPU platforms:Programming multi GPU platforms:

 Multi-GPU platforms
Clusters equipped with GPUs Clusters equipped with GPUs

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 How do we program these?

GPU
#1 GPU

#2
CPU(s) PCI-e

bus
#2

GPU
#3#3 GPU

#4

View as a…
 Shared-memory multiprocessor Shared memory multiprocessor
 Cluster (distributed-memory): valid also for true clusters!

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Cluster view

GPU
#1 GPU

#2

P1+
mem. P2+

CPU(s) PCI-e
bus

#2

GPU
#3

mem.

P3+
mem

Inter-
connect

#3 GPU
#4

mem. P4+
mem.

Differences:
 Processes instead of threads Processes instead of threads
 Message-passing (MPI) application

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Where and where?
 Static mapping of data and tasks to resources
 Data transfers embedded in the MPI code

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Naïve approach: Data in
d inode main memory

 Before executing a kernel,
copy input data to GPU

GPU
#1 GPU

#2copy input data to GPU
memory

 After execution, retrieve results

CPU(s) PCI-e
bus

#2

GPU
#3back to node main memory

 Easy to program (wrappers to
kernels)

#3 GPU
#4Inter-

connect
kernels)

 Copies linked to kernel
execution: O(n3) transfers
b t CPU d GPUbetween CPU and GPU

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Alternative approach:
D t i GPUData in GPU memory
 Before sending a piece of data,

retrieve it back to node main

GPU
#1 GPU

#2retrieve it back to node main
memory (compact on the fly)

 After reception, copy contents

CPU(s) PCI-e
bus

#2

GPU
#3to GPU memory

 Easy to program (wrappers to
MPI calls)

#3 GPU
#4Inter-

connect
MPI calls)

 Copies linked to
communication, not kernel

ti O(2) t fexecution: O(n2) transfers
between CPU and GPU

July, 2010

Message-passing implementationsMessage-passing implementations

 PLAPACK (UT@Austin)
 Use of objects (PLA_Obj), vectors, matrices, projected

vectors, etc., with layout embedded
 PMB distribution
 Layered and modular design: all communication is done via

i (PLA C) d d ti (PLA R d) fcopies (PLA_Copy) and reductions (PLA_Reduce) from one
object type to another

 Elemental (Jack Poulson)
 Based on PLAPACK, but C++
 Element-wise cyclic data layout

July, 2010

Programming multi-GPU platforms
Version Sp

2 C1060 1.40Programming multi-GPU platforms 4 C1060 3.45

8 C1060 6.82

16 C1060 11 7716 C1060 11.77

32 C1060 26.01

July, 2010

Programming multi-GPU platforms
Version Sp

2 C1060 1.40Programming multi-GPU platforms 4 C1060 6.13

8 C1060 8.42

16 C1060 12 5416 C1060 12.54

32 C1060 21.84

July, 2010

Acks & supportAcks. & support

 UJI
 F. Igual, G. Quintana

UT UT
 The FLAME team

BSC BSC
 Computer Sciences

Departmentp

July, 2010

More informationMore information…

 libflame (UT & UJI)
 http://www.cs.utexas.edu/users/flame

 GPUSs (BSC & UJI)()
 http://www.bsc.es
 http://www.bsc.es/plantillaG.php?cat id=385http://www.bsc.es/plantillaG.php?cat_id 385

July, 2010

FarewellFarewell

Thanks for your attention!*Thanks for your attention!

*Hope you enjoyed this as much as Barcelona’s beach

July, 2010

