
Optimization of Dense Linear Systems on
Platforms with Multiple Hardware Accelerators

Enrique S. Quintana-Ortí

July, 2010

DisclaimerDisclaimer

 Not a course on how to program dense linear
l b k l GPUalgebra kernels on GPUs

 Where have you been Monday-Wednesday?

 V. Volkov et al. “Benchmarking GPUs to tune dense linear algebra”, SC08
 L-S. Chien, “Hand-tuned SGEMM on GT200 GPU”, TR Tsing Hua Univ., Taiwan

 Sorry if the performance numbers of some
“products” do not look so good…

July, 2010

Large-scale linear systems:Large-scale linear systems:
Estimation of Earth's gravity field

 GRACE project
t d /www.csr.utexas.edu/grace

 Solve y = H x0 + Є,
dense H → m x n
m = 66.000 observations
n = 26 000 parameters forn = 26.000 parameters for
a model of resolution
250km250km

July, 2010

Large-scale linear systemsLarge-scale linear systems

 Dense linear algebra is at the bottom of the “food
h i ” f i tifi d i ichain” for many scientific and engineering apps.

 Molecular dynamics simulations
BEM f l t ti d f t ti BEM for electromagnetism and fast acoustic
scattering problems

 Analysis of dielectric polarization of
nanostructuresnanostructures

 Model reduction of VLSI circuits

July, 2010

Large-scale linear systemsLarge-scale linear systems

 Dense matrix computations feature a high
t ti l tcomputational cost

 Solving Ax = b, with dense A → n x n requires O(n3) flops

 ...but GPUs love large, costly problems with
regular pattern accessesregular pattern accesses

July, 2010

OutlineOutline

 Dense linear algebra libraries
 Optimizations for single-GPU platforms
 Programming multi-GPU platforms:Programming multi GPU platforms:

 Shared memory
Clusters equipped with GPUs Clusters equipped with GPUs

July, 2010

OutlineOutline

 Dense linear algebra libraries
 Optimizations for single-GPU platforms
 Programming multi-GPU platforms:Programming multi GPU platforms:

 Shared memory
Clusters equipped with GPUs Clusters equipped with GPUs

July, 2010

Dense linear algebra libraries:Dense linear algebra libraries:
BLAS-1 & BLAS-2

 Once upon a time, vector processors were
i tmainstream…

 ...cast most computations as vector operationsp p
 BLAS-1: axpy (y := y + α x), dot (y := xT y)
 BLAS-2: gemv (y := α y + β A x), trsv (x := T-1 b)g (y y β), ()

July, 2010

Dense linear algebra libraries:Dense linear algebra libraries:
BLAS-3

 “The attack of the killer micros”, Brooks, 1989…

 …cast most computations in terms of operations
with high data reuse
 BLAS-3: gemm (C := α C + β A B), trsm (X := T-1 B)g (β), ()

July, 2010

Dense linear algebra libraries:Dense linear algebra libraries:
Importance of BLAS

 Provide portable performance
 Recognized by hardware vendors

 Intel MKL
 ACM ACML
 IBM ESSLIBM ESSL
 GotoBLAS (K. Goto now with Microsoft)

 NVIDIA CUBLAS

July, 2010

Dense linear algebra librariesDense linear algebra libraries

 More complex linear algebra operations:
 Linear systems
 Linear least-squares problems
 Eigenvalues
 Singular values and numerical rank

LAPACK libflameLAPACK
www.netlib.org/lapack

libflame
http://www.cs.utexas.edu/users/flame

July, 2010

OutlineOutline

 Dense linear algebra libraries
 Optimizations for single-GPU platforms

 Basic performancep
 Padding
 Matrix multiply as a building blockMatrix multiply as a building block
 Hybrid computations for linear systems
 Iterative refinementIterative refinement
 Data transfer

Programming multi GPU platforms Programming multi-GPU platforms

July, 2010

Initial considerationsInitial considerations

 Compute XYZ in the CPU or in the GPU?
 Problem size
 “Nature” of XYZ

 Overheads:
 Allocate/free memory in GPU
 Data transfer between CPU and GPU
 Invoke CUDA/CUBLAS

July, 2010

Experimental setupExperimental setup

 General-purpose
Intel Dual Xeon Quad Core E5410

 NVIDIA
Tesla C1060 (x4 = S1070) Intel Dual Xeon Quad-Core E5410

 8 cores@2.33 GHz
 SP/DP peak 149/75 GFLOPS

 Tesla C1060 (x4 = S1070)
 240 SP cores@1.3 GHz
 SP/DP peak 933/78 GFLOPS

 8 GB FB-DIMM
 GotoBLAS2 1.11

 4 GB DDR3
 CUBLAS 2.3

 AMD Phenom Quad-Core
 4 cores@2.2 GHz

 Fermi GTX480
 480 SP cores@1.4 GHz

 4 GB DDR2
 GotoBLAS 1.26

 1.5 GB GDDR5
 CUBLAS 2.3

July, 2010

Basic performance of single GPU:Basic performance of single GPU:
gemm

+ *:=C C BA

 High data reuse 2n3 flops vs. 3 n x n data
 Variants:Variants:

 3 matrix dimensions: m, n, k
 A or B can be transposed A or B can be transposed

July, 2010

Basic performance of single GPU:
Version Sp

C1060 (ith t f) 2 26Basic performance of single GPU:
gemm

C1060 (with transfer) 2.26

C1060 (w/out transfer) 2.55

GTX480 (with transfer) 3.43()

GTX480 (w/out transf.) 4.25

July, 2010

Basic performance of single GPU:
Version Sp

C1060 (ith t f) 0 92Basic performance of single GPU:
gemm

C1060 (with transfer) 0.92

C1060 (w/out transfer) 0.95

GTX480 (with transfer) 2.17()

GTX480 (w/out transf.) 2.43

July, 2010

Basic performance of single GPU:Basic performance of single GPU:
gemm

 Conclusions
 CUBLAS irregularly optimized (use of V. Volkov gemm for

problem of dimension 32k)
 Data transfer amortized for large problems

July, 2010

PaddingPadding

+ *:=C C BA

 Adds negligible cost: 2n3 → 2n3+ Є flops
 Applicable to many other operationsApplicable to many other operations
 Can be made transparent to the user

July, 2010

PaddingPadding

July, 2010

Matrix multiply as a building blockMatrix multiply as a building block

 Other BLAS-3
 Variants of matrix-matrix product: trmm, symm
 Triangular system solve: trsm
 Symmetric rank-k update: syrk
 Symmetric rank-2k update: syr2kSymmetric rank 2k update: syr2k

Same ratio computation/communication (data) as Same ratio computation/communication (data) as
gemm

July, 2010

Matrix multiply as a building block:Matrix multiply as a building block:
trsm

*:=X T-1 B

 High data reuse O(n3) flops vs. O(n2) data
 Variants:Variants:

 2 matrix dimensions: m, n
 T can be transposed appear on the right/left of B be upper T can be transposed, appear on the right/left of B, be upper

or lower triangular

July, 2010

Matrix multiply as a building block:Matrix multiply as a building block:
trsm

*:=

 Build trsm as a series of gemm plus small trsm
 “Poormen” BLAS: cast operations as gemmPoormen BLAS: cast operations as gemm

July, 2010

Matrix multiply as a building block:Matrix multiply as a building block:
trsm

Version Spp

GEMM as B.B. 1.50

July, 2010

Hybrid computations for linear systemsHybrid computations for linear systems

*:= A-1 bx

 For dense A, decompose it into simpler factors
 Several factorization methods:Several factorization methods:

 LU factorization (Gaussian elimination) for general A
 Cholesky factorization for s p d A Cholesky factorization for s.p.d. A
 QR factorization for overdetermined A (linear least squares)

July, 2010

Hybrid computations:Hybrid computations:
Cholesky factorization

A *= L LT

 At each iteration, compute one more block of
columns (panel) of L(p)

 Overwrite (lower triangle of) A with L

July, 2010

Hybrid computations:Hybrid computations:
Cholesky factorization

…

1st iter. 2nd iter. 3rd iter.

A11 = L11 L11
T

11 11 11

A21 = L21 := A21 L11
-T

A22 := A22 – L21 L21
T

22 22 21 21

July, 2010

Hybrid computations:Hybrid computations:
Cholesky factorization

 Insight:
Off load non computationally intensive Off-load non-computationally intensive
operations to CPU

 Initially, move all A to GPU
 At each iteration: At each iteration:

 Move A11 to CPU, factor block there, and
send results back to GPU

 Update A21 and A22 on the GPU

July, 2010

Hybrid computations:Hybrid computations:
Cholesky factorization Version Sp

C1060 (with transfer) 1.77C1060 (with transfer) 1.77

GTX480 (with transfer) 1.77

July, 2010

Iterative refinementIterative refinement

 For most apps., double precision is the norm
 …but GPUs (before Fermi) are significantly faster with

single precision arithmetic

 For linear systems, iterative refinement is a cheap y , p
method to recover double precision from a single
precision approximation!precision approximation!

July, 2010

Iterative refinementIterative refinement

As = Ls Ls
T Single precision; O(n3) flops

x := L -T (L -1 b) Single precision; O(n2) flopsxs := Ls
-T (Ls

-1 bs) Single precision; O(n2) flops
x := xs

trepeat

r := b – A x Double precision; O(n2) flops
rs := r
zs := Ls

-T (Ls
-1 rs) Single precision; O(n2) flops

z := zs

x := x + z Double precision; O(n) flops

July, 2010

Iterative refinementIterative refinement

July, 2010

Data transferData transfer

 Who is in control of data transfers between GPU
d CPU?and CPU?

 User (programmer) via CUDA API
 System: part of a runtime

 GMAC
 SuperMatrix/libflame
 GPUSsGPUSs

July, 2010

OutlineOutline

 Dense linear algebra libraries
 Optimizations for single-GPU platforms
 Programming multi-GPU platforms:Programming multi GPU platforms:

 Multi-GPU platforms
Clusters equipped with GPUs Clusters equipped with GPUs

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 How do we program these?

GPU
#1 GPU

#2
CPU(s) PCI-e

bus
#2

GPU
#3#3 GPU

#4

View as a…
 Shared-memory multiprocessor Shared memory multiprocessor
 Cluster (distributed-memory)

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Shared memory multiprocessor view

GPU
#1 GPU

#2

P1+
cache P2+

h
CPU(s) PCI-e

bus
#2

GPU
#3

cache

P3+
cache

Main
memory

#3 GPU
#4

cache P4+
cache

Not straight-forward:
 Heterogeneous system: n CPUs + m GPUs Heterogeneous system: n CPUs + m GPUs
 Multiple address spaces: 1 + m

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Shared memory multiprocessor view

GPU
#1 GPU

#2

P1+
cache P2+

h
CPU(s) PCI-e

bus
#2

GPU
#3

cache

P3+
cache

Main
memory

#3 GPU
#4

cache P4+
cache

Not straight-forward → Run-time system!
 Heterogeneous system: Task scheduling (temporal+spatial) Heterogeneous system: Task scheduling (temporal+spatial)
 Multiple address spaces: Data movement

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Cholesky factorization

…

1st iter. 2nd iter. 3rd iter.

A11 = L11 L11
T

A = L := A L -TA21 = L21 := A21 L11
-T

A22 := A22 – L21 L21
T

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Plenty of tasks…

…

1st iter. 2nd iter. 3rd iter.

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Plenty of task parallelism!

In differentIn different
iterations

1st iter. 2nd iter.

In the same
iteration

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

Scalar code (Super)scalar processor
loop: ld f0, 0(r1)

addd f4, f0, f2 IF ID ISS UF0

(p) p

sd f4, 0(r1)

addi r1, r1, #8

subi r2 r2 #1

UF1
subi r2, r2, #1

bnez r2, loop
UF2

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Something similar for (dense) linear algebra?

for (k=0; k<nb; k++){
1st iter.

Chol(A[k,k]);

for (i=k+1; i<nb; i++)

T (A[k k] A[i k])

F:

T Trsm(A[k,k], A[i,k]);

for (i=k+1; i<nb; i++){

Syrk(A[i,k],A[i,i]);

T:

P:

2nd iter.
Syrk(A[i,k],A[i,i]);

for (j=k+1; j<i; j++)

Gemm(A[i,k], A[j,k], A[i,j]);

P:

P:

}

}
3rd iter

July, 2010

3rd iter.

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Something similar for (dense) linear algebra?

 Apply “scalar” techniques at the block level
1st iter.

 Software implementation
 Thread/Task-level parallelism
 Target the cores/GPUs of the platform

2nd iter.

3rd iter

July, 2010

3rd iter.

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Read/written blocks determine dependencies, as in scalar case
l ld f0 0(1) f (k 0 k b k){loop: ld f0, 0(r1) for (k=0; k<nb; k++){

addd f4, f0, f2 Chol(A[k,k]);

sd f4 0(r1) for (i=k+1; i<nb; i++)sd f4, 0(r1) for (i=k+1; i<nb; i++)

addi r1, r1, #8 … Trsm(A[k,k], A[i,k]);

Dependencies form a task tree

… ……

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Blocked code: Multi-core/multi-GPU
for (k=0; k<nb; k++){for (k=0; k<nb; k++){

Chol(A[k,k]);

for (i=k+1; i<nb; i++)

Trsm(A[k,k], A[i,k]); …

 How do we generate the task tree?
Wh t d t b t k i t t t t th t k i th What needs to be taken into account to execute the tasks in the
tree?

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Use of a runtime: ID ISS N0
 Decode (ID): Generate

the task tree with a
“symbolic analysis” of the

 N1

symbolic analysis of the
code at execution time
Issue (ISS): Architecture

N2

 Issue (ISS): Architecture-
aware execution of the
tasks in the treetasks in the tree

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Decode stage: ID ISS N0
 “Symbolic analysis” of the code

N1

Blocked code: Task tree:

N2

Blocked code: Task tree:

for (k=0; k<nb; k++){

Chol(A[k,k]);

for (i=k+1; i<nb; i++) …

Trsm(A[k,k], A[i,k]); …

July, 2010

Task scheduling in multi-GPU platformsTask scheduling in multi-GPU platforms

 Issue stage: ID ISS N0
 Temporal scheduling of tasks,

attending to dependencies
 Mapping (spatial scheduling) of

N1
 Mapping (spatial scheduling) of

tasks to resources, aware of
locality

N2

…

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Shared memory multiprocessor view

GPU
#1 GPU

#2

P1+
cache P2+

h
CPU(s) PCI-e

bus
#2

GPU
#3

cache

P3+
cache

Main
memory

#3 GPU
#4

cache P4+
cache

Not straight-forward → Run-time system!
 Heterogeneous system: Task scheduling (temporal+spatial) Heterogeneous system: Task scheduling (temporal+spatial)
 Multiple address spaces: Data movement

July, 2010

Multiple address spacesMultiple address spaces

 Software Distributed-Shared Memory (DSM)
 Underlying distributed memory hidden from the users
 Well-known approach, not too efficient as a middleware for

general apps.

 Regularity of dense linear algebra operations makes a
difference!

July, 2010

Multiple address spacesMultiple address spaces

 Naive approach:
 Before executing a kernel, copy input data to GPU memory
 After execution, retrieve results back to CPU memory
 Easy to program (wrappers to kernels) Easy to program (wrappers to kernels)
 O(n3) Transfers between CPU and GPU

…

July, 2010

Multiple address spacesMultiple address spaces

 Shared memory multiprocessor view

GPU
#1 GPU

#2

P1+
cache P2+

h
CPU(s) PCI-e

bus
#2

GPU
#3

cache

P3+
cache

Main
memory

#3 GPU
#4

cache P4+
cache

Key to reduce #data transfers!
 Static mapping/dynamic schedulingStatic mapping/dynamic scheduling
 Software cache
 Cache/memory coherence policies

July, 2010

Multiple address spacesMultiple address spaces

 Where? Static mapping of tasks to resources
 Writes to a given block are always performed by the same

resource (owner-computes rule)
C 2 Cyclic mappings: row, column, 2-D

July, 2010

Multiple address spacesMultiple address spaces

 When? Dynamic scheduling of tasks
 As soon as data dependencies are fulfilled…
 Possibility of prioritizing tasks in the critical path

…

July, 2010

Multiple address spacesMultiple address spaces

 Software cache
(fl ibilit ffi i)(flexibility vs. efficiency)
 Maintain a map of

GPU
#1 GPU

#2memory
 Operate at the block level

(amortize software

CPU(s) PCI-e
bus

#2

GPU
#3(amortize software

handling with #flops)
Once data is in the GPU

#3 GPU
#4

 Once data is in the GPU
mem., keep it there as
long as possibleo g as poss b e

 LRU (or more advanced)

July, 2010

Multiple address spacesMultiple address spaces

 Coherence between
GPU d iGPU and main
memories GPU

#1 GPU
#2

 Write-back CPU(s) PCI-e
bus

#2

GPU
#3#3 GPU

#4

July, 2010

Multiple address spacesMultiple address spaces

 Coherence among GPU
imemories

 Write-invalidate
GPU
#1 GPU

#2
 Requires transfer via

main memory
CPU(s) PCI-e

bus
#2

GPU
#3#3 GPU

#4

July, 2010

Run-time implementationsRun-time implementations

 SuperMatrix (UT@Austin and UJI)
 Read/written blocks defined implicitly by the operations
 Only valid for dense linear algebra operations encoded in

ilibflame

 SMPSs (BSC) and GPUSs (BSC and UJI)
 OpenMP-like languages

#pragma css task inout(A[b*b])

void Chol(double *A);

A li bl t t k ll l d diff t l tf Applicable to task-parallel codes on different platforms:
multi-core, multi-GPU, multi-accelerators, Grid,…

July, 2010

Programming multi-GPU platforms
Version Sp

C1060 1.25Programming multi-GPU platforms BASIC 2.91

2D 4.04

CACHE+WI WT 4 55CACHE+WI,WT 4.55

WB 7.00

July, 2010

OutlineOutline

 Dense linear algebra libraries
 Optimizations for single-GPU platforms
 Programming multi-GPU platforms:Programming multi GPU platforms:

 Multi-GPU platforms
Clusters equipped with GPUs Clusters equipped with GPUs

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 How do we program these?

GPU
#1 GPU

#2
CPU(s) PCI-e

bus
#2

GPU
#3#3 GPU

#4

View as a…
 Shared-memory multiprocessor Shared memory multiprocessor
 Cluster (distributed-memory): valid also for true clusters!

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Cluster view

GPU
#1 GPU

#2

P1+
mem. P2+

CPU(s) PCI-e
bus

#2

GPU
#3

mem.

P3+
mem

Inter-
connect

#3 GPU
#4

mem. P4+
mem.

Differences:
 Processes instead of threads Processes instead of threads
 Message-passing (MPI) application

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Where and where?
 Static mapping of data and tasks to resources
 Data transfers embedded in the MPI code

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Naïve approach: Data in
d inode main memory

 Before executing a kernel,
copy input data to GPU

GPU
#1 GPU

#2copy input data to GPU
memory

 After execution, retrieve results

CPU(s) PCI-e
bus

#2

GPU
#3back to node main memory

 Easy to program (wrappers to
kernels)

#3 GPU
#4Inter-

connect
kernels)

 Copies linked to kernel
execution: O(n3) transfers
b t CPU d GPUbetween CPU and GPU

July, 2010

Programming multi-GPU platformsProgramming multi-GPU platforms

 Alternative approach:
D t i GPUData in GPU memory
 Before sending a piece of data,

retrieve it back to node main

GPU
#1 GPU

#2retrieve it back to node main
memory (compact on the fly)

 After reception, copy contents

CPU(s) PCI-e
bus

#2

GPU
#3to GPU memory

 Easy to program (wrappers to
MPI calls)

#3 GPU
#4Inter-

connect
MPI calls)

 Copies linked to
communication, not kernel

ti O(2) t fexecution: O(n2) transfers
between CPU and GPU

July, 2010

Message-passing implementationsMessage-passing implementations

 PLAPACK (UT@Austin)
 Use of objects (PLA_Obj), vectors, matrices, projected

vectors, etc., with layout embedded
 PMB distribution
 Layered and modular design: all communication is done via

i (PLA C) d d ti (PLA R d) fcopies (PLA_Copy) and reductions (PLA_Reduce) from one
object type to another

 Elemental (Jack Poulson)
 Based on PLAPACK, but C++
 Element-wise cyclic data layout

July, 2010

Programming multi-GPU platforms
Version Sp

2 C1060 1.40Programming multi-GPU platforms 4 C1060 3.45

8 C1060 6.82

16 C1060 11 7716 C1060 11.77

32 C1060 26.01

July, 2010

Programming multi-GPU platforms
Version Sp

2 C1060 1.40Programming multi-GPU platforms 4 C1060 6.13

8 C1060 8.42

16 C1060 12 5416 C1060 12.54

32 C1060 21.84

July, 2010

Acks & supportAcks. & support

 UJI
 F. Igual, G. Quintana

UT UT
 The FLAME team

BSC BSC
 Computer Sciences

Departmentp

July, 2010

More informationMore information…

 libflame (UT & UJI)
 http://www.cs.utexas.edu/users/flame

 GPUSs (BSC & UJI)()
 http://www.bsc.es
 http://www.bsc.es/plantillaG.php?cat id=385http://www.bsc.es/plantillaG.php?cat_id 385

July, 2010

FarewellFarewell

Thanks for your attention!*Thanks for your attention!

*Hope you enjoyed this as much as Barcelona’s beach

July, 2010

