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Disclaimer

= Not a course on how to program dense linear
algebra kernels on GPUs

Where have you been Monday-Wednesday?

V. Volkov et al. “Benchmarking GPUs to tune dense linear algebra”, SC08
L-S. Chien, “Hand-tuned SGEMM on GT200 GPU”, TR Tsing Hua Univ., Taiwan

« Sorry if the performance numbers of some
“products” do not look so good...

July, 2010 UNIVERSITAT



Large-scale linear systems:

Estimation of Earth's gravity field

« GRACE project

= Solve y=H x, + ¢,
dense H - m xn
m = 66.000 observations

n = 26.000 parameters for
a model of resolution
250km
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Large-scale linear systems

= Dense linear algebra is at the bottom of the “food
chain” for many scientific and engineering apps.

= Molecular dynamics simulations

« BEM for electromagnetism and fast acoustic
scattering problems

= Analysis of dielectric polarization of
nanostructures

= Model reduction of VLSI circuits

July, 2010



Large-scale linear systems o

« Dense matrix computations feature a high
computational cost
Solving Ax = b, with dense A — n x n requires O(n3) flops

« ...but GPUs love large, costly problems with
regular pattern accesses

July, 2010 UNIVERSITAT
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Outline o

« Dense linear algebra libraries
« Optimizations for single-GPU platforms

« Programming multi-GPU platforms:
Shared memory
Clusters equipped with GPUs

July, 2010 UNIVERSITAT
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QOutline oo

« Dense linear algebra libraries
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Dense linear algebra libraries: ose’
BLAS-1 & BLAS-2 .

» Once upon a time, vector processors were

mainstream.. D ey
= = J
}g‘! . 3

« ...cast most computations as vector operations
BLAS-1: axpy (y .=y + a x), dot (y ;= x" y)
BLAS-2: gemv (y :=ay +BAXx), trsv(x:=T7'hb)
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Dense linear algebra libraries:
BLAS-3

= “The attack of the killer micros”, Brooks, 1989...

= ...cast most computations in terms of operations

with high data reuse
BLAS-3: gemm (C:=a C+BAB), trsm (X:=T'B)

July, 2010



Dense linear algebra libraries: 0o
Importance of BLAS

» Provide portable performance

= Recognized by hardware vendors
Intel MKL
ACM ACML
IBM ESSL
GotoBLAS (K. Goto now with Microsoft)

NVIDIA CUBLAS
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Dense linear algebra libraries 000
®
= More complex linear algebra operations:
Linear systems
Linear least-squares problems
Eigenvalues
Singular values and numerical rank
LAPACK libflame
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Outline o

« Dense linear algebra libraries

= Optimizations for single-GPU platforms
Basic performance
Padding
Matrix multiply as a building block
Hybrid computations for linear systems
lterative refinement
Data transfer

July, 2010 u
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Initial considerations o

« Compute XYZ in the CPU or in the GPU?

Problem size
“Nature” of XYZ

Overheads:
- Allocate/free memory in GPU
- Data transfer between CPU and GPU
- Invoke CUDA/CUBLAS

July, 2010 u
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o0
0000
; 0000
Experimental setup 000
o
= (General-purpose  NVIDIA
Intel Dual Xeon Quad-Core E5410 - Tesla C1060 (x4 = S1070)
8 cores@2.33 GHz . 240 SP cores@1.3 GHz
SP/DP peak 149/75 GFLOPS -  SP/DP peak 933/78 GFLOPS
8 GB FB-DIMM - 4GB DDR3
GotoBLAS2 1.11 - CUBLAS 2.3
AMD Phenom Quad-Core - Fermi GTX480
4 cores@2.2 GHz - 480 SP cores@1.4 GHz
4 GB DDR2 - 1.5 GB GDDR5
GotoBLAS 1.26 - CUBLAS 2.3

July, 2010 UNIVERSITAT




Basic performance of single GPU:
gemm

-

» High data reuse 2n° flops vs. 3 n x n data

= Variants:
3 matrix dimensions: m, n, k
A or B can be transposed

July, 2010
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Basic performance of single GPU:

gemm

Version
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Basic performance of single GPU:
gemm

= Conclusions

- CUBLAS irregularly optimized (use of V. Volkov gemm for

problem of dimension 32k)
- Data transfer amortized for large problems

July, 2010



Padding

- Adds negligible cost: 2n® — 2n3+ € flops
= Applicable to many other operations
« Can be made transparent to the user
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Matrix multiply as a building block o

= Other BLAS-3

- Variants of matrix-matrix product: trmm, symm
- Triangular system solve: trsm

- Symmetric rank-k update: syrk

- Symmetric rank-2k update: syr2k

« Same ratio computation/communication (data) as
gemm

July, 2010 UNIVERSITAT
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Matrix multiply as a building block: o
trsm

« High data reuse O(n?) flops vs. O(n?) data

= Variants:
2 matrix dimensions: m, n

T can be transposed, appear on the right/left of B, be upper
or lower triangular

July, 2010 UNIVERSITAT
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Matrix multiply as a building block: o
trsm

=l

= Build trsm as a series of gemm plus small trsm
« "Poormen” BLAS: cast operations as gemm

July, 2010 UNIVERSITAT

JAUME:1




Matrix multiply as a building block: o

trsm
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Hybrid computations for linear systems o

¢
i

« For dense A, decompose it into simpler factors

= Several factorization methods:
LU factorization (Gaussian elimination) for general A
Cholesky factorization for s.p.d. A
QR factorization for overdetermined A (linear least squares)

July, 2010 UNIVERSITAT
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Hybrid computations: o
Cholesky factorization

» At each iteration, compute one more block of
columns (panel) of L

= Overwrite (lower triangle of) A with L

JAUME:1



Hybrid computations: 0co
Cholesky factorization

1st iter. 2nd iter. 3rd iter.

Ay = Ay —Ly Ly T

July, 2010 UNIVERSITAT
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Hybrid computations: 3T
Cholesky factorization

= |nsight:

Off-load non-computationally intensive
operations to CPU

= Initially, move all A to GPU

= At each iteration:

Move to CPU, factor block there, and
send results back to GPU

Update and A,, on the GPU

July, 2010 u




Hybrid computations: 0co

Cholesky factorization

Version
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lterative refinement

« For most apps., double precision is the norm

- ...but GPUs (before Fermi) are significantly faster with
single precision arithmetic

« For linear systems, iterative refinement is a cheap
method to recover double precision from a single
precision approximation!

July, 2010 UNIVERSIT, AT




coco
. . 0000
Iterative refinement 000
o
A =L LT Single precision; O(n3) flops
X, =LST (LT b Single precision; O(n?) flops
X =X
repeat
r, ;=r
z.:=L T (L 7r) Single precision; O(n?) flops
z =z
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Ilterative refinement

Time ()

10

Iterative refinement - Cholesky factorization

Iterative I!Eefinement
Cholesky on the GFU - SF
Cholesky on the GFU + System solution - DF
Cholesky on the CFRU + System solution - DF

|
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G000
Froblem size (n)
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Data transfer o

= Who is in control of data transfers between GPU
and CPU?
User (programmer) via CUDA API

System: part of a runtime

- GMAC
- SuperMatrix/libflame

- GPUSs

July, 2010 UNIVERSITAT
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Outline

« Programming multi-GPU platforms:
Multi-GPU platforms
Clusters equipped with GPUs

July, 2010




Programming multi-GPU platforms 000

« How do we program these?

GPU
GPU
PCI -e
bus
GPU

GPU
#4

View as a...
Shared-memory multiprocessor

u RS
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Programming multi-GPU platforms

« Shared memory multiprocessor view

GPU
GPU
PCI -e
bus
GPU
GPU
#4

Not straight-forward:
Heterogeneous system: n CPUs + m GPUs
Multiple address spaces: 1 + m

P3+




Programming multi-GPU platforms 000

« Shared memory multiprocessor view

GPU
GPU
PCI -e
bus
GPU
GPU
#4

Not straight-forward — Run-time system!
Heterogeneous system: Task scheduling (temporal+spatial)
Multiple address spaces: Data movement

P3+

m July, 2010 UNIVERSITAT
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Task scheduling in multi-GPU platforms | e

= Cholesky factorization

1st iter. 2nd iter. 3rd iter.

Ay = Ap—Ly Ly T

July, 2010 UNIVERSITAT
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Task scheduling in multi-GPU platforms

= Plenty of tasks...

A
| [N
| [N
HEE.
| [ | IN

HEEEE.

1st iter.

2nd iter.

July, 2010
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Task scheduling in multi-GPU platforms

= Plenty of task parallelism!

1st iter.

> In different

| iterations

2nd iter.

In the same
iteration

July, 2010




Task scheduling in multi-GPU platforms | ese

Scalar code (Super)scalar processor

loop: Id 0, O(rl)
addd f4, f0, 2 Lli_ > 1D
sd 4, 0(rl) ]
addr rl1, rl1, #8

subt r2, r2, #1
bnez r2, loop

H
m July, 2010 UNIVERSITAT
JAUME:1



Task scheduling in multi-GPU platforms

s Something similar for (dense) linear algebra?

1stiter.['x

3rd iter.

for (k=0; k<nb; k++){
F: Chol(A[k,kD):
for (1=k+1; i1<nb; 1++)
T: Trsm(A[k,k], AL[i.k]);
for (1=k+1; i<nb; 1++){
BB syrk(ALi.K1.ALLiD);
for (g=k+1; j<i; j++)

Gemm(A[i,k], AL[§.kK1. AL[i.J1);

July, 2010
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Task scheduling in multi-GPU platforms | e

s Something similar for (dense) linear algebra?

1st iter.

N

| [ [ L

3rd iter.

Apply “scalar” techniques at the block level
Software implementation
Thread/Task-level parallelism

Target the cores/GPUs of the platform

July, 2010 u
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Task scheduling in multi-GPU platforms | eee

s Read/written blocks determine dependencies, as in scalar case

loop: Id (fQ, 0(r1) for (k=0; k<nb; k++){
addd f4, (f0) f2 Chol ALK.K1);

sd  f4, 0(rl) for (i=k+Y; i<nb; i++)

addi rl, rl, #8 ... Trsm@Ik.K), ALi.K1);

Dependencies form a task tree

N

July, 2010 u
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Task scheduling in multi-GPU platforms | ese

s Blocked code: Multi-core/muilti
for (k=0; k<nb; k++){ o <
Chol (ALK, KD);
for (1=k+1; i<nb; i++)
Trsm(A[K,K], A[i.KD); ...

-GPU

=
B

= How do we generate the task tree?

s \What needs to be taken into account to execute the tasks in the
tree?

B C W July, 2010 WA



Task scheduling in multi-GPU platforms

m Use of a runtime: ‘ ID—

- Decode (ID): Generate AN
the task tree with a
“symbolic analysis” of the
code at execution time

. Issue (ISS): Architecture-
aware execution of the
tasks in the tree




(| X )
0000
. . . X XX
Task scheduling in multi-GPU platforms | eee
o
» Decode stage: mg -
= “Symbolic analysis” of the code ]
Blocked code: Task tree:
for (k=0; k<nb; k++){ Cgé S
Chol (ALK, K1) ; N
for (i=k+1; i<nb; i++) — s
Trsm(ALK.K]. A[i.KD: .. =

|
[ | L
| |

;2 m W

g1 \C v
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Task scheduling in multi-GPU platforms | ese

m |ssue stage:

m Temporal scheduling of tasks,
attending to dependencies

s  Mapping (spatial scheduling) of
tasks to resources, aware of
locality

S




Programming multi-GPU platforms

« Shared memory multiprocessor view

GPU
GPU
PCI -e
bus
GPU
GPU
#4

Not straight-forward — Run-time system!

P3+

Multiple address spaces: Data movement




Multiple address spaces o

» Software Distributed-Shared Memory (DSM)

Underlying distributed memory hidden from the users

Well-known approach, not too efficient as a middleware for
general apps.

Regularity of dense linear algebra operations makes a
difference!

July, 2010 UNIVERSITAT
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Multiple address spaces

= Naive approach:

m Before executing a kernel, copy input data to GPU memory
m After execution, retrieve results back to CPU memory

m Easy to program (wrappers to kernels)

s  O(nd) Transfers between CPU and GPU

July, 2010




Multiple address spaces °oo

« Shared memory multiprocessor view

GPU
GPU
PCI -e
bus
GPU

GPU
#4

Key to reduce #data transfers!

Static mapping/dynamic scheduling
Software cache
Cache/memory coherence policies

m July, 2010 UNIVERSITAT
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Multiple address spaces °oo

= Where”? Static mapping of tasks to resources

Writes to a given block are always performed by the same
resource (owner-computes rule)

Cyclic mappings: row, column, 2-D

L
|
| 4

A
o N . NN
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Multiple address spaces

« When? Dynamic scheduling of tasks
As soon as data dependencies are fulfilled...
Possibility of prioritizing tasks in the critical path

July, 2010




Multiple address spaces

= Software cache
(flexibility vs. efficiency)

Maintain a map of
memory

Operate at the block level
(amortize software
handling with #flops)

Once data is in the GPU
mem., keep it there as
long as possible

LRU (or more advanced)

July, 2010




Multiple address spaces

= Coherence between
GPU and main
memories

Write-back

July, 2010




Multiple address spaces

= Coherence among GPU
memories

Write-invalidate

Requires transfer via
main memory

B C W July, 2010




Run-time implementations

- SuperMatrix (UT@Austin and UJI)

Read/written blocks defined implicitly by the operations

- Only valid for dense linear algebra operations encoded in
1ibflame

« SMPSs (BSC) and GPUSs (BSC and UJI)

- OpenMP-like languages
#pragma css task 1nout(A[b*b])
void Chol(double *A);

- Applicable to task-parallel codes on different platforms:
multi-core, multi-GPU, multi-accelerators, Grid,...

July, 2010 UNIVERSIT, AT
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Programming multi-GPU platforms .
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Outline

« Programming multi-GPU platforms:
Multi-GPU platforms
Clusters equipped with GPUs

July, 2010




Programming multi-GPU platforms 000

« How do we program these?

GPU
GPU
PCI -e
bus
GPU

GPU
#4

View as a...

Cluster (distributed-memory): valid also for true clusters!

m July, 2010 UNIVERSITAT
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Programming multi-GPU platforms 000

= Cluster view

(3PU
(3PU
PCIe
bus
(3PU
GPU
#4
Differences:

Processes instead of threads
Message-passing (MPI) application

P1+
mem.

P2+
Inter- mem.
connect

P3+

m July, 2010 UNIVERSITAT
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Programming multi-GPU platforms

= Where and where?

Static mapping of data and tasks to resources
Data transfers embedded in the MPI code

L
|
| 4
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Programming multi-GPU platforms 000

= Nalve approach: Data in

node main memory

m Before executing a kernel,
copy input data to GPU
memory

m After execution, retrieve results
back to node main memory

Inter-
s Easy to program (wrappers to connect

kernels)

m Copies linked to kernel
execution: O(n3) transfers
between CPU and GPU

July, 2010 UNIVERSITAT



Programming multi-GPU platforms 000

= Alternative approach:
Data in GPU memory

m Before sending a piece of data,
retrieve it back to node main
memory (compact on the fly)

m After reception, copy contents
to GPU memory

Inter-
s Easy to program (wrappers to connect

MPI calls)

m Copies linked to
communication, not kernel
execution: O(n?) transfers
between CPU and GPU

July, 2010 UNIVERSITAT




Message-passing implementations o

. PLAPACK (UT@Austin)
- Use of objects (PLA_Obj), vectors, matrices, projected
vectors, etc., with layout embedded

PMB distribution

Layered and modular design: all communication is done via
copies (PLA Copy) and reductions (PLA Reduce) from one

object type to another

« Elemental (Jack Poulson)
- Based on PLAPACK, but C++
Element-wise cyclic data layout

July, 2010 UNIVERSITAT
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Acks. & support o

= UJI
- UT NVIDIA
The FLAME team Micresoft
- BSC
Computer Sciences
Department -
LR N e @
»  E INNOVACION Y
75|
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More information... °o0
o
= libflame (UT & UJI)
http://www.cs.utexas.edu/users/flame
. GPUSs (BSC & UJI)
http://www.bsc.es
http://www.bsc.es/plantillaG.php?cat 1d=385
m July, 2010 u%;a



Farewell eoo

Thanks for your attention!*

*Hope you enjoyed this as much as Barcelona’s beach
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