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MOTIVATION
� Dennard’s scaling vs Moore’s Law

IBM Power8 (Q3’15)

22 nm

3.12 GHz

TDP 190-200 W

12 cores/96 threads

Intel Xeon E5-4669 v3 (Q2’15)

22 nm

2.1 GHz

TDP 135 W

18 cores/36 threads
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MOTIVATION
� 5 nm in about 7-9 years:

• 2.4x faster

• 10x more transistors

• … but only 10% simultaneously active

Dark silicon (utilization wall) and specialization!
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MOTIVATION
� Approximate Computing: energy vs accuracy (or reliability)

Signal & video processing

Probabilistic inference

Service profiling

Monte Carlo simulation

Machine learning
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MOTIVATION
� Approximate Computing: energy vs accuracy (or reliability)

Numerical Linear Algebra?

• Tiny errors can rapidly aggregate

• Double precision is the standard
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OUTLINE
� Jacobi solver for sparse linear systems

� Mantissa-adaptive Jacobi

� Experimental evaluation

� Concluding remarks
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Stationary Methods: Jacobi
� Given Ax = b

with D=diag(A), and x{0} a starting solution guess

• Linear convergence provided spectral radius of M < 1
• Components of x{k} can be computed in parallel

• Alternative to exact triangular solves in approximate ILU preconditioning
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Mantissa-adaptive Jacobi
� Basic idea:

• Operate in low (“cheap”) precision and gradually increase as needed

◦ Currently {32,64}-bit precision

◦ NVIDIA “Pascal” GPUs: {16,32,64}-bit precision?

◦ FPGAs: custom
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Mantissa-adaptive Jacobi
� Basic idea:

• Operate in low (“cheap”) precision and gradually increase as needed

• Already explored for Jacobi

• …but do it with a fine granularity (component-wise)

• …and apply a cheap criterion to detect when to increase precision

“On the potential of significance-driven execution for energy-aware HPC”

P. Gschwandtner, C. Chalios, D. S. Nikolopoulos, H. Vandierendonck, T. Fahringer

Computer Science – Research and Development, 2015
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Mantissa-adaptive Jacobi
� How?

• Component-wise contraction property:
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Mantissa-adaptive Jacobi
� How?

• Component-wise contraction rate is constant:

Exploding ratio z{k-1}/z{k} due to small z{k} indicates convergence of
the component in the current precision
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Mantissa-adaptive Jacobi
� Practicalities:

• Reduce the cost/periodicity of the test: z{k-Φ}/z{k}

• Take into account rounding errors:

determines that an extension is necessary

• Avoid stagnation by setting

for some user-defined 0 < δ < 1
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Mantissa-adaptive Jacobi
� Practicalities:

• δ governs how quickly the mantissa is extended:

◦ Faster/slower as δ → 0/1

• Control the magnitude (gradient) of the increase: γ bits

• First three iterations in full precision, to estimate component-wise contraction
rate
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Mantissa-adaptive Jacobi
� Connection between fault tolerance and AC

• Fault tolerance: obtain “exact” solution in presence of errors

• AC: operating with low precision can be viewed as errors in the part of the
mantissa that is chopped

• Deviation from the contraction property: errors (fault tolerance) or
convergence in current precisión (AC)

“Tuning iterative solvers for fault resilience”

H. Anzt, J. Dongarra, E. S. Quintana-Ortí

ScalA’2015 (Tomorrow!)
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Experiments
� Matlab (R2014a) and IEEE 754 double precision (64 bits):

� Solvers:
• Full precision (52-bit mantissa)

• 8-bit precision (8-bit mantissa)

• Adaptive precision, starting with 8 bits

� Tune δ (tolerance threshold), γ (bit extension gradient), Φ (periodicity)
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Experiments
� 27-pt stencil discretization of 3D Laplace using 16x16x16mesh:

• Symmetric matrix of order 4,096 with 97K nonzeros, well conditioned

• Starting guess x{0} = 0, b = [1,1,…,1]
• Convergence stopping criterion
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Experiments
� Intel Xeon E5-2670 CPU. Emulate adaptive precision in hardware. At
each iteration:
• Truncate input data to desired precision

• Compute (in 64-bit arithmetic) yi := A(i,:) ⋅ x{k-1} and truncate (to desired
precision)

• Compute pi := (b i - yi) / A(i,i) and truncate

• Compute next iterate x{k} := x {k-1} + pi and truncate
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Experiments: validate emulation mode
� Truncate result of dot-product vs truncate all flops (4x4x4case)
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Experiments: select δ
� δ = 0.1, γ = 8, Φ = 10
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Experiments: select δ
� δ = 0.5, γ = 8, Φ = 10
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Experiments: select δ
� δ = 0.9, γ = 8, Φ = 10
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Experiments: select δ
� Quantify computational cost/savings

� For iteration k

� For the full solve
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Experiments: select δ
� γ = 8, Φ = 10
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Experiments: select γ
� γ = 2, 4 or 8, Φ = 10, δ = 0.8
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Experiments: select γ
� γ = 1, 2, 4, 8or 16, Φ = 10
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Experiments: vector-wise adaptive
� γ = 1, 2, 4, 8or 16, Φ = 10
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Experiments: Approx. triangular solves in 
ILU preconditioner
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Conclusions
� Careful exploitation of the component-wise contraction property of

Jacobi iteration:

• Monitor deviations from the expected convergence rate

• Account for rounding error, but avoid stagnation

• Cheap and periodic test for extension

� Potential savings of up to 60% for 3D Laplace benchmark

� Link with fault tolerance
“Tuning iterative solvers for fault resilience”

H. Anzt, J. Dongarra, E. S. Quintana-Ortí

ScalA’2015 (Tomorrow!)
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