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Motivation

Model order reduction

 Replace a model of a physical process by a simpler one

 Why?

 Control design:

 Real-time only possible with controllers of low complexity

 Simple controllers are more robust

 Simulation

 Repeated simulation for different force terms (inputs)

 Reduce once, simulate many!

G(s) = C(sIn-A)-1B     →    Gr (s) = Cr (sIr-Ar)
-1Br
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Motivation

Model order reduction

 Optimal cooling of steel profiles:

 Productivity: reduce the temperature 

rapidly

 Quality standards on durability: avoid 

large gradients in the temperature 

distributions

 Solve Riccati matrix equation

X := F(A,S,Q) = 0,

A → n x n with n = 5,177 - 79,841, 

depending on mesh width
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Motivation

Model order reduction

 Tunable optical filter:

 Optical filter tunable by thermal 

means

 Determine electrical power to be 

applied in order to reach the critical 

temperature and homogeneous 

temperature distribution

 Solve Riccati matrix equation

X := F(A,S,Q) = 0,

A → n x n with n = 108,373
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Motivation

Model order reduction

 Newton’s method for the Riccati equation

X := F(A,S,Q) = AT X + X A – X S X+ Q = 0,

→ one Lyapunov equation per iteration

 Matrix sign function for the Lyapunov equation

X := F(A,Z) = AT X + X A + Z = 0,

→ one matrix inversion per iteration
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Motivation

Model order reduction

 Invert A → n x n
≈ 2n3 flops

 Intel Xeon: 4 DP flops/cycle, 

e.g., at f = 2.0 GHz

→ 8 billion flops/sec.

n Time      

1 core

100 0. 25 ms

1.000 0.25 s
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Motivation

Model order reduction

 Invert A → n x n
≈ 2n3 flops

 Intel Xeon: 4 DP flops/cycle, 

e.g., at f = 2.0 GHz

→ 8 billion flops/sec.

n Time      

1 core

Time 

8 cores

Time     16-node

cluster, 192 cores

100 0.25 ms -- --

1.000 0.25 s -- --

104 > 4 m 31.2 s --

105 > 69 h > 8 h > 21 m

Steel profiles

Optical filter

Numerical methods for model order reduction are costly from 

the computational point of view!

x #sign function iterations 

x #Newton iterations
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Motivation

Model order reduction

 32-node Intel Pentium II cluster (300MHz. DGEMM: 180 DP 

MFLOPS/core) and myrinet interconnect: 

 Lyapunov eqn. n = 5,177 (BT method) in 38.5 m.

“State-space truncation methods for parallel model reduction of large-scale systems”. 

P. Benner, E. S. Quintana, G. Quintana. 

Parallel Computing, 2003
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Motivation

Model order reduction

 32-node Intel Pentium II cluster (300MHz. DGEMM: 180 DP 

MFLOPS/core) and myrinet interconnect: 

 Lyapunov eqn. n = 5,177 (BT method) in 38.5 m.

 8 cores Intel Xeon (2.3 GHz. Peak: 9.2 DP GFLOPS/core) and 

Tesla C1060 (240 cores):

 Lyapunov eqn. n = 5,177 (BT method) in 55.5 s.

“State-space truncation methods for parallel model reduction of large-scale systems”. 

P. Benner, E. S. Quintana, G. Quintana. 

Parallel Computing, 2003

“A mixed-precision algorithm for the solution of Lyapunov equations on hybrid

CPU-GPU platforms”. 

P. Benner, P. Ezzatti, D. Kressner, E. S. Quintana, A. Remón. 

Parallel Computing, 2011

/40
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Index

 Motivation

 Model reduction and solvers for matrix equations

 Matrix inversion on CPU-GPU 

 Mixed precision and iterative refinement

 OOC

 Energy efficiency

Only 6 slides!
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Model reduction and matrix equations

 Modeling physical processes:

ẋ(t) = A x(t) + B u(t) G(s) = C(sIn-A)-1B

y(t) = C x(t)

order n (size of A), m inputs and p outputs; x(0) = x0

 Find an alternative reduced order model:

ẋr(t) = Ar xr (t) + Br u(t) Gr (s) = Cr (sIr-Ar)
-1Br

yr (t) = Cr xr (t)

order r << n, with ||y - yr || small
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Model reduction and matrix equations

 SVD-based approximation methods for model reduction

 Preserve stability

 Provide a global error bound of the approximation

 Costly but highly parallel!

 Balanced Truncation: Absolute error method, aiming at:

min || G – Gr ||∞

as

|| y – yr ||2 ≤ || u ||2 ||G – Gr ||∞ 
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Model reduction and matrix equations

 Balanced Truncation:

 Solve the coupled Lyapunov equations:

A Wc + Wc AT + BBT = 0,  AT Wo+ Wo A + CTC = 0, 

for the Cholesky factors Wc = STS and Wo = RTR

 Compute the Hankel singular values from the SVD

SRT = U Σ VT = [U1 U2] diag(Σ1, Σ2 ) [V1 V2] T

with partitionings of the “appropriate” dimension r

 Then, (Ar , Br , Cr ) := (Tl A Tr , Tl B , Cr T ) with

Tl := Σ1 
-1/2V1

T R, Tr := S T U1 Σ1 
-1/2

By far, the most expensive stage!
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Model reduction and matrix equations

 Balanced Stochastic Truncation: 

 Relative error method

 Requires the solution of a Riccati equation and a Lyapunov

equation

 Matrix sign function-based solvers for the Lyapunov equation

 Costly (≈ 2n3 flops per iteration)

 Numerically reliable

 Easy to optimize and parallelize: multi-core, cluster, GPUs,…
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Model reduction and matrix equations

 Consider the Lyapunov eqn.:

A Wc + Wc AT + BBT = 0

with Wc = STS

 Newton iteration for the matrix sign function:

Ak+1 := (Ak + Ak
-1) /2, A0 := A

Sk+1 := [ Sk ,   Ak
-1Sk ]/√2, S0 := B

Upon convergence (after s iterations), Wc = STS ≈ SsSs
T

By far, the most expensive part!
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Index

 Motivation

 Model reduction and solvers for matrix equations

 Matrix inversion on CPU-GPU 

 LU vs GJE

 Runtime

 Mixed precision and iterative refinement

 OOC

 Energy efficiency

“Matrix inversion on CPU-GPU platforms with applications in control”. 

P. Benner, P. Ezzatti, E. S. Quintana, A. Remón. 

Concurrency and Computation: Practice and Experience, 2012
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Matrix inversion on CPU-GPU

LU vs GJE. Introduction

 A dense, banded, structured or sparse → A-1 dense

 2n3 flops for matrix inversion (half if symmetric)

 Permutations needed for numerical stability (except for A
symmetric positive definite, s.p.d.). Not shown during the 

presentation
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Matrix inversion on CPU-GPU

LU vs GJE. Introduction

 Blocked, loop-based procedure alike many other dense linear 

algebra operations

 At each iteration, O(n2b) flops vs O(n2) memops

Update some of the blocks

for (k=1; k<=n; k+=b){

...

}
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Matrix inversion on CPU-GPU

LU vs GJE. Introduction

 Based on LU factorization:

1. A = LU

2. U → U-1= Ũ

3. X L = Ũ for  X = A-1

 Level-3 BLAS

 Three-sweep algorithm

 Stages 2 and 3 work on triangular matrices: balancing?
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Matrix inversion on CPU-GPU

LU vs GJE. Introduction

 Based on GJE:

 Level-3 BLAS rich in matrix-matrix products

 One-sweep algorithm

 Same cost and numerical stability as LU-based procedure

 All iterations work on full dense matrix, performing the same 

number of flops: balancing
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Matrix inversion on CPU-GPU

LU vs GJE. Results

 Experimental setup

 IEEE double precision arithmetic (must!)

 Performance in GFLOPS

 Platform

 Two Intel Xeon E5520 quadcore (8 cores total)

 NVIDIA Tesla C2050 (Fermi)

 Software

 Intel MKL (v11.1) for BLAS and LAPACK

 NVIDIA CUBLAS (v4.0) for BLAS

 EM Photonics CULA (R13a) for BLAS and LAPACK

 UTK MAGMA (v1.1.0) for BLAS and LAPACK

 BASIC (ad-hoc) implementations of certain kernels
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Matrix inversion on CPU-GPU

LU vs GJE. Results

 General matrices
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Matrix inversion on CPU-GPU

LU vs GJE. Results

 s.p.d. matrices
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Matrix inversion on CPU-GPU

LU vs GJE

 Optimizations

 Hybrid CPU-GPU acceleration

 Optimize for CPU (block algorithm, etc.)

 Optimize for GPU (padding, merge, etc.)

 Reduce PCI data transfers (slow PCI-e)

 Overlap communication and computation

 Avoiding bottlenecks with look-ahead

Techniques applicable to many dense 

(and sparse) linear algebra kernels!
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Hybrid CPU-GPU acceleration

 Computations on CPU-only, GPU-only or both?

Obvious answer for HeteroPAR audience!
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Hybrid CPU-GPU acceleration

 Due to complexity and fine granularity of pivoting, clear candidate 

for CPU!

Panel 

factorization
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Hybrid CPU-GPU acceleration

 1-D workload distribution!

 In general, 2-D distributions reduce volume of communications 

but, because factorization is on CPU, there is no clear advantage

 Width of CPU/GPU blocks? Easily tunable

 With look-ahead, factorization and update can be overlapped

Concurrent update
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Optimization on CPU

 Blocked panel factorization
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Optimization on GPU

 Padding

 Ensure that GPU operations always work with blocks of size 

that is an integer multiple of 32

 Size of I <32. Overhead negligible, provided n is large

A 0

0 I
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Optimization on GPU

 Merge of update

 GPU kernels perform much better with larger data

Same idea
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Reduce PCI data transfers

 Keep bulk of data close to GPU cores

 View GPU memory as cache of data in CPU memory

 Data does not fit into GPU memory? 

→ Old ideas from OOC computing (later)
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Overlap communication and computation

 Initially, matrix A in CPU memory

 Copy it to GPU memory:

 n2 memops (PCI) for 2n3 flops: negligible ratio for large n

 Part of matrix sign function iteration:

Ak+1 := (Ak + Ak
-1) /2, A0 := A

 n2 memops (PCI) for 2n3s flops: negligible ratio even for 

moderate n
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Overlap communication and computation

 During the iteration, matrix A in GPU memory

 Copy panel to CPU memory:

 2nb memops (PCI) for 2n2b flops: favorable ratio for large n

 Apply double buffering?  Look-ahead!
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Look-ahead:

 Reduce the impact of “slow” computations

 Works for LU, Cholesky, QR,…

 Integrated, e.g., into Intel MKL

“A comparison of lookahead and algorithmic blocking techniques for parallel matrix factorization”. 

P. Strazdins. 

Techn. Report TR-CS-98-07, Dept. Computer Science, The Australian National University, 1998
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Matrix inversion via GJE without look-ahead

 Panel factorization is mostly sequential

 As #cores/GPU power grows, execution time dominated by panel 

factorization!

Timeline

CPU

GPU

F0

U1, U2,U3,…

F1

U0, ...
PCI
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Matrix inversion via GJE with look-ahead

 Originality: apply to matrix inversion

 Hybrid CPU-GPU platform

 Flops and memops remain constant during procedure

CPU

GPU

F0

U2, U3,U4,…

F1

U3, U0,U4,…
PCI

U
1

U
2 F2 U

3

Timeline
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Matrix inversion on CPU-GPU

LU vs GJE. Optimization

 Look-ahead of depth 2, 3,…?

 Complex programming

 Optimal depth of look-ahead depends on

problem size, architecture, etc.

 Dynamic look-ahead? 

Runtime!
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Matrix inversion on CPU-GPU

Runtime. Overview

 “Taxonomy”

CPU (multicore) CPU-GPU

Dense linear algebra
libflame+SuperMatrix - UT

PLASMA - UTK

libflame+SuperMatrix - UT

MAGMA – UTK

Generic SMPSs (OMPSs) - BSC
GPUSs (OMPSs) – BSC

StarPU - INRIA Bordeaux
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Matrix inversion on CPU-GPU

Runtime. Overview

 Principles of operation:

 Exploitation of task parallelism

 Dynamic detection of data dependencies (data-flow parallelism)

 Scheduling tasks to resources on-the-fly

 Surely not a new idea!

“An Efficient Algorithm for Exploiting Multiple Arithmetic Units”. 

R. M. Tomasulo.

IBM J. of R&D, 1967
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Matrix inversion on CPU-GPU

Runtime. Overview

 OMPSs runtime

 Automatic identification of 

tasks/dependencies

1

2

3

4

5 6

7

8 9 10

Runtime
ANALYSIS

Annotated code with

OpenMP-like pragmas

// Task

#pragma omp task input  (oper1,…)  \

output (oper2,…) \

inout (oper3,…)

void task_function( oper1, 

oper2,

oper3,... )

{

... 

}

How?

Strict order of invocations to 

operations (tasks) and directionality 

of operands (input, output, inout) 

identify dependencies



HeteroPAR 2012 Rhodes Island, GreeceAugust  27, 2012

Matrix inversion on CPU-GPU

Runtime. Overview

 OMPSs runtime

 Scheduling of tasks to 
computational resources (cores, 
GPUs, etc.)

1

2

3

4

5 6

7

8 9 10

Runtime
SCHEDULE
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Matrix inversion on CPU-GPU

Runtime. Overview

 OMPSs
 Automatic handling of  Multi-GPU execution

 Transparent data-management on GPU side (allocation, 

transfers,...) and synchronization

 One manager thread in the host per GPU. Responsible for:

 Transferring data from/to GPUs

 Executing GPU tasks 

 Synchronization

 Overlap of computation and communication

 Data pre-fetch
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Matrix inversion on CPU-GPU

Runtime. OMPSs GJE

void main (...) {...

for (k=1; k<=n; k+=b){

Factorize( n, b, &Aref( 1, k ) );

for (j=1; j<k; j+=b)

Update( n, b, &Aref( 1, k ), &Aref( 1, j ) );

for (j=k+b; j<=n; j+=b)

Update( n, b, &Aref( 1, k ), &Aref( 1, j ) );

}

}

void Factorize( n, b, A ){ … }

void Update( n, b, A, B ){ … }
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Matrix inversion on CPU-GPU

Runtime. OMPSs GJE

void main (...) {...

#pragma omp start

for (k=1; k<=n; k+=b){

Factorize( n, b, &Aref( 1, k ) );

for (j=1; j<k; j+=b)

Update( n, b, &Aref( 1, k ), &Aref( 1, j ) );

for (j=k+b; j<=n; j+=b)

Update( n, b, &Aref( 1, k ), &Aref( 1, j ) );

}

#pragma omp stop

}

#pragma omp task input( n, b ) inout([n][b]A )

void Factorize( n, b, A ){ … }

#pragma omp task input( n, b, [n][b]A ) inout([n][b]B )

void Update( n, b, A, B ){ … }
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Matrix inversion on CPU-GPU

Runtime. OMPSs GJE

void main (...) {...

#pragma omp start

for (k=1; k<=n; k+=b){

Factorize( n, b, &Aref( 1, k ) );

for (j=1; j<k; j+=b)

Update( n, b, &Aref( 1, k ), &Aref( 1, j ) );

for (j=k+b; j<=n; j+=b)

Update( n, b, &Aref( 1, k ), &Aref( 1, j ) );

}

#pragma omp stop

}

#pragma omp target ( smp )

#pragma omp task input( n, b ) inout([n][b]A )

void Factorize( n, b, A ){ … }

#pragma omp target ( cuda ) copy_deps

#pragma omp task input( n, b, [n][b]A ) inout([n][b]B )

void Update( n, b, A, B ){ … }
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Matrix inversion on CPU-GPU

Runtime. OMPSs GJE

 Inversion A → 5,120x 5,120, AMD Opteron 6172 (4 cores) 

 Without look-ahead: 8.512 s
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Matrix inversion on CPU-GPU

Runtime. OMPSs GJE

 Inversion A → 5,120x 5,120, AMD Opteron 6172 (4 cores) 

 Without look-ahead: 8.512 s

 With look-ahead (OmpSs): 5.912 s
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Index

 Motivation

 Model reduction and solvers for matrix equations

 Matrix inversion on CPU-GPU 

 Mixed precision and iterative refinement

 OOC

 Energy efficiency

“A mixed-precision algorithm for the solution of Lyapunov equations on hybrid

CPU-GPU platforms”. 

P. Benner, P. Ezzatti, D. Kressner, E. S. Quintana, A. Remón. 

Parallel Computing, 2011
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Mixed precision and iterative refinement

Motivation

 SP faster than DP

 Intel and AMD FPU (SIMD): 2x

 NVIDIA (http://www.anandtech.com/show/5699/nvidia-geforce-gtx-680-review):

 Texas Instruments DSP: 4x

 Halve volume of data communication (64 32 bits)

 Surely not a new idea! (at least, for linear systems)

“Progress report on the automatic computing engine”. 

J. H. Wilkinson. 

Report MA/17/1024, Mathematics Division, National Physical Lab., UK, 1948

Geforce GTX 480 GTX 580 Fermi GTX 680 Kepler

#cores 480 512 1.536

SP/DP ratio* 12x 8x 24x

* 8x, 2x and ?x in Tesla
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Mixed precision and iterative refinement

 Assume L0 is an initial SP approximation to the solution

 Refinement step:

 Requires careful implementation

 Compute (in SP) and store all matrix inverses: A0
-1, A1

-1, A2
-1,… is 

key to cheap ApproxLyap

 Open questions

Not explicitely constructed

SP

DP, but cheap
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Mixed precision and iterative refinement

 Optimal cooling of steel profiles. Solve Lyapunov matrix 

equation X := F(A,B) = 0,   A → 5,177x 5,177

 Double precision: 6 iterations, 13.67s, residual 3.55e-13

 Mixed precision: 4+3 iterations, 10.19 s, residual: 1.32e-13
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Index

 Motivation

 Model reduction and solvers for matrix equations

 Matrix inversion on CPU-GPU

 Mixed precision and iterative refinement

 OOC

 Energy efficiency

“A run-time system for programming out-of-core matrix algorithms-by-tiles on

multithreaded architectures". 

G. Quintana, F. Igual, M. Marqués, E. S. Quintana, R. van de Geijn. 

ACM Trans. on Mathematical Software, 2012
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OOC

Motivation

 Memory size of GPU much smaller than that of CPU

 Speed and cost of GDDR5

 GTX680: 2,048 Mbytes → n = 16,384

 Could be enough but… compute and store all matrix inverses: 

A0
-1, A1

-1, A2
-1,… is key to cheap iterative refinement

 OOC dates back to the early days of scientific computing:

 Memory consisted of magnetic rings and was called core

 Size was a few Kbytes and data was stored on tape
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OOC

Overview

 Amortize cost of data transfers

GPU 

memory

main 

memory

Main 

memory

GPU 

mem

n2 memops (PCI) 

for 2n2b flops

Disk

n2 memops (I/O) 

for 2n2t flops

Main 

memory

GPU 

mem
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OOC

Overview

 Traditional OOC

 Manually insert I/O instructions into code

 OOC via runtime

 Software-cache operated by runtime to reduce #disk transfers

 Asynchronous I/O operated by runtime (perfect data prefetch

from disk using code unrolling)

 Implementation

 libflame+SuperMatrix (library+runtime)
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OOC

Results

 Cholesky factorization (similar to GJE)
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Index

 Motivation

 Model reduction and solvers for matrix equations

 Matrix inversion on CPU-GPU

 Mixed precision and iterative refinement

 OOC

 Energy efficiency

“Reducing energy consumption of dense linear algebra operations on

hybrid CPU-GPU platforms”.

P. Alonso, M. F. Dolz, F. Igual, R. Mayo, E. S. Quintana. 

10th IEEE Int. Symp. on Parallel and Distributed Processing with App. - ISPA 2012
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Energy efficiency

Motivation

 Green500/Top500 (June 2012)

Rank

Green/Top

Site, Computer #Cores MFLOPS/W LINPACK 
(TFLOPS)

MW to
EXAFLOPS?

1/252
DOE/NNSA/LLNL BlueGene/Q, 
Power BQC 16C 1.60GHz

8,192 2,100.88 86.35 475.99

20/1
DOE/NNSA/LLNL BlueGene/Q, 
Power BQC 16C 1.60GHz

1,572,864 2,069.04 86.35 483.31

Most powerful reactor under construction in France

Flamanville (EDF, 2017 for US $9 billion): 

1,630 MWe
30% !
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Energy efficiency

Motivation

 Reduce energy consumption!

 Costs over lifetime of an HPC facility often exceed acquisition 

costs

 Carbon dioxide is a hazard for health and environment

 Heat reduces hw reliability

 Personal view

 Hardware features energy saving mechanisms:

 C-states, P-states (DVFS)

 Scientific apps are in general energy oblivious
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Energy efficiency

Opportunities

 Energy = ∫0,T   Power  dt

 Optimizing energy is equivalent to reducing execution time 

(optimizing performance)

 Reducing power can be necessary if there are power constraints

 Reducing power may result in an increase of time (e.g., DVFS)

P

t
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Energy efficiency

Opportunities

 Cholesky factorization (FLA_Chol from libflame, 7,680x7,680) 

parallelized with SuperMatrix on 4 NVIDIA “Fermi” GPUs

CPU cores inactive during significant time!
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Energy efficiency

Opportunities

 Cost of “inactivity” (only server, not GPU): polling vs blocking

“Do nothing, efficiently…” (V. Pallipadi, A. Belay)

“Doing nothing well” (D. E. Culler)
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Energy efficiency

Opportunities

 Active polling:

 CPU thread waiting for work in the ready queue

→ use POSIX semaphores

 CPU thread waiting for a GPU to compute a certain task

CUBLAS kernels are asynchronous but, if two kernels are 

invoked consecutively, the second blocks

→ block CPU thread



HeteroPAR 2012 Rhodes Island, GreeceAugust  27, 2012

Energy efficiency

Results

 Cholesky factorization, Intel Xeon E5540+NVIDIA Tesla S2050
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Conclusions (summary)

 CPU-GPU platforms: A big leap in less than 10 years for 

control apps.

 Optimization of control algorithms (dense linear algebra): 

A deja vú in HPC

 Blocked algorithms

 Concurrent execution (balancing)

 Overlap computation/communication and avoid “serial” 

bottlenecks (look-ahead)

 Reducing communication
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Conclusions (summary)

 CPU-GPU platforms: A big leap in less than 10 years for 

control apps.

 Optimization of control algorithms (dense linear algebra): 

A deja vú in HPC

 Advanced techniques can render large benefits:

 Dynamic (transparent) scheduling via runtime

 Mixed precision and iterative refinement

 Out-of-core computing

 Energy-aware computing
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