
Use of Superscalar Techniques in the Construction
of Linear Algebra Libraries

for Multi-core Processors and GPUs

Enrique S. Quintana Ortí

quintana@icc.uji.es http://www.hpca.uji.es

LINEAR SYSTEMS
Simulation of electromagnetic fields

 Antenna Vivaldi Solve

A x = b

A of size
49.820 x 49.820 to
92.729 x 92.729,

depending on the
operation frequency of
the antenna

Solve

minx || A x – b ||

A of size

~130.000 x 130.000

(156 GBytes)

LINEAR LEAST SQUARES PROBLEMS
Estimation of the Earth’s gravitational filed

 GRACE project

NUMERICAL LIBRARIES
Use

Allow the advances in other sciences

(Computational Science) 
Simulation replaces experimentation: lower
economic and temporal costs

NUMERICAL LIBRARIES
Use

 How long would it take to solve a large-scale linear
least problem under ideal conditions?
 Algorithm limited only by the processor speed, not by

the memory

 1 Intel Xeon processor @ 3,6 GHz (4 floating-point
arithmetic operations/cycle)

200.000 x 200.000  8,6 days
400.000 x 400.000  68,8 days

 Need an efficient execution: pursuing the “current”
HPC architecture…

NUMERICAL LIBRARIES
High performance

1980
Vector ISA

1990
Cache memory

2000
Distributed memory

 Need an efficient execution: pursuing the “current”
HPC architecture?

Moore’s Law still valid, but…
 It is not possible to increase the frecuency due to power

consumption and heat

f x 1,3 power x 2
 Little instruction-level parallelism left

 Memory latency is high (1 memory access  240 cycles)

NUMERICAL LIBRARIES
High performance

Hardware accelerators

General-purpose multi-core processors

 Need an efficient execution: pursuing the “current”
HPC architecture?

BIBLIOTECAS DE COMPUTACIÓN
Alto rendimiento

SUPERSCALAR TECHNIQUES
Outline

 Introduction

 Superscalar techniques in the construction of linear
Algebra libraries for multi-core processors and
GPUs:

1. Parallel execution dictated by data dependencies

2. Use of software caches to hide the existence of
multiple address spaces (DSM)

3. Use of software caches to hide latency of disk access

SUPERSCALAR TECHNIQUES
Outline

 Introduction

 Superscalar techniques in the construction of linear
Algebra libraries for multi-core processors and
GPUs:
 Techniques applied on “blocks”

 Software implementation

 Task/thread-level parallelism

 Target: processor cores

SUPERSCALAR TECHNIQUES
Outline

 Introduction

 Superscalar techniques in the construction of linear
Algebra libraries for multi-core processors and
GPUs:

1. Parallel execution dictated by data dependencies

2. Use of software caches to hide the existence of
multiple address spaces (DSM)

3. Use of software caches to hide latency of disk access

CURRENT LIBRARIES
Performance on a multi-core processor

 A simple operation: matrix-matrix product

 Highly tuned: Intel MKL, AMD ACML, IBM ESSL, SUN
SPL, NVIDIA CUBLAS,…

 Also parallel (multi-threaded) versions for multi-core
processors

C C A B + *

CURRENT LIBRARIES
Performance on a multi-core processor

92% peak

CURRENT LIBRARIES
Performance on a multi-core processor

92% peak

89% peak

92% peak

CURRENT LIBRARIES
Performance on a multi-core processor

 A more complex operation: Cholesky factorization

Key in the solution of (s.p.d.) linear systems
A x = b  (LLT)x = b

L y = b  y
LT x = y  x

A = *L LT

CURRENT LIBRARIES
Performance on a multi-core processor

 Blocked algorithm for the Cholesky factorization
based on matrix-matrix product

A11 = L11 * L11TF:

L21  A21 * L11-TT:

A22  A22 – L21 * L21TP:

Multi-core processor: use a (multi-
threaded) implementation for T and,
specially, P1st iteration

CURRENT LIBRARIES
Performance on a multi-core processor

 Blocked algorithm for the Cholesky factorization
based on matrix-matrix product

…

1st iteration 2nd iteration 3rd iteration

CURRENT LIBRARIES
Performance on a multi-core processor

80% peak

CURRENT LIBRARIES
Performance on a multi-core processor

71% peak

57% peak

80% peak

CURRENT LIBRARIES
Performance on a multi-core processor

 Why?

Too many thread synchronizations

for (k=0; k<nb; k++){
Chol(A[k,k]); // Akk = Lkk * LkkT

if (k<nb){
Trsm(A[k,k], A[k+1,k]); // Lk+1,k  Ak+1,k * Lkk-T

Syrk(A[k+1,k], A[k+1,k+1]);// Ak+1,k+1  Ak+1,k+1

// - Lk+1,k * Lk+1,kT

}

}

F:

T:

P:

CURRENT LIBRARIES
Performance on a multi-core processor

 Why?

There is more parallelism in the factorization

1st iteration

Inside the same iteration

2nd iteration

In different iterations

DATA-FLOW PARALLELISM

 Out-of-order execution dictated by data
dependencies (data-flow parallelism)

 Goal: Extract/exploit more parallelism during the
execution of linear algebra codes

Scalar code
loop: ld f0, 0(r1)

addd f4, f0, f2

sd f4, 0(r1)

addi r1, r1, #8

subi r2, r2, #1

bnez r2, loop

DATA-FLOW PARALLELISM
Superscalar processors

IF ID ISS UF0

UF1

UF2

Superscalar processor

DATA-FLOW PARALLELISM
Linear algebra

 Possible for linear algebra operations?

for (k=0; k<nb; k++){

Chol(A[k,k]);

for (i=k+1; i<nb; i++)

Trsm(A[k,k], A[i,k]);

for (i=k+1; i<nb; i++){

Syrk(A[i,k],A[i,i]);

for (j=k+1; j<i; j++)

Gemm(A[i,k], A[j,k], A[i,j]);

}

}

F:

T:

P:

P:

DATA-FLOW PARALLELISM
Linear algebra

 Possible for linear algebra operations?

 Techniques applied on “blocks”

 Software implementation

 Task/thread-level parallelism

 Target: processor cores

DATA-FLOW PARALLELISM
Linear algebra
 Blocks read/written define the data dependencies, as in a scalar

code:
loop: ld f0, 0(r1) for (k=0; k<nb; k++){

addd f4, f0, f2 Chol(A[k,k]);

sd f4, 0(r1) for (i=k+1; i<nb; i++)

addi r1, r1, #8 … Trsm(A[k,k], A[i,k]); …

 Dependencies between blocks define a task tree:

…

DATA-FLOW PARALLELISM
Linear algebra
 Blocked code: Multi-core processor
for (k=0; k<nb; k++){

Chol(A[k,k]);

for (i=k+1; i<nb; i++)

Trsm(A[k,k], A[i,k]); …

 How do we generate the task tree?

 How do we execute the tasks in the tree?



PARALELISMO DE FLUJO DE DATOS
Computación matricial

 Use of a runtime:

ID ISS N0

N1

N2

 Decode (ID): Generate the task
tree from a symbolic analysis of the
code at execution time

 Issue (ISS): Execute the tasks in
the tree taking into account the
dependencies and the target
architecture

PARALELISMO DE FLUJO DE DATOS
Computación matricial

 Decode stage: symbolic analysis of code

Blocked code: Task tree:

for (k=0; k<nb; k++){

Chol(A[k,k]);

for (i=k+1; i<nb; i++)

Trsm(A[k,k], A[i,k]); …

 …

PARALELISMO DE FLUJO DE DATOS
Computación matricial

 Issue stage:
 Scheduling of tasks (when?) depending on the

dependencies

 Mapping of tasks to cores (where?) aware of data
locality

Task tree: Multi-core processor:

ISS N0

N1

N2

…

DATA-FLOW PARALLELISM
Runtime implementations

 SuperMatrix (FLAME project between UT@Austin
and UJI)
 Read/write blocks intrinsically defined by the

operations
 Only for linear algebra

 SMPSs (StarSs project from BSC)
 Read/write blocks explicitely defined by the user

#pragma css task inout(A[b*b])

void Chol(double *A);

 Valid for all codes with task-level parallelism

DATA-FLOW PARALLELISM
Performance on a multi-core processor

DATA-FLOW PARALLELISM
Performance on a multi-core processor

SUPERSCALAR TECHNIQUES
Outline

 Introduction

 Superscalar techniques in the construction of linear
Algebra libraries for multi-core processors and
GPUs:

1. Parallel execution dictated by data dependencies

2. Use of software caches to hide the existence of
multiple address spaces (DSM)

3. Use of software caches to hide latency of disk access

CURRENT ARCHITECTURES
Heterogeneous systems

 CPU-Accelerator(s):
 Better price/power-performance ratios

 Slow communication between
host and devices

 Host and device(s), each with its
own address space

 No hardware to maintain
coherence

DSM IN HETEROGENEOUS SYSTEMS

 DSM (distributed-shared memory) in linear algebra

 Goals:
 Hide the existence of multiple address spaces (ease

programming)

 Efficience (improve performance)

DSM IN HETEROGENEOUS SYSTEMS

 Mapping tasks to heterogeneous cores

Blocked code:
for (k=0; k<nb; k++){

Chol(A[k,k]);

for (i=k+1; i<nb; i++)

Trsm(A[k,k], A[i,k]); …

Heterogeneous system



DSM IN HETEROGENEOUS SYSTEMS

 Data transfers

 Before the computation, transfer
the data to the device

 After computation is completed
retrieve back the results

 poor data locality

Heterogeneous system



DSM IN HETEROGENEOUS SYSTEMS

 Analogy with current systems

SMP:


MP P0+C0

P1+C1

P2+C2

P3+C3

Heterogeneous system

DSM IN HETEROGENEOUS SYSTEMS

 Reducing data transfers

 Software cache in the memory of
the GPUs:
 Operate on block to ammortize

the cost of cache operation

 Software  more flexibility

 Write-back to maintain coherence
with blocks in host

 Write-invalidate to maintain
coherence with blocks in other
devices

Heterogeneous system



DSM IN HETEROGENEOUS SYSTEMS
Performance in CPU-GPUs systems

SUPERSCALAR TECHNIQUES
Outline

 Introduction

 Superscalar techniques in the construction of linear
Algebra libraries for multi-core processors and
GPUs:

1. Parallel execution dictated by data dependencies

2. Use of software caches to hide the existence of
multiple address spaces (DSM)

3. Use of software caches to hide latency of disk access

LARGE-SCALE PROBLEMS

 Some dense linear algebra problems are really big
(795k x 795k)

 Time-to-response is not always critical

 Cost of RAM is not negligible; cost of disk is lower
and speed is increasing (solid disks)

 Hardware accelerators are rapidly increasing the
GFLOPS rate

INTEGRATE DISK WITH CACHE/RAM

 Use of disk in linear algebra problems
 O.S. does not always handle virtual memory efficiently

 Goals:
 Hide use of disk and asynchronous I/O (ease

programming)

 Efficience (improve performance)

INTEGRATE DISK WITH CACHE/RAM

 Handling I/O

Blocked code:
for (k=0; k<nb; k++){

Chol(A[k,k]);

for (i=k+1; i<nb; i++)

Trsm(A[k,k], A[i,k]); …



INTEGRATE DISK WITH CACHE/RAM

 Data transfer

 Before computation, transfer data
from disk to RAM

 After computation is completed,
write back results on disk

 poor data locality



INTEGRATE DISK WITH CACHE/RAM

 Reduce data transfers

 Software cache in RAM:
 Operate on block to ammortize

the cost of cache operation

 Software  more flexibility
 Symbolic analysis of code to

identify the list of tasks

 Perfect prefetch



INTEGRATE DISK WITH CACHE/RAM

 Asynchronous I/O

 A thread is in charge of data
transfers between RAM (cache)
and disk

 LRU replacement policy

 All remaining threads in charge of
parallel execution with data in
RAM

 Matrices stored by blocks in disk



INTEGRATE DISK WITH CACHE/RAM
Performance in multi-core processors

INTEGRATE DISK WITH CACHE/RAM
Performance in CPU-GPU systems

INTEGRATE DISK WITH CACHE/RAM
Performance in CPU-GPU systems

FUTURE

 More cores, but watch for processor I/O

 Faster CPU-GPU interconnect (PCI is too
slow)

 Direct communication between GPUs

 Hardware support for maintaining coherence

 OOC: solid disks

THANKS

 Joint work:

UJI UT@Austin
Francisco D. Igual Ernie Chan

Mercedes Marqués Robert van de Geijn

Alberto Martín Field G. Van Zee

Gregorio Quintana

 Colaboration with BSC (use of SMPSs and
development of GPUSs)

THANKS

 Support:

UJI UT@Austin

Thanks for your attention and for your questions*!

* For difficult questions: quintana@icc.uji.es ;-)

