Use of Superscalar Techniques in the Construction of Linear Algebra Libraries for Multi-core Processors and GPUs

Enrique S. Quintana Ortí

quintana@icc.uji.es

http://www.hpca.uji.es

LINEAR SYSTEMS Simulation of electromagnetic fields

Antenna Vivaldi

Solve

$$A x = b$$

A of size

49.820 x 49.820 to

 92.729×92.729 ,

depending on the operation frequency of the antenna

LINEAR LEAST SQUARES PROBLEMS Estimation of the Earth's gravitational filed

GRACE project

Solve

$$min_x \parallel Ax - b \parallel$$

A of size ~130.000 x 130.000 (156 GBytes)

NUMERICAL LIBRARIES Use

Allow the advances in other sciences

(Computational Science) →

Simulation replaces experimentation: lower

economic and temporal costs

NUMERICAL LIBRARIES Use

- How long would it take to solve a large-scale linear least problem under ideal conditions?
 - Algorithm limited only by the processor speed, not by the memory
 - 1 Intel Xeon processor @ 3,6 GHz (4 floating-point arithmetic operations/cycle)

```
200.000 \times 200.000 \rightarrow 8,6 \text{ days}

400.000 \times 400.000 \rightarrow 68,8 \text{ days}
```


NUMERICAL LIBRARIES High performance

 Need an efficient execution: pursuing the "current" HPC architecture...

1980 Vector ISA

1990 Cache memory

2000 Distributed memory

NUMERICAL LIBRARIES High performance

 Need an efficient execution: pursuing the "current" HPC architecture?

Moore's Law still valid, but...

It is not possible to increase the frecuency due to power consumption and heat

$$f \times 1, 3 \rightarrow power \times 2$$

- Little instruction-level parallelism left
- Memory latency is high (1 memory access ≈ 240 cycles)

BIBLIOTECAS DE COMPUTACIÓN Alto rendimiento

 Need an efficient execution: pursuing the "current" HPC architecture?

Hardware accelerators

General-purpose multi-core processors

- Introduction
- Superscalar techniques in the construction of linear Algebra libraries for multi-core processors and GPUs:
 - 1. Parallel execution dictated by data dependencies
 - 2. Use of *software* caches to hide the existence of multiple address spaces (DSM)
 - 3. Use of *software* caches to hide latency of disk access

- Introduction
- Superscalar techniques in the construction of linear Algebra libraries for multi-core processors and GPUs:
 - Techniques applied on "blocks"
 - Software implementation
 - Task/thread-level parallelism
 - Target: processor cores

- Introduction
- Superscalar techniques in the construction of linear Algebra libraries for multi-core processors and GPUs:
 - 1. Parallel execution dictated by data dependencies
 - 2. Use of *software* caches to hide the existence of multiple address spaces (DSM)
 - 3. Use of *software* caches to hide latency of disk access

A simple operation: matrix-matrix product

- Highly tuned: Intel MKL, AMD ACML, IBM ESSL, SUN SPL, NVIDIA CUBLAS,...
- Also parallel (multi-threaded) versions for multi-core processors

Producto de matrices en 2 Intel Xeon QuadCore (8 cores) 1 core —• GFLOPS **92%** peak Dim. del problema

A more complex operation: Cholesky factorization

$$A = L * L^T$$

Key in the solution of (s.p.d.) linear systems

CURRENT LIBRARIES

Performance on a multi-core processor

 Blocked algorithm for the Cholesky factorization based on matrix-matrix product

 Blocked algorithm for the Cholesky factorization based on matrix-matrix product

Why?

Too many thread synchronizations

• Why?

There is more parallelism in the factorization

DATA-FLOW PARALLELISM

 Out-of-order execution dictated by data dependencies (data-flow parallelism)

 Goal: Extract/exploit more parallelism during the execution of linear algebra codes

DATA-FLOW PARALLELISM Superscalar processors

Scalar code

Superscalar processor

Possible for linear algebra operations?


```
for (k=0; k<nb; k++){
   F: Chol(A[k,k]);
   for (i=k+1; i<nb; i++)
   T: Trsm(A[k,k], A[i,k]);
   for (i=k+1; i<nb; i++){
   P: Syrk(A[i,k],A[i,i]);
     for (j=k+1; j<i; j++)
   P: Gemm(A[i,k], A[j,k], A[i,j]);
   }
}</pre>
```

Possible for linear algebra operations?

- Techniques applied on "blocks"
- Software implementation
- Task/thread-level parallelism
- Target: processor cores

Blocks read/written define the data dependencies, as in a scalar code:

```
loop: ld f0, 0(r1) for (k=0; k<nb; k++){
    addd f4, f0, f2 Chol(A[k,k]);
    sd f4, 0(r1) for (i=k+1; i<nb; i++)
    addi r1, r1, #8 ... Trsm(A[k,k), A[i,k]); ...</pre>
```

Dependencies between blocks define a task tree:

■ Blocked code:

```
for (k=0; k<nb; k++){
  Chol(A[k,k]);
  for (i=k+1; i<nb; i++)
   Trsm(A[k,k], A[i,k]); ...</pre>
```

Multi-core processor

- How do we generate the task tree?
- How do we execute the tasks in the tree?

PARALELISMO DE FLUJO DE DATOS Computación matricial

- Use of a *runtime*:
 - Decode (ID): Generate the task tree from a symbolic analysis of the code at execution time

 Issue (ISS): Execute the tasks in the tree taking into account the dependencies and the target architecture

PARALELISMO DE FLUJO DE DATOS Computación matricial

Decode stage: symbolic analysis of code

Blocked code:

```
for (k=0; k<nb; k++){

Chol(A[k,k]);

for (i=k+1; i<nb; i++)

Trsm(A[k,k], A[i,k]); ...
```

Task tree:

PARALELISMO DE FLUJO DE DATOS Computación matricial

- Issue stage:
 - Scheduling of tasks (when?) depending on the dependencies
 - Mapping of tasks to cores (where?) aware of data locality

Task tree:

Multi-core processor:

DATA-FLOW PARALLELISM Runtime implementations

- SuperMatrix (FLAME project between UT@Austin and UJI)
 - Read/write blocks intrinsically defined by the operations
 - Only for linear algebra
- SMPSs (StarSs project from BSC)
 - Read/write blocks explicitely defined by the user

```
#pragma css task inout(A[b*b])
void Chol(double *A);
```

Valid for all codes with task-level parallelism

DATA-FLOW PARALLELISM Performance on a multi-core processor

DATA-FLOW PARALLELISM Performance on a multi-core processor

- Introduction
- Superscalar techniques in the construction of linear Algebra libraries for multi-core processors and GPUs:
 - 1. Parallel execution dictated by data dependencies
 - 2. Use of *software* caches to hide the existence of multiple address spaces (DSM)
 - 3. Use of *software* caches to hide latency of disk access

CURRENT ARCHITECTURES Heterogeneous systems

- CPU-Accelerator(s):
 - Better price/power-performance ratios
 - Slow communication between host and devices
 - Host and device(s), each with its own address space
 - No hardware to maintain coherence

■ DSM (*distributed-shared memory*) in linear algebra

Goals:

- Hide the existence of multiple address spaces (ease programming)
- Efficience (improve performance)

Mapping tasks to heterogeneous cores

Blocked code:

```
for (k=0; k<nb; k++){
  Chol(A[k,k]);
  for (i=k+1; i<nb; i++)
    Trsm(A[k,k], A[i,k]); ...</pre>
```


- Data transfers
 - Before the computation, transfer the data to the device
 - After computation is completed retrieve back the results

→ poor data locality

Analogy with current systems

SMP:

- Reducing data transfers
 - Software cache in the memory of the GPUs:
 - Operate on block to ammortize
 the cost of cache operation
 - Software → more flexibility
 - Write-back to maintain coherence with blocks in host
 - Write-invalidate to maintain coherence with blocks in other devices

DSM IN HETEROGENEOUS SYSTEMS Performance in CPU-GPUs systems

SUPERSCALAR TECHNIQUES Outline

- Introduction
- Superscalar techniques in the construction of linear Algebra libraries for multi-core processors and GPUs:
 - 1. Parallel execution dictated by data dependencies
 - 2. Use of *software* caches to hide the existence of multiple address spaces (DSM)
 - 3. Use of *software* caches to hide latency of disk access

LARGE-SCALE PROBLEMS

- Some dense linear algebra problems are really big (795k x 795k)
- Time-to-response is not always critical
- Cost of RAM is not negligible; cost of disk is lower and speed is increasing (solid disks)
- Hardware accelerators are rapidly increasing the GFLOPS rate

- Use of disk in linear algebra problems
 - O.S. does not always handle virtual memory efficiently

Goals:

- Hide use of disk and asynchronous I/O (ease programming)
- Efficience (improve performance)

Handling I/O

Blocked code:

```
for (k=0; k<nb; k++){
  Chol(A[k,k]);
  for (i=k+1; i<nb; i++)
   Trsm(A[k,k], A[i,k]); ...</pre>
```


- Data transfer
 - Before computation, transfer data from disk to RAM
 - After computation is completed,
 write back results on disk

→ poor data locality

- Reduce data transfers
 - Software cache in RAM:
 - Operate on block to ammortize the cost of cache operation
 - Software → more flexibility
 - Symbolic analysis of code to identify the list of tasks
 - Perfect prefetch

- Asynchronous I/O
 - A thread is in charge of data transfers between RAM (cache) and disk
 - LRU replacement policy
 - All remaining threads in charge of parallel execution with data in RAM
 - Matrices stored by blocks in disk

INTEGRATE DISK WITH CACHE/RAM Performance in multi-core processors

INTEGRATE DISK WITH CACHE/RAM Performance in CPU-GPU systems

INTEGRATE DISK WITH CACHE/RAM Performance in CPU-GPU systems

FUTURE

- More cores, but watch for processor I/O
- Faster CPU-GPU interconnect (PCI is too slow)
- Direct communication between GPUs
- Hardware support for maintaining coherence
- OOC: solid disks

THANKS

Joint work:

<u>UJI</u>

Francisco D. Igual

Mercedes Marqués

Alberto Martín

Gregorio Quintana

UT@Austin

Ernie Chan

Robert van de Geijn

Field G. Van Zee

 Colaboration with BSC (use of SMPSs and development of GPUSs)

THANKS

Support:

<u>UJI</u>

UT@Austin

Thanks for your attention and for your questions*!

* For difficult questions: quintana@icc.uji.es ;-)

