
Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Look-Ahead in Dense Matrix Factorizations

Sandra Catalán, José R. Herrero, Enrique S. Quintana-Ortí,

Rafael Rodríguez-Sánchez, Robert van de Geijn

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization (right-looking variant)

for (k = 0; k < n / b; k+=b) {

}

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization (right-looking variant)

for (k = 0; k < n / b; k+=b) {

}

Block size

- Width of A11

- Small to cast most computations

on terms of efficient kernels

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization (right-looking variant)

for (k = 0; k < n / b; k++) {

getf2(&A(k,k));

}

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization (right-looking variant)

for (k = 0; k < n / b; k++) {

getf2(&A(k,k));

trsm(&A(k,k) , &A(k,k+b));

}

Dependency: RL1 → RL2

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization (right-looking variant)

for (k = 0; k < n / b; k++) {

getf2(&A(k,k));

trsm(&A(k,k), &A(k,k+b));

gemm(&A(k+b,k) , &A(k,k+b) , &A(k+b,k+b));

}

Dependencies: RL1, RL2 → RL3

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization (right-looking variant)

Conventional parallelization:

Calls to multi-threaded BLAS

for (k = 0; k < n / b; k++) {

getf2(&A(k,k));

trsm(&A(k,k), &A(k,k+b));

gemm(&A(k+b,k) , &A(k,k+b) ,

&A(k+b,k+b));

}

Dependencies:

RL1 → RL2

RL1, RL2 → RL3

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization

Intel Xeon E5-2603 v3 (Haswell, 6 cores)

• 10,000x10,000 matrix

• RL variant with b=bo=256

• Calls to BLIS kernels for GEMM, TRSM

• Sequential LASWP

• Partial pivoting

• Call to GETRF, with bi=32

→ 2% of flops in Panel Factorization (PF)

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU (and other) factorization(s)

Avoiding the curse of PF:

T1) Exploit fine-grained parallelism within the panel
(parallelization by rows)

• Usually limited parallelism

T2) Exploit intra-iteration parallelism: Decompose PF and
update into multiple operations (algorithm-by-tiles or tile
algorithms)

• Not always possible without changing the numerics (LU)

• In general, introduces overhead: more flops, repeated
packing/unpacking in calls to small BLAS

• Runtime-assisted (cache-oblivious)

• Requires kernels that are rarely efficient on GPUs, or the
“reconstruction” of the panel factorization

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU (and other) factorization(s)

Avoiding the curse of PF:

T3) Exploit inter-iteration
parallelism by overlapping PF
with trailing update, also

known as look-ahead!

(similar to software pipelining)

Iter k

Iter k+1

Iter k

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization

Loo-ahead:

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU (and other) factorization(s)

Look-ahead confused with T2 + runtime because the
latter may yield the same effect (exploitation inter-
iteration parallelism) transparently to the user

Not always (to be seen later)

• Only look-ahead (potentially) eliminates PF from the
algorithm’s critical path

• Dynamic look-ahead forces threads to compete for
shared resources (cache levels)

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization

TPU TTURTPU TTUR

TPU TTUR

TPU TTUR

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization: What if TPU > TTUR or vice-versa?

TPU TTUR

TPU TTUR

TPU TTUR

Syncronization points

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization: TTUR > TPU

TPU TTUR

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization: TTUR > TPU. Malleable BLIS

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization: TTUR > TPU. Malleable BLIS

TPU TTUR

Additional

worker

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization: TTUR > TPU. Malleable BLIS

TPU TTUR

Additional

worker

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization: TPU > TTUR

TPU TTUR

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization: TPU > TTUR. Early Termination (ET)

TPU TTUR

Skipped iterations

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization: TPU >TTUR. Early Termination (ET)

TPU TTUR

Automatic adaptive block size

RL vs Left-Looking (LL) variants:

LL delays computation to the end and, therefore, allows larger block sizes

Skipped iterations

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization: Experimental evaluation

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization: Experimental evaluation

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

The LU factorization: Summary

• Static look-ahead can be competitive with runtime-
based approach

• More cache-friendly than algorithms-by-blocks+runtime

• Same overhead, kernels and efficiency as standard
right-looking algorithm

• Preserves the numerics (LU)

• ET automatically adjusts the block size

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Other matrix factorizations

The PF “bottleneck” appears in several DLA operations:

• LU factorization

• QR factorization: Extension of look-ahead is trivial

• (To a minor extent) Cholesky factorization

• Two-sided factorizations:

• Reduction from symmetric dense to band (SEVP)

• Reduction from dense to triangular-band (SVD)

Look-ahead?

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Reduction to triangular-band for SVD

• Upper bandwidth w

• Algorithmic block size b (for simplicity, w = b)

• At iteration k

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Reduction to triangular-band for SVD

• For look-ahead, during iteration k:

• Update current trailing submatrices w.r.t. current PF

• Compute next PF

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Reduction to triangular-band for SVD

• w=b

U0 R0 → U0 → L0 V0 → V0 → U1R1 → U1 → L1 V1 → V1 …

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Reduction to triangular-band for SVD

• w=2b

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Reduction to triangular-band for SVD

• w=3b

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Reduction to triangular-band for SVD

• Choosing a large bandwidth w shifts the cost to the
second stage: reduction from triangular-band to
tridiagonal

• Cost of second stage is very high even for moderate
w: bulge chasing

• A small block size b reduces the performance of the
udpates

The restriction 3b<=w may not be such a good idea

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Reduction to band for SVD

• Problem arises because of overlap between B and C

• Solution: reduce to band form

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Reduction to band for SVD

• If 2b ≤ w, next panels fall within B1 and C1

• No overlap. The update of these panels can be
overlapped with that of D from left and right, resp.

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Reduction to band for SVD

W = 64, 128

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Reduction to band for SVD

• Some performance improvements:

• In WY transform, building W is a Level-2 BLAS operation in
the critical path:

Employ compact WY transform instead of WY representation:

Q = I-WYT = I-YSYT

• For CPU-GPU systems, building S on the CPU can still be
expensive and doing this operation on the GPU is not
appropriate because of the fine-granularity

Employ UT transform instead of compact WY representation:

Q = I-WYT = I-YSYT, with S = T-1

It can be built as S = triu(YYT) plus a scaling of the diagonal

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Reduction to band form SEVP and SVD

• Look-ahead is possible

• With thread-level malleability, we can expect it is
competitive with runtime-based approach

• More cache-friendly than algorithms-by-blocks+runtime

• Same overhead, kernels and efficiency as standard
right-looking algorithm: GPU!

• For SVP, exploit inter-iteration parallelism!

Look-ahead in Dense Matrix FactorizationsUniversity of Zagreb, December 2017

Look-ahead in Dense Matrix Factorizations

• Thanks for the attention!

• More details:

A Case for Malleable Thread-Level Linear Algebra Libraries: The LU Factorization
with Partial Pivoting. S. Catalán, J. R. Herrero, R. Rodríguez-Sánchez, R. van
de Geijn. https://arxiv.org/abs/1611.06365. In review in Applied Mathematics
and Computation. Nov. 2016

Two-sided reduction to compact band forms with look-ahead. S. Catalán, J. R.
Herrero, E. S. Quintana-Ortí, R. Rodríguez-Sánchez. A. E. Tomás.
https://arxiv.org/abs/1079.00302. In review in Numerical Algorithms. July 2017

