
RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement in
Mixed-Precision Iterative Refinement

for Sparse Linear Systems

Hartwig Anzt, Goran Flegar, Vedran Novakovic,

Enrique S. Quintana-Ortí, Andres E. Tomás

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Mixed Precision Iterative Refinement

• Given a linear system !"# = %&, iterative refinement (IR) is a technique to
improve the accuracy of an initial solution "#(:

• Any inner solver: dense/sparse factorization…
even an iterative Krylov(-type) solver

• In machine precision), provided)*(!) ≤ 1, IR eventually produces an
accurate solution to full precision)

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Mixed Precision Iterative Refinement

• On many architectures, IR can be efficiently combined with mixed
precision (single-double, half-double, half-single)

• Most of the cost is in the inner solver

• Accuracy is improved by the outer refinement process

Reduced precision

Extended precision

Extended precision

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Mixed Precision Iterative Refinement

• Can MPIR be efficiently combined with an iterative Krylov inner solver?

• Maintain convergence rate by avoiding numerical pitfalls in the recurrence
residual due to finite precision

10-8

10-6

10-4

10-2

100

102

104

106

108

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e
si

d
u
a
l

Iteration

Matrix: G3_circuit

20 mantissa bits, no residual check

Recurrence (double prec.)
Recurrence (low prec.)

True residual (low prec.)

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Mixed Precision Iterative Refinement

• What are the potential gains of mixed precision?

• For Krylov solvers applied to sparse linear systems, the theoretical
cost/energy/time is in moving data, not in arithmetic

John D. McCalpin(TACC)

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Outine

• Residual replacement for Krylov solvers
• Cost model

• Explicit residual deviation with MPIR

• Cost evaluation
• Customized precision via mantissa segmentation

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Preconditioned Conjugate Gradient (PCG)

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Preconditioned Conjugate Gradient (PCG)

Recurrence residual True residual

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Preconditioned Conjugate Gradient (PCG)

Recurrence residual True residual

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Preconditioned Conjugate Gradient (PCG)

Recurrence residual True residual

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Divergence between recurrence vs true residuals

10-8

10-6

10-4

10-2

100

102

104

106

108

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e
si

d
u
a
l

Iteration

Matrix: G3_circuit

20 mantissa bits, no residual check

Recurrence (double prec.)
Recurrence (low prec.)

True residual (low prec.)

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Finite precision causes divergence between recurrence vs true residuals

10-8

10-6

10-4

10-2

100

102

104

106

108

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e
si

d
u
a
l

Iteration

Matrix: G3_circuit

20 mantissa bits, no residual check

Recurrence (double prec.)
Recurrence (low prec.)

True residual (low prec.)

The problem is that the recurrence residual induces
us to continue iterating when the true residual
has stagnated:

Waste of work!!!

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Finite precision causes divergence between recurrence vs true residuals

10-8

10-6

10-4

10-2

100

102

104

106

108

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e
si

d
u
a
l

Iteration

Matrix: G3_circuit

20 mantissa bits, no residual check

Recurrence (double prec.)
Recurrence (low prec.)

True residual (low prec.)

Solution: restart the iteration with the true residual

This is known as residual replacement (RR)

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Divergence problem can be tackled via RR:

• Replace always (at every iteration): 2 SpMV per iteration and may deteriorate
the convergence of the iteration

• Replace periodically (every ! iterations): may deteriorate the convergence of
the iteration

• Compute explicit deviation at every iteration and replace if needed: 2
SpMV per iteration

• Estimate deviation and replace if needed:

���	���� ���#��!#$%���������)��$��&���#�"������ %�$%#�%����$��!#��#(�!' $&�$"�����%�#�%�'��
��%�!�$��!#�%����! '�#�� ���!��%#&��#�$��&��$�*���	���������
!�"&%��������������

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Van der Vorst and Ye (VY), 2000. Keep track of accumulated deviation:

Then, perform RR if the following three conditions hold

• Compared with others, VY’s RR technique:

• Aims for small deviations between recurrence/true residuals

• Preserves convergence mechanism of the iteration

• It is cheap and easy to add to existing Krylov implementations

���	���� ���#��!#$%���������)��$��&���#�"������ %�$%#�%����$��!#��#(�!' $&�$"�����%�#�%�'��
��%�!�$��!#�%����! '�#�� ���!��%#&��#�$��&��$�*���	���������
!�"&%��������������

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Experiments proving effectiveness of VY’s RR technique:

• 28 matrices for Harwell-Boeing collection, BiCG and CGS methods

• Only double precision arithmetic

• #iterations not reported, only #RR

• Convergence threshold set close to machine precision (likely impractical)

���	���� ���#��!#$%���������)��$��&���#�"������ %�$%#�%����$��!#��#(�!' $&�$"�����%�#�%�'��
��%�!�$��!#�%����! '�#�� ���!��%#&��#�$��&��$�*���	���������
!�"&%��������������

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Experiments proving effectiveness of VY’s RR technique:

• 28 matrices for Harwell-Boeing collection, BiCG and CGS methods

• Only double precision arithmetic

• #iterations not reported, only #RR

• Convergence threshold set close to machine precision (likely impractical)

• Differences:

• CG method

• Integration in an outer-inner scheme for iterative refinement: MPIR

• #iterations is important!

• Convergence to more realistic residual bounds

• Cost model

���	���� ���#��!#$%���������)��$��&���#�"������ %�$%#�%����$��!#��#(�!' $&�$"�����%�#�%�'��
��%�!�$��!#�%����! '�#�� ���!��%#&��#�$��&��$�*���	���������
!�"&%��������������

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Cost Model

• Premises:

• For a memory-bound algorithm, such as PCG applied to a sparse linear
system, the “cost” is dominated by data movement while floating-point
arithmetic is irrelevant

• If cost = execution time, arithmetic cost is minor (memory wall) and can be
overlapped with communication

• If cost = energy, accesses to main memory are much more expensive than
arithmetic

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Cost Model

• Premises (cont’d):

• After each particular operation, data does not remain in cache (large vectors)

• Costs are linearly dependent on the bit-length of data

• Problem of size !, with sparse matrix stored in CSR format consisting of !"
nonzero entries

• Simple Jacobi preconditioner for CG

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Cost Model

• SpMV, in CSR format, using data with xx bits in terms of bit transfers (or
cost-units, cus):

for (i=0; i<n; i++) {
tmp = 0;
for (j=row_ptr[i]; j<row_ptr[i+1]; j++)

tmp += val[j] * x[col_idx[j]];
y[i] = tmp;

}

y = A * x;
CSR A: row_ptr[n],

col_idx[nz],
val[nz]

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Cost Model

• PCG solver operating with xx bits:

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

• For MPIR-VY, cost depends on:

• #IS: number of iterations of inner solver

• #RR: total number of residual replacements

• #RS: number of refinement steps

• For example, using (32,64) mixed precision:

Cost Model

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

• Our RR technique: Explicit residual deviation (ERD)

• Test periodically (i.e., every ! iterations)

Computing the residual explicitly is expensive (SpMV), but it can be done in
reduced precision

Cost can be further reduced by performing the residual calculation together
with SpMV for inner solver

• If deviation exceeds the threshold, stop the inner solver and start a new
iteration of refinement (outer level) → enforces a residual replacement in
extended precision

Explicit Residual Deviation with MPIR

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Explicit Residual Deviation with MPIR

• Cost of ERD-RR:

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Explicit Residual Deviation with MPIR

• VY vs EDR:

• VY-RR incurs detection overhead at each iteration (test replacement condition)
and pays correction overhead in case RR is necessary

• EDR-RR incurs detection overhead only every ! iterations (periodicity of the
test), risking to waste work in case of stagnation from last test

• Detection techniques are different and, therefore, also are numerical effects
and overhead:

Apply RR in the inner solver, and continue with iteration
vs

Apply RR by ”moving” to the outer solver

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Cost Evaluation

• Setup:

• 123 symmetric positive definite matrices from SuiteSparse Matrix Collection
(formerly UFMC)

• Baseline solver: PCG in double precision

• All arithmetic done in double precision

• For MPIR variants, all data used in the inner solver are stored in single
precision: reduced transfer cost!

• For EDR-RR, the test is performed every ! = 100 iterations, and the maximum
number of RR is set to 10

• Cost take into account the actual number of iterations to obtain an absolute
residual error below 10-7

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

 1

 10

 100

R
e

la
tiv

e
 it

e
ra

tio
n

s
to

 P
C

G
 s

o
lv

e
r

(d
o

u
b

le
-p

re
ci

si
o

n
)

Matrix case

Inner iterations

MPIR
MPIR-VY

MPIR-EDR

Cost Evaluation

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Cost Evaluation

 0

 0.5

 1

 1.5

 2

R
e

la
tiv

e
 s

a
vi

n
g

s
to

 P
C

G
 s

o
lv

e
r

(d
o

u
b

le
-p

re
ci

si
o

n
)

Matrix case

Estimated savings

MPIR
MPIR-VY

MPIR-EDR

Better than
DP PCG

Worse than
DP PCG

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Customized Precision via Segmentation

• Decouple arithmetic from storage formats:

• FPUs only support a limited number of IEEE 754 formats (single, double and,
in some architectures, half)

• … but we are free to store the data in memory in any customized format

• Remember: As a memory-bound algorithm, PCG is limited by memory
bandwidth (i.e., how many bit are used to store the data)

• Extended can be double

• Reduced can be, e.g., 16, 24, 32, 40, 48, 56 bits

• Maintain a single copy of the matrix with “multiple precisions” via segments

���
�"�!������������	�!���#	���� ����������������������������� ������������������������
������������������$�� �������������������� ����

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Customized Precision via Segmentation

mantissa	(52	bit)exponent	(11	bit)
sign

head	(32	bit) tail	(32	bit)

mantissa	(20	bit)

05163

• Split the IEEE double precision format into segments.
(2-segment modular precision, 4-segment modular precision…)

• Special “conversion” routines to double precision.

• Mantissa much shorter than IEEE single/half precision.

• No under- / overflow.

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Customized Precision via Segmentation

mantissa	(52	bit)exponent	(11	bit)
sign

head	(32	bit) tail	(32	bit)

mantissa	(20	bit)

05163

• Split the IEEE double precision format into segments.
(2-segment modular precision, 4-segment modular precision…)

• For efficient data access (coalesced reads), interleave data in memory.

• Data can be accessed much faster if low precision is acceptable.

• Special “conversion” routines to double precision.

• Mantissa much shorter than IEEE single/half precision.

• No under- / overflow.

heads tails

NVIDIA P100 “Pascal”
5.3 TFLOP/s DP
16GB RAM @720 GB/s

0 2 4 6 8 10 12 14

Dataset size [# of elements] 107

0

1

2

3

4

R
u

n
tim

e
 [

s]

10-3

IEEE double

0 2 4 6 8 10 12 14

Dataset size [# of elements] 107

0

1

2

3

4

5

R
u

n
tim

e
 [

s]

10-3

IEEE double

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Customized Precision via Segmentation

mantissa	(52	bit)exponent	(11	bit)
sign

head	(32	bit) tail	(32	bit)

mantissa	(20	bit)

05163

• Split the IEEE double precision format into segments.
(2-segment modular precision, 4-segment modular precision…)

• For efficient data access (coalesced reads), interleave data in memory.

• Data can be accessed much faster if low precision is acceptable.

• Special “conversion” routines to double precision.

• Mantissa much shorter than IEEE single/half precision.

• No under- / overflow.

heads tails

NVIDIA P100 “Pascal”
5.3 TFLOP/s DP
16GB RAM @720 GB/s

0 2 4 6 8 10 12 14

Dataset size [# of elements] 107

0

1

2

3

4

R
u

n
tim

e
 [

s]

10-3

IEEE double

0 2 4 6 8 10 12 14

Dataset size [# of elements] 107

0

1

2

3

4

5

R
u

n
tim

e
 [

s]

10-3

IEEE double
2-segment [64 bit]

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Customized Precision via Segmentation

mantissa	(52	bit)exponent	(11	bit)
sign

head	(32	bit) tail	(32	bit)

mantissa	(20	bit)

05163

• Split the IEEE double precision format into segments.
(2-segment modular precision, 4-segment modular precision…)

• For efficient data access (coalesced reads), interleave data in memory.

• Data can be accessed much faster if low precision is acceptable.

• Special “conversion” routines to double precision.

• Mantissa much shorter than IEEE single/half precision.

• No under- / overflow.

heads tails

NVIDIA P100 “Pascal”
5.3 TFLOP/s DP
16GB RAM @720 GB/s

0 2 4 6 8 10 12 14

Dataset size [# of elements] 107

0

1

2

3

4

R
u

n
tim

e
 [

s]

10-3

IEEE double

0 2 4 6 8 10 12 14

Dataset size [# of elements] 107

0

1

2

3

4

5

R
u

n
tim

e
 [

s]

10-3

IEEE double
2-segment [64 bit]
4-segment [64 bit]

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Customized Precision via Segmentation

mantissa	(52	bit)exponent	(11	bit)
sign

head	(32	bit) tail	(32	bit)

mantissa	(20	bit)

05163

• Split the IEEE double precision format into segments.
(2-segment modular precision, 4-segment modular precision…)

• For efficient data access (coalesced reads), interleave data in memory.

• Data can be accessed much faster if low precision is acceptable.

• Special “conversion” routines to double precision.

• Mantissa much shorter than IEEE single/half precision.

• No under- / overflow.

heads tails

NVIDIA P100 “Pascal”
5.3 TFLOP/s DP
16GB RAM @720 GB/s

0 2 4 6 8 10 12 14

Dataset size [# of elements] 107

0

1

2

3

4

R
u

n
tim

e
 [

s]

10-3

IEEE double

0 2 4 6 8 10 12 14

Dataset size [# of elements] 107

0

1

2

3

4

5

R
u

n
tim

e
 [

s]

10-3

IEEE double
2-segment [64 bit]
4-segment [64 bit]
2-segment [32 bit]
4-segment [48 bit]
4-segment [32 bit]
4-segment [16 bit]

RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Concluding Remarks

• MPIR can be efficiently combined with any inner Krylov solver provided it
is enhanced with an appropriate RR technique

• Theoretical savings can be significant in terms of reduced memory
bandwidth: lower energy and computational costs

• Reduced precision storage in the inner solver can be realized via modular
precision formats

