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Mixed Precision Iterative Refinement

• Given a linear system !"# = %&, iterative refinement (IR) is a technique to 
improve the accuracy of an initial solution "#(:

• Any inner solver: dense/sparse factorization…
even an iterative Krylov(-type) solver

• In machine precision ), provided )*(!) ≤ 1, IR eventually produces an 
accurate solution to full precision )
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Mixed Precision Iterative Refinement

• On many architectures, IR can be efficiently combined with mixed 
precision (single-double, half-double, half-single)

• Most of the cost is in the inner solver

• Accuracy is improved by the outer refinement process

Reduced precision

Extended precision

Extended precision
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Mixed Precision Iterative Refinement

• Can MPIR be efficiently combined with an iterative Krylov inner solver?

• Maintain convergence rate by avoiding numerical pitfalls in the recurrence 
residual due to finite precision
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Mixed Precision Iterative Refinement

• What are the potential gains of mixed precision?

• For Krylov solvers applied to sparse linear systems, the theoretical 
cost/energy/time is in moving data, not in arithmetic

John D. McCalpin(TACC)
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Outine

• Residual replacement for Krylov solvers
• Cost model

• Explicit residual deviation with MPIR

• Cost evaluation
• Customized precision via mantissa segmentation
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Residual Replacement for Krylov Solvers

• Preconditioned Conjugate Gradient (PCG)
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Residual Replacement for Krylov Solvers

• Preconditioned Conjugate Gradient (PCG)

Recurrence residual True residual
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Residual Replacement for Krylov Solvers

• Preconditioned Conjugate Gradient (PCG)

Recurrence residual True residual



RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

Residual Replacement for Krylov Solvers

• Divergence between recurrence vs true residuals
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Residual Replacement for Krylov Solvers

• Finite precision causes divergence between recurrence vs true residuals
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The problem is that the recurrence residual induces 
us to continue iterating when the true residual 
has stagnated:

Waste of work!!!
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Residual Replacement for Krylov Solvers

• Finite precision causes divergence between recurrence vs true residuals
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Solution: restart the iteration with the true residual

This is known as residual replacement (RR)
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Residual Replacement for Krylov Solvers

• Divergence problem can be tackled via RR:

• Replace always (at every iteration): 2 SpMV per iteration and may deteriorate 
the convergence of the iteration

• Replace periodically (every ! iterations): may deteriorate the convergence of 
the iteration

• Compute explicit deviation at every iteration and replace if needed: 2 
SpMV per iteration

• Estimate deviation and replace if needed:

���	���� ���#��!#$%���������)��$��&���#�"������ %�$%#�%����$��!#��#(�!' $&�$"�����%�#�%�'��
��%�!�$��!#�%����! '�#�� ���!��%#&��#�$��&��$�*���	���������
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Residual Replacement for Krylov Solvers

• Van der Vorst and Ye (VY), 2000. Keep track of accumulated deviation:

Then, perform RR if the following three conditions hold

• Compared with others, VY’s RR technique:

• Aims for small deviations between recurrence/true residuals

• Preserves convergence mechanism of the iteration

• It is cheap and easy to add to existing Krylov implementations

���	���� ���#��!#$%���������)��$��&���#�"������ %�$%#�%����$��!#��#(�!' $&�$"�����%�#�%�'��
��%�!�$��!#�%����! '�#�� ���!��%#&��#�$��&��$�*���	���������
!�"&%��������������
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Residual Replacement for Krylov Solvers

• Experiments proving effectiveness of VY’s RR technique:

• 28 matrices for Harwell-Boeing collection, BiCG and CGS methods

• Only double precision arithmetic

• #iterations not reported, only #RR

• Convergence threshold set close to machine precision (likely impractical)

���	���� ���#��!#$%���������)��$��&���#�"������ %�$%#�%����$��!#��#(�!' $&�$"�����%�#�%�'��
��%�!�$��!#�%����! '�#�� ���!��%#&��#�$��&��$�*���	���������
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Residual Replacement for Krylov Solvers

• Experiments proving effectiveness of VY’s RR technique:

• 28 matrices for Harwell-Boeing collection, BiCG and CGS methods

• Only double precision arithmetic

• #iterations not reported, only #RR

• Convergence threshold set close to machine precision (likely impractical)

• Differences:

• CG method

• Integration in an outer-inner scheme for iterative refinement: MPIR

• #iterations is important!

• Convergence to more realistic residual bounds

• Cost model

���	���� ���#��!#$%���������)��$��&���#�"������ %�$%#�%����$��!#��#(�!' $&�$"�����%�#�%�'��
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Cost Model

• Premises:

• For a memory-bound algorithm, such as PCG applied to a sparse linear 
system, the “cost” is dominated by data movement while floating-point 
arithmetic is irrelevant

• If cost = execution time, arithmetic cost is minor (memory wall) and can be 
overlapped with communication

• If cost = energy, accesses to main memory are much more expensive than 
arithmetic
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Cost Model

• Premises (cont’d):

• After each particular operation, data does not remain in cache (large vectors)

• Costs are linearly dependent on the bit-length of data

• Problem of size !, with sparse matrix stored in CSR format consisting of !"
nonzero entries

• Simple Jacobi preconditioner for CG
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Cost Model

• SpMV, in CSR format, using data with xx bits in terms of bit transfers (or 
cost-units, cus):

for (i=0; i<n; i++) {
tmp = 0;
for (j=row_ptr[i]; j<row_ptr[i+1]; j++)

tmp += val[j] * x[col_idx[j]];
y[i] = tmp;

}

y = A * x;
CSR A: row_ptr[n], 

col_idx[nz], 
val[nz]
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Cost Model

• PCG solver operating with xx bits:



RR-MPIR for Sparse Linear SystemsATCET Workshop, July 2018

• For MPIR-VY, cost depends on:

• #IS: number of iterations of inner solver

• #RR: total number of residual replacements

• #RS: number of refinement steps

• For example, using (32,64) mixed precision:

Cost Model
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• Our RR technique: Explicit residual deviation (ERD)

• Test periodically (i.e., every ! iterations)

Computing the residual explicitly is expensive (SpMV), but it can be done in 
reduced precision

Cost can be further reduced by performing the residual calculation together 
with SpMV for inner solver

• If deviation exceeds the threshold, stop the inner solver and start a new 
iteration of refinement (outer level) → enforces a residual replacement in 
extended precision

Explicit Residual Deviation with MPIR
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Explicit Residual Deviation with MPIR

• Cost of ERD-RR:
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Explicit Residual Deviation with MPIR

• VY vs EDR:

• VY-RR incurs detection overhead at each iteration (test replacement condition) 
and pays correction overhead in case RR is necessary

• EDR-RR incurs detection overhead only every ! iterations  (periodicity of the 
test), risking to waste work in case of stagnation from last test

• Detection techniques are different and, therefore, also are numerical effects 
and overhead:

Apply RR in the inner solver, and continue with iteration
vs 

Apply RR by ”moving” to the outer solver
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Cost Evaluation

• Setup:

• 123 symmetric positive definite matrices from SuiteSparse Matrix Collection 
(formerly UFMC)

• Baseline solver: PCG in double precision

• All arithmetic done in double precision

• For MPIR variants, all data used in the inner solver are stored in single 
precision: reduced transfer cost!

• For EDR-RR, the test is performed every ! = 100 iterations, and the maximum 
number of RR is set to 10

• Cost take into account the actual number of iterations to obtain an absolute 
residual error below 10-7
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Cost Evaluation
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Customized Precision via Segmentation

• Decouple arithmetic from storage formats:

• FPUs only support a limited number of IEEE 754 formats (single, double and, 
in some architectures, half)

• … but we are free to store the data in memory in any customized format

• Remember: As a memory-bound algorithm, PCG is limited by memory 
bandwidth (i.e., how many bit are used to store the data)

• Extended can be double

• Reduced can be, e.g., 16, 24, 32, 40, 48, 56 bits

• Maintain a single copy of the matrix with “multiple precisions” via segments

���
�"�!������������	�!���#	���� ����������������������������� ������������������������
������������������$�� �������������������� ����
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Customized Precision via Segmentation

mantissa	(52	bit)exponent	(11	bit)
sign

head	(32	bit) tail	(32	bit)

mantissa	(20	bit)

05163

• Split the IEEE double precision format into segments.
(2-segment modular precision, 4-segment modular precision…)

• Special “conversion” routines to double precision.

• Mantissa much shorter than IEEE single/half precision.

• No under- / overflow.
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Concluding Remarks

• MPIR can be efficiently combined with any inner Krylov solver provided it 
is enhanced with an appropriate RR technique

• Theoretical savings can be significant in terms of reduced memory 
bandwidth: lower energy and computational costs

• Reduced precision storage in the inner solver can be realized via modular 
precision formats


