

Energy-Aware Dense and Sparse Linear Algebra

Enrique S. Quintana-Ortí

Energy-aware dense and sparse linear algebra

- Universidad Politécnica de Valencia
 - Pedro Alonso
- Universidad Jaime I
 - J. I. Aliaga
 - Manuel F. Dolz
 - Rafael Mayo
 - Enrique S. Quintana-Ortí
- CIMNE
 - Alberto F. Martín

2010 PFLOPS (1015 flops/sec.)

2010 JUGENE

- 10⁹ core level (PowerPC 450, 850MHz \rightarrow 3.4 GFLOPS)
- 10¹ node level

(Quad-Core)

(73.728 nodes)

10⁵ cluster level

2020 EFLOPS (10¹⁸ flops/sec.)

- 10^{9.5} core level
- 10³ node level!
- 10^{5.5} cluster level

Green500 (November 2011*)

Rank	Site	#Cores	MFLOPS/W		MW to
Green/Top					
1/29	IBM Rochester – BlueGene/Q, Power BQC 16C 1.60 GHz	32.768	2.026.48	339,83	493,47
32/1	RIKEN AICS K Computer– Spar64 VIIIfx (8-core)	705.024	830,18	10.510,00	1.204,60

Most powerful reactor under construction in France Flamanville (EDF, 2017 for US \$9 billion): 1,630 MWe

*Green500 June 2012 to be released today

- Reduce energy consumption!
 - Costs over lifetime of an HPC facility often exceed acquisition costs
 - Carbon dioxide is a hazard for health and environment
 - Heat reduces hw reliability
- Personal view
 - Hardware features energy saving mechanism
 - Scientific apps are in general energy oblivious

Outline

- ILUPACK
- Experimental setup
- Power model
 - Leveraging P-states
 - Leveraging C-states
- Dense linear algebra
- Conclusions

Incomplete LU Package (<u>http://ilupack.tu-bs.de</u>)

- Iterative Krylov subspace methods
- Multilevel ILU preconditioners for general/symmetric/Hermitian positive definite systems
- Based on inverse ILUs with control over growth of inverse triangular factors
- Specially competitive for linear systems from 3D PDEs

ILUPACK Multi-threaded version (task parallelism)

- Real s.p.d. systems
- Construction of preconditioner and PCG solver
- Algebraic parallelization based on a task tree
- Leverage task parallelism of the tree
- Dynamic scheduling via runtime (OpenMP)
 - "Exploiting thread-Level parallelism in the iterative solution of sparse linear systems". J. I. Aliaga, M. Bollhöfer, A. F. Martín, E. S. Quintana-Ortí. Parallel Computing, 2011

ILUPACK Multi-threaded version (task parallelism)

ILUPACK Multi-threaded version (task parallelism)

Run-time in charge of scheduling

Experimental setup

- 2 AMD Opteron 6128 processors
- 48 GB of RAM
- DVFS enabled per core (P-states)

P-state P_i	VCC_i	f_i
P_0	1.23	2.00
P_1	1.17	1.50
P_2	1.12	1.20
P_3	1.09	1.00
P_4	1.06	0.80

• C-states:

- C0: normal operation mode
- C1, C1E: disable core components (L1/L2 caches), clock signal, mem. controller,... increases energy savings at the expense of recovery time

Experimental setup

- Sparse linear system benchmark
 - Laplacian equation $-\Delta u = f$ in a 3D unit cube $\Omega = [0,1]^3$
 - Linear system Au = b with $A \rightarrow n \times n$, $n = 252^3 \approx 16$ million unknowns and 111 millions of nonzero entries

Cost of energy Setup

- DC powermeter with sampling freq. = 25 Hz
 - LEM HXS 20-NP transductors with PIC microcontroller
 - RS232 serial port

 $P = P^{(S)Y(stem)} + P^{C(PU)} = P^{Y} + P^{S(tatic)} + P^{D(ynamic)}$

- P^{C} is the power dissipated by CPU (socket): $P^{S} + P^{D}$
- *P^S* is the static power
- *P^D* is dynamic power
- P^{Y} is the power of remaining components (e.g., RAM)

Considerations:

- P^{Y} and P^{S} are constants (though P^{S} grows with temperature)
- Hot system

System power:

Estimated as *idle* power Due to off-chip components: e.g., RAM (only mainboard)

 $P^Y \approx P^I = 80.15 \text{ W}$

• Static power:

Power dissipated as function of number of active cores

Dynamic power:

active cores $P_0^T(c) = a_0 + b_0 c = 168.59 + 9.12 \cdot c W$ Busy-wait: $P_0^D \approx b_0 c = 9.12 \cdot c W$

14 15

Power (watts)

P-state P _i	Vcci	f _i	α_i	β_i	ΔP_i^S	ΔP_i^D
P ₀	1.23	2.00	168.59	9.12	_	_
P_1	1.17	1.50	161.10	5.77	-9.52	-32.14
P ₂	1.12	1.20	155.90	4.23	-17.09	-50.25
P ₃	1.09	1.00	152.94	3.15	-21.47	-60.73
P ₄	1.06	0.80	150.61	2.44	-25.73	-70.30

- Remember, $P^Y \approx P^I$ is constant
- Thus, e.g., moving all cores from P_0 to P_1 $P_1^T(16) = P_0^S(1-0.0952) + P_0^D(16)(1-0.43214) + P_0^Y$ = 259.19 W
- These values agree withing 2.5% with the linear regression models

P-state P _i	Vcc _i	f _i	α_i	β_i	ΔP_i^S	ΔP_i^D
P ₀	1.23	2.00	168.59	9.12	_	_
P_1	1.17	1.50	161.10	5.77	-9.52	-32.14
P ₂	1.12	1.20	155.90	4.23	-17.09	-50.25
P ₃	1.09	1.00	152.94	3.15	-21.47	-60.73
P ₄	1.06	0.80	150.61	2.44	-25.73	-70.30

- DVFS = P-states (see ACPI standard)
- Moving to a more power-friendly state results in ↓power
- ↓power = ↓energy?
- For a compute-bounded operation, f_i is linear to performance and time⁻¹
- In principle, for a memory-bounded operation (ILUPACK), decreasing f_i should not affect time!

1st attempt: Dynamic Static voltage-frequency scaling

P-state P _i	T_i	\bar{P}_i^T	Ei	ΔT_i	$\Delta \bar{P}_i^T$	ΔE_i
P ₀	34.06	282.87	9,634.78	_	_	_
P_1	43.57	235.64	10,267.72	21.88	-16.69	6.53
P_2	54.48	210.86	11.478.79	59.91	-25.45	19.20
P ₃	61.58	197.01	12.132.79	80.73	-30.35	25.87
P_4	76.50	186.86	14,295.18	124.47	-33.94	48.28

Why?

1st attempt: Dynamic Static voltage-frequency scaling

P-state P _i	Vcc _i	f _i	T_i	ΔT_i	BWi	ΔBW_i
P_0	1.23	2.00	34.06	_	30.29	_
P_1	1.17	1.50	43.57	21.88	24.63	-18.67
P_2	1.12	1.20	54.48	59.91	20.46	-32.44
P_3	1.09	1.00	61.58	80.73	17.48	-42.30
P_4	1.06	0.80	76.50	124.47	14.00	-53.77
	·					

Combined effect of linear decrease of CPU performance and memory bandwidth!

2nd attempt: DVFS during idle periods

2nd attempt: DVFS during idle periods

2nd attempt: DVFS during idle periods

Active polling for work...

Power model Leveraging P- and C-states

3rd attempt: DVFS and idle-wait

Power model Leveraging P- and C-states

- 3rd attempt: DVFS and idle-wait:
 - Savings of 6.92% of total energy
 - Negligible impact on execution time
- ...but take into account that
 - Idle time: 23.70%
 - Dynamic power: 32.32%
 - Upper bound of savings: 39.32 · 0.2370 = 9.32%

Power model Leveraging P- and C-states

- Other opportunities to save energy
 - Dense linear algebra
 - Hybrid CPU-CPU computing

Power model Leveraging P- and C-states multicore

RIA1: leverage P-states RIA2: idle-wait

Power model Leveraging P- and C-states on CPU-GPU

EA1: no polling when there is no work EA2: no polling when work is in GPU

More information

- "Leveraging task-parallelism in energy-efficient ILU preconditioners", J. I. Aliaga, M. F. Dolz, A. F. Martín, E. S. Quintana-Ortí. ICT-GLOW 2012. Vienna (Austria)
- "Modeling power and energy of the task-parallel Cholesky factorization on multicore processors", P. Alonso, M. F. Dolz, R. Mayo, E. S. Quintana-Ortí. EnaHPC 2012. Hamburg (Germany)
- "Energy-efficient execution of dense linear algebra algorithms on multicore processors". P. Alonso, M. F. Dolz, R. Mayo, E. S. Quintana-Ortí. Cluster Computing, 2012

Performance and energy consumption Summary

- A battle to be won in the core arena
 - More concurrency
 - Heterogeneous designs
- A related battle to be won in the power arena
 - "Do nothing, efficiently..." (V. Pallipadi, A. Belay) or "Doing nothing well" (D. E. Culler)
 - Don't forget the cost of system+static power

