
Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Adrián Castelló, Rafael Mayo, Judit Planas, Enrique S. Quintana-Ortí

RePara 2015, August – Helsinki, Finland

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Power/energy/utilization walls!
• End of Dennard’s scaling

• Moore Law in place

• Dark silicon

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

GPU computing: Why?
• Moderate Price
• High performance
• Favorable throughput-per-Watt
• Powerful and simple APIs (remember Cell B.E.)

• OpenACC
• CUDA
• OpenCL

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

Interconnection Network

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

From the programming point of view:
- A collection of nodes, each with:

- one or more CPUs (with several cores per CPU)
- one or more GPUs (1-4)

- An interconnection network

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

Interconnection Network

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network
P

C
I-e

C
P

U

M
ain M

em
ory

Network

Physical configuration

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

Interconnection Network

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network
P

C
I-e

C
P

U

M
ain M

em
ory

Network

Physical configuration

Logical configuration

Interconnection Network

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Remote GPU virtualization
• All cluster nodes can use all the GPUs
• A single node can use more GPUs than it has installed
• A GPU can be shared between nodes

Interconnection Network

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

M
ain M

em
ory

Network

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Outline

● Software
● Integration
● Systems
● Experimental Evaluation
● Conclusions and Future Work

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Developed in collaboration with Universidad Politécnica de Valencia
(J. Duato, C. Reaño, F. Silla)

Grant a CUDA-based application running in one node access
GPUs in other nodes:
• Moderate level of data parallelism
• Applications for multi GPU computing

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

OmpSs
programming model

Developed at Barcelona Supercomputing Center

Task-oriented programming model

Based on OpenMP-like directives

Support from Nanos++ RT Library and Mercurium compiler

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

OmpSs
programming model

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

OmpSs
programming model

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Outline

● Introduction
● Software
● Systems
● Integration
● Experimental Evaluation
● Conclusions and Future Work

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Integration

Initialization:
● CUDA loads functions/kernels upon beginning of the execution
● OmpSs loads them the first time a setup function is called
● Original rCUDA mimics CUDA → delayed load

Avoid communication Overhead
● OmpSs performs regular cudaFree calls to prevent deep C-state
● rCUDA daemon maintains the GPU active
● rCUDA client does not use the network for this mechanism

On-going work
● OmpSs implements work stealing using cudaMemcpyPeer

for copying data between GPU memories
● Current rCUDA does not allow cudaMemcpyPeer calls as each

thread in the client side is a process in the server side

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Intra-node memory copy I

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

1. Thread 1 allocates GPU memory 0

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Intra-node memory copy I

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 0

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Intra-node memory copy I

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 0
3. Thread 1 tries to move data from thread 2
allocated memory to thread 1 allocated memory

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Intra-node memory copy I

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 0
3. Thread 1 tries to move data from thread 2
allocated memory to thread 1 allocated memory

Not possible because memory allocated
by a process cannot be accessed directly by
other process!

Intra-process communication is needed

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Intra-node memory copy II

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

1. Thread 1 allocates GPU memory 0

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Intra-node memory copy II

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 1

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Intra-node memory copy II

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 1
3. Thread 1 tries to move data from thread 2
allocated memory to thread 1 allocated memory

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Intra-node memory copy II

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 1
3. Thread 1 tries to move data from thread 2
allocated memory to thread 1 allocated memory

Not possible because memory allocated
by a process cannot be accessed directly by
other process!

Intra-process communication is needed

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Inter-node memory copy

1. Thread 1 allocates GPU memory 0

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Inter-node memory copy

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 2

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Inter-node memory copy

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 2
3. Thread 1 tries to move data from thread 2
allocated memory to thread 1 allocated memory

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Inter-node memory copy

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 2
3. Thread 1 tries to move data from thread 2
allocated memory to thread 1 allocated memory

Not possible because memory allocated
by a process cannot be accessed directly by
other process!

GPU Direct RDMA on top of MPI is needed

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Outline

● Introduction
● Software
● Integration
● Systems
● Experimental Evaluation
● Conclusions and Future Work

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Hardware
● Tintorrum: 2-node system

● 2 x Intel Xeon E5520 (quad-core) at 2.27 GHz
● 24 GB of DDR3-1866 RAM memory.
● 2 x NVIDIA C2050 boards, and 4 x NVIDIA C2050 GPUs.
● Inter- node communications employ an InfiniBand (IB) QDR fabric.

● Minotauro: 126 nodes cluster (BSC)
● 2 x Intel Xeon E5649 (6 cores) at 2.53 GHz
● 24 GB od DDR3-1333 RAM
● 2 x NVIDIA M2050 GPUs
● Infniband QDR cluster network

Software
● rCUDA and OmpSs 14.10
● Tintorrum: CUDA 6.5 and gcc 4.4.7
● Minotauro: CUDA 5.0 and gcc 4.4.4

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Applications

N-Body:
● Classical simulation of a dynamical system of particles
● Used in physics and astronomy
● Number of particles to 57,600
● No transfers between GPU memories
● Up to 4 local GPUs and up to 6 remote GPUs

Cholesky factorization
● Solution of dense systems of linear equations
● 45,056x45,056 float elements in Minotauro
● 32,768x32,768 float elements in Tintorrum
● Up to 2 or 4 local GPUs and up to 4 remote GPUs
(OmpSs cuBLAS limitation)

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Outline

● Introduction
● Software
● Integration
● Systems
● Experimental Evaluation
● Conclusions and Future Work

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

N-Body (Tintorrum)

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

N-Body (Tintorrum)

rCUDA performs better than CUDA

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

N-Body (Tintorrum)

rCUDA synchronization mechanism is
more agressive than that in CUDA

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

N-Body (Tintorrum)

A bad hardware installation can seriously harm performance:
Here, the IB card and the GPU are in different sockets and the
data transfer occurs across the QPI bus

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Cholesky (Minotauro)

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Cholesky (Minotauro)

rCUDA intra represents the rCUDA execution time and the overhead
introduced by the several data transfers between GPU memories.
Used to simulate the intra node time transfers

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Cholesky (Minotauro)

rCUDA QDR represents the rCUDA execution time and the overhead
introduced by the several data transfers between GPU memories each
one in a different node using a IB QDR interconnection
Used to simulate the extra node time transfers

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Cholesky (Minotauro)

rCUDA performs close to CUDA
For more than 1 GPU, only the QDR line performances worst
With a FDR interconnection it will be better

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Outline

● Introduction
● Software
● Systems
● Integration
● Experimental Evaluation
● Conclusions and Future Work

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Conclusions

● Combination of a virtualization framework and a task-based
programming model is possible

● Most work done in rCUDA, but still far from complete

● First results of performance and scalability are promising

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Conclusions

● Combination of a virtualization framework and a task-based
programming model is possible

● Most work done in rCUDA, but still far from complete

● First results of performance and scalability are promising

Future work

● Implement rCUDA inter GPU memory transfers

● Analyze the scalability using CUBLAS

Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Thanks!

