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Power/energy/utilization walls!
• End of Dennard’s scaling

• Moore Law in place

• Dark silicon
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GPU computing: Why?
• Moderate Price
• High performance
• Favorable throughput-per-Watt
• Powerful and simple APIs (remember Cell B.E.)

• OpenACC
• CUDA
• OpenCL
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From the programming point of view:
- A collection of nodes, each with:

- one or more CPUs (with several cores per CPU)
- one or more GPUs (1-4)

- An interconnection network
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Remote GPU virtualization
• All cluster nodes can use all the GPUs
• A single node can use more GPUs than it has installed
• A GPU can be shared between nodes  

Interconnection Network
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Outline

● Software
● Integration
● Systems
● Experimental Evaluation
● Conclusions and Future Work
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Developed in collaboration with Universidad Politécnica de Valencia 
(J. Duato, C. Reaño, F. Silla)

Grant a CUDA-based application running in one node access 
GPUs in other nodes:
• Moderate level of data parallelism
• Applications for multi GPU computing
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OmpSs
programming model

Developed at Barcelona Supercomputing Center

Task-oriented programming model

Based on OpenMP-like directives

Support from Nanos++ RT Library and Mercurium compiler
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OmpSs
programming model



Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

OmpSs
programming model



Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Outline

● Introduction
● Software
● Systems
● Integration
● Experimental Evaluation
● Conclusions and Future Work



Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Integration

Initialization:
● CUDA loads functions/kernels upon beginning of the execution 
● OmpSs loads them the first time a setup function is called
● Original rCUDA mimics CUDA → delayed load

Avoid communication Overhead
● OmpSs performs regular cudaFree calls to prevent deep C-state
● rCUDA daemon maintains the GPU active
● rCUDA client does not use the network for this mechanism

On-going work
● OmpSs implements work stealing using cudaMemcpyPeer

for copying data between GPU memories
● Current rCUDA does not allow cudaMemcpyPeer calls as each 

thread in the client side is a process in the server side
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Scenarios: Intra-node memory copy I
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Scenarios: Intra-node memory copy I
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Scenarios: Intra-node memory copy I
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Not possible because memory allocated 
by a process cannot be accessed directly by
other process!

Intra-process communication is needed
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Scenarios: Intra-node memory copy II
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Scenarios: Intra-node memory copy II

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 1



Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Intra-node memory copy II
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Scenarios: Intra-node memory copy II
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Not possible because memory allocated 
by a process cannot be accessed directly by
other process!

Intra-process communication is needed
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Scenarios: Inter-node memory copy

1. Thread 1 allocates GPU memory 0

Interconnection Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem

P
C

I-e

C
P

U

M
ain M

em
ory

Network

P
C

I-e

C
P

U

GPU GPU
mem

M
ain M

em
ory

Network

GPU GPU
mem



Exploiting Task-Parallelism on GPU Clusters via
OmpSs and rCUDA Virtualization

Scenarios: Inter-node memory copy

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 2
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Scenarios: Inter-node memory copy

1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 2
3. Thread 1 tries to move data from thread 2 
allocated memory to thread 1 allocated memory
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Scenarios: Inter-node memory copy
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1. Thread 1 allocates GPU memory 0
2. Thread 2 allocates GPU memory 2
3. Thread 1 tries to move data from thread 2 
allocated memory to thread 1 allocated memory

Not possible because memory allocated 
by a process cannot be accessed directly by
other process!

GPU Direct RDMA on top of MPI is needed
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Hardware
● Tintorrum: 2-node system

● 2 x Intel Xeon E5520 (quad-core) at 2.27 GHz
● 24 GB of DDR3-1866 RAM memory. 
● 2 x NVIDIA C2050 boards, and 4 x NVIDIA C2050 GPUs. 
● Inter- node communications employ an InfiniBand (IB) QDR fabric.

● Minotauro: 126 nodes cluster (BSC)
● 2 x Intel Xeon E5649 (6 cores) at 2.53 GHz
● 24 GB od DDR3-1333 RAM
● 2 x NVIDIA M2050 GPUs
● Infniband QDR cluster network

Software
● rCUDA and OmpSs 14.10
● Tintorrum: CUDA 6.5 and gcc 4.4.7
● Minotauro: CUDA 5.0 and gcc 4.4.4
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Applications

N-Body:
● Classical simulation of a dynamical system of particles
● Used in physics and astronomy
● Number of particles to 57,600
● No transfers between GPU memories
● Up to 4 local GPUs and up to 6 remote GPUs

Cholesky factorization
● Solution of dense systems of linear equations 
● 45,056x45,056 float elements in Minotauro
● 32,768x32,768 float elements in Tintorrum
● Up to 2 or 4 local GPUs and up to 4 remote GPUs 
(OmpSs cuBLAS limitation)
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N-Body (Tintorrum)
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N-Body (Tintorrum)

rCUDA performs better than CUDA
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N-Body (Tintorrum)

rCUDA synchronization mechanism is 
more agressive than that in CUDA
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N-Body (Tintorrum)

A bad hardware installation can seriously harm performance:
Here, the IB card and the GPU are in different sockets and the
data transfer occurs across the QPI bus
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Cholesky (Minotauro)
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Cholesky (Minotauro)

rCUDA intra represents the rCUDA execution time and the overhead 
introduced by the several data transfers between GPU memories.
Used to simulate the intra node time transfers
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Cholesky (Minotauro)

rCUDA QDR represents the rCUDA execution time and the overhead 
introduced by the several data transfers between GPU memories each
one in a different node using a IB QDR interconnection
Used to simulate the extra node time transfers
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Cholesky (Minotauro)

rCUDA performs close to CUDA
For more than 1 GPU, only the QDR line performances worst
With a FDR interconnection it will be better
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Conclusions

● Combination of a virtualization framework and a task-based 
programming model is possible

● Most work done in rCUDA, but still far from complete

● First results of performance and scalability are promising
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Conclusions

● Combination of a virtualization framework and a task-based 
programming model is possible

● Most work done in rCUDA, but still far from complete

● First results of performance and scalability are promising

Future work

● Implement rCUDA inter GPU memory transfers

● Analyze the scalability using CUBLAS
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Thanks!


