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Performance and energy consumption 

 

 Top500 (November 2011) 

 

 

 

 

 

Rank Site #Cores LINPACK 
(TFLOPS) 

  1 RIKEN AICS K Computer– Spar64 
VIIIfx (8-core) 

705,024 10,510.00* 

  2 NSC Tianjin –  NUDT YH MPP, Xeon 
X5670 6C 2.93 GHz, NVIDIA 2050 

186,368 2,566.00 

  3 DOE ORNL – Cray XT5-HE Opteron 
6-core 2.6 GHz 

224,162 1,759.00 

  9 CEA (France)  – Bull bullx super-node 
S6010/S6030 

138,368 1,050.00 

114 BSC (Spain) – Bull B505, Xeon E5649 
6C 2.53 GHz, NVIDIA 2090 

5,544 103.20 

*1 day K Computer = 394 years of the world population (7.000 million people) with a hand calculator 
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Performance and energy consumption 

 

 Green500 (November 2011) 

 

 

 

 

 

Rank 

Green/Top 

Site #Cores MFLOPS/W LINPACK 
(TFLOPS) 

  1/29 IBM Rochester – BlueGene/Q, 
Power BQC 16C 1.60 GHz  

32,768 2,026.48 339.83 

  7/114 BSC (Spain) – Bull B505, Xeon 
E5649 6C 2.53 GHz, NVIDIA 
2090 

5,544 1,266.26 103.20 

  32/1 RIKEN AICS K Computer– 
Spar64 VIIIfx (8-core) 

705,024 830.18 10,510.00 

  47/2 NSC Tianjin –  NUDT YH MPP, 
Xeon X5670 6C 2.93 GHz, 
NVIDIA 2050 

186,368 635.15 2,566.00 

  53/3 DOE ORNL – Cray XT5-HE 
Opteron 6-core 2.6 GHz 

582,00 Cray 1,759.00 
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Multi-core and many-core platforms 

 

 “Conventional” architectures 

 

 

 

 New challengers… 
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Matrix computations 

 

 Linear algebra? Please, don’t run away! 

 Determinants, linear systems,        

least squares fitting, FFT, etc. 

 

 Importance: 

 Intel MKL, AMD ACML, IBM ESSL, NVIDIA CUBLAS, 

ongoing for TI 
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Scientific applications 

Biological systems 

 Simulations of molecular 

dynamics 

 

 Solve  

AX = BX, 

 dense A,B → n x n  

 n = 134,484 
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Scientific applications 

Industrial processes 

 Optimal cooling of steel 

profiles 

 

 Solve  

AT X + X A – X S X + Q = 0, 

 dense A → n x n  

 n = 5,177 for a mesh 

width of 6.91∙10-3 
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Scientific applications 

Summary 

 Dense linear algebra is at the bottom of the “food 

chain” for many scientific and engineering apps. 

 

 Fast acoustic scattering problems 

 Dielectric polarization of nanostructures 

 Magneto-hydrodynamics 

 Macro-economics 
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Leveraging hw. concurrency 

Threads 

 Linear system 
2 x + 3 y = 3 

4 x -  5 y = 6 

 

A X = B, with dense A, B 

→ n x n:  

≈ 2n3/3 + 2n3 flops 

 

 Intel Xeon:  

4 DP flops/cycle, e.g., 

at f=2.0 GHz 

   
 

 

n Time       

1 core 

Time  

8 cores 

Time     
16-node 
cluster,  
8-core 
per node, 
i.e., 192 
cores 

    100  33.33 ms -- -- 

1.000    0.33 s -- -- 

    104 333.33 s 41.62 s -- 

    105 

 

 > 92 h > 11 h > 28 m 

} 



June, 2012 Universidad Complutense de Madrid 

 

Leveraging hw. concurrency 

Threads 

2010 PFLOPS (1015 flops/sec.) 

 
2010 JUGENE 

 109 core level          
(PowerPC 450, 850MHz → 3.4 GFLOPS) 

 101 node level          
(Quad-Core) 

 105 cluster level     
(73.728 nodes) 

 

 

2020 EFLOPS (1018 flops/sec.) 

 
  

 109.5 core level          
  

 103 node level!          
  

 105.5 cluster level     
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Leveraging hw. concurrency 

Cholesky factorization 

 

 

 

 

 

Key in the solution of s.p.d. linear systems 

      A x = b  (LLT)x = b 

                   L y = b   y 

                   LT x = y   x 

 

A = * L LT 
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Leveraging hw. concurrency 

Cholesky factorization (blocked) 

 

 

 
A11 = L11 * L11

T F: 

L21  A21 * L11
-T T: 

A22  A22 – L21 * L21
T U: 

Reuse data in cache 

MT processor: Employ a MT 
implementation of T and P 

1st iteration 
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Leveraging hw. concurrency 

Cholesky factorization (blocked) 

 

 

 

… 

1st iteration 2nd iteration 3rd iteration 
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Leveraging hw. concurrency 

Cholesky factorization (blocked) 

 

 
for (k=1; k<=n/b; k++){ 

 Chol(A[k,k]);  // Akk     = Lkk * Lkk
T 

 

 

 if (k<=n/b){ 

    Trsm(A[k,k], A[k+1,k]);   // Lk+1,k    Ak+1,k * Lkk
-T 

 

    Syrk(A[k+1,k], A[k+1,k+1]); // Ak+1,k+1   Ak+1,k+1 

                                //         - Lk+1,k * Lk+1,k
T 

 } 

} 

F: 

T: 

U: 
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Leveraging hw. concurrency 

Cholesky factorization (blocked) 

 

 

 

71% peak 

57% peak 

80% peak 



June, 2012 Universidad Complutense de Madrid 

 

 

Leveraging hw. concurrency 

Algorithmic parallelism 

 Why? 

Excessive thread synchronization 

 
for (k=1; k<=n/b; k++){ 

 Chol(A[k,k]);             // Akk     = Lkk * Lkk
T 

 

 if (k<=n/b){ 

    Trsm(A[k,k], A[k+1,k]);   // Lk+1,k    Ak+1,k * Lkk
-T 

 

    Syrk(A[k+1,k], A[k+1,k+1]); // Ak+1,k+1   Ak+1,k+1 

                                //         - Lk+1,k * Lk+1,k
T 

 } 

} 

F: 

T: 

U: 



June, 2012 Universidad Complutense de Madrid 

 

 

Leveraging hw. concurrency 

Algorithmic parallelism 

 …but there is much more parallelism!!! 

1st iteration 2nd iteration 3rd iteration 
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Leveraging hw. concurrency 

Algorithmic parallelism 

 …but there is much more parallelism!!! 

1st iteration 

Inside the same iteration 

2nd iteration 

In different iterations 

How can we leverage it? 
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Leveraging hw. concurrency 

Task parallelism 

Scalar code 

loop: ld   f0, 0(r1) 

      addd f4, f0, f2 

      sd   f4, 0(r1) 

      addi r1, r1, #8 

      subi r2, r2, #1 

      bnez r2, loop 

 

IF ID ISS UF0 

UF1 

UF2 

(Super)scalar processor 
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Leveraging hw. concurrency 

Task parallelism 

 Something similar for (dense) linear algebra? 

  

for (k=1; k<=n/b; k++){ 

  Chol(A[k,k]);   

  for (i=k+1; i<=n/b; i++) 

    Trsm(A[k,k], A[i,k]); 

  for (i=k+1; i<nb; i++){ 

    Syrk(A[i,k],A[i,i]);  

    for (j=k+1; j<=i; j++) 

      Gemm(A[i,k], A[j,k], A[i,j]);  

  } 

} 

 

F: 

T: 

U1: 

U2: 

1st iter. 

2nd iter. 

3rd iter. 
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Leveraging hw. concurrency 

Task parallelism 

 Something similar for (dense) linear algebra? 

  

 Apply “scalar” techniques at the block level 

 Software implementation 

 Thread/Task-level parallelism 

 Target the cores/GPUs of the platform 

 

 

1st iter. 

2nd iter. 

3rd iter. 
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Leveraging hw. concurrency 

Task parallelism 

 Read/written blocks determine dependencies, as in scalar case 

  loop:  ld   f0, 0(r1)        for (k=1; k<=n/b; k++){ 

         addd f4, f0, f2         Chol(A[k,k]); 

         sd   f4, 0(r1)          for (i=k+1; i<=n/b; i++) 

         addi r1, r1, #8 …         Trsm(A[k,k], A[i,k]); … 

  

 Dependencies form a dependency DAG (task tree) 

… …
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Leveraging hw. concurrency 

Task parallelism 

 Runtime: 

 Decode (ID): Generate 

the task tree with a 

“symbolic analysis” of the 

code at execution time 

 Issue (ISS): Architecture-

aware execution of the 

tasks in the tree 

 
ID ISS N0 

N1 

N2 
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Leveraging hw. concurrency 

Task parallelism 

 Decode stage:  

 “Symbolic analysis” of the code 

 

 Blocked code:          Task tree: 

 

  for (k=1; k<=n/b; k++){ 

    Chol(A[k,k]); 

    for (i=k+1; i<=n/b; i++) 

      Trsm(A[k,k], A[i,k]); … 

ID ISS N0 

N1 

N2 

…
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Leveraging hw. concurrency 

Task parallelism 

 Issue stage: 
 Temporal scheduling of tasks, 

attending to dependencies 

 Mapping (spatial scheduling) of 

tasks to resources, aware of 

locality 

 

ID ISS N0 

N1 

N2 

…
  
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Leveraging hw. concurrency 

Implementations 

 SuperMatrix (UT@Austin and UJI) 

 Read/written blocks defined implicitly by the operations 

 Only valid for dense linear algebra operations encoded in 
libflame 

 

 SMPSs (BSC) and GPUSs (BSC and UJI) 

 OpenMP-like languages 
  #pragma css task inout(A[b*b]) 

  void Chol(double *A); 

 Applicable to task-parallel codes on different platforms: 

multi-core, multi-GPU, multi-accelerators, Grid,… 
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Cost of energy 

 

“Computer Architecture: A Quantitative Approach” 

J. Hennessy, D. Patterson, 2011 
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Cost of energy 

 

 “The free lunch is over” (H. Sutter, 2005) 

 

 

 

 Frequency wall 

 Instruction-level parallelism (ILP) wall 

 Memory wall 
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Cost of energy 

 

 Frequency wall 

 Power - energy 

consumption proportional 
to f3 - f2 

 Electricity = money 

 

 1st Law of 

Thermodynamics: Energy 

cannot be created or 

destroyed, only converted 

 Cost of extracting heat 

 Heat reduces lifetime  
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Cost of energy 

 

 

 

Rank 

Green/Top 

Site #Cores MFLOPS/W LINPACK 
(TFLOPS) 

MW to 
EXAFLOPS? 

  1/29 IBM Rochester – BlueGene/Q, 
Power BQC 16C 1.60 GHz  

32.768 2.026.48 339,83 493,47 

  7/114 BSC (Spain) – Bull B505, 
Xeon E5649 6C 2.53 GHz, 
NVIDIA 2090 

5.544 1.266,26 103,20 789,73 

  32/1 RIKEN AICS K Computer– 
Spar64 VIIIfx (8-core) 

705.024 830,18 10.510,00 1.204,60 

NVIDIA GTX 480 (250 W)  (=1/4 low power hair dryer) 

2 million GTXs ≈ 493,47 MW! 

or 500.000 hair dryers 
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Cost of energy 

 

 

 

Most powerful reactor under construction in France 

Flamanville (EDF, 2017 for US $9billion):  

1,630 MWe 

Rank 

Green/Top 

Site #Cores MFLOPS/W LINPACK 
(TFLOPS) 

MW to 
EXAFLOPS? 

  1/29 IBM Rochester – BlueGene/Q, 
Power BQC 16C 1.60 GHz  

32.768 2.026.48 339,83 493,47 

  7/114 BSC (Spain) – Bull B505, 
Xeon E5649 6C 2.53 GHz, 
NVIDIA 2090 

5.544 1.266,26 103,20 789,73 

  32/1 RIKEN AICS K Computer– 
Spar64 VIIIfx (8-core) 

705.024 830,18 10.510,00 1.204,60 
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Cost of energy 

Setup 

 Modeling power of task-parallel apps. 

 Two Intel Xeon E5504 @ 2.0 GHz (8 cores) 

 Experience: more stable 

 

 Saving opportunities for task-parallel apps. 

 Two AMD Opteron 6128 cores @ 2.0 GHz (16 cores) 

 Experience: more flexible (DVFS at core level) 
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Cost of energy 

Setup 

 DC powermeter with sampling freq. = 25 Hz 

 LEM HXS 20-NP transductors with PIC microcontroller 

 RS232 serial port 

 

 

Only 12 V lines 
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Cost of energy 

Setup 
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Cost of energy 

Setup 
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Cost of energy 

Power vs. energy 
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Cost of energy 

Power vs. energy 

 Which one is better, A or B ? 

 

 

P 

t 

𝐸𝐴 = 𝑃𝐴𝑡𝐴 
𝐸𝐵 = 𝑃𝐵𝑡𝐵 
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Cost of energy 

Modeling power (mainboard) 

𝑃 = 𝑃 𝑆 𝑌(𝑠𝑡𝑒𝑚) + 𝑃𝐶(𝑃𝑈) = 𝑃𝑌 + 𝑃𝑆(𝑡𝑎𝑡𝑖𝑐) + 𝑃𝐷(𝑦𝑛𝑎𝑚𝑖𝑐) 

 

𝑃𝐶 is power dissipated by CPU (socket): 𝑃𝑆 + 𝑃𝐷 

𝑃𝑌 is power of remaining components (e.g., RAM) 

 

Considerations: 
 𝑃𝑌 and 𝑃𝑆 are constants (though 𝑃𝑆grows with temperature) 

 Hot system 

 Task-parallel routines 

 Intel platform 
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Cost of energy 

Modeling power (mainboard) 

 System power:           𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷 

 

 

Estimated as idle power 

Due to off-chip components:  

e.g, RAM (only mainboard) 

 

 

𝑃𝑌 ≈ 𝑃𝐼 = 46.37 W 
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Cost of energy 

Modeling power (mainboard) 

 Static power:          𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷 

 

Also known as Uncore power (Intel): 

 LLC 

 Mem. controller  

 Interconnect controller 

 Power control logic 

 etc. 

 

 

 

Intel Xeon 5500 (4 cores) 

The Uncore: A Modular Approach to Feeding the High-performance Cores.  

D. L. Hill et al. Intel Technology Journal, Vol. 14(3), 2010 
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Cost of energy 

Modeling power (mainboard) 

 Static power:          𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷 

 

 

 

 

 

 
𝑃𝑑𝑔𝑒𝑚𝑚 𝑐 = 67.97 + 12.75 𝑐 

𝑃𝑆= 67.97- 46.37 = 21.6 W 
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Cost of energy 

Modeling power (mainboard) 

 Dynamic power:         𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷 

 

Also known as Core power (Intel): 

 Execution units 

 L1 and L2 cache 

 Branch prediction logic 

 etc. 

 

 

 

Intel Xeon 5500 (4 cores) 
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Cost of energy 

Modeling power (mainboard) 

 Dynamic power:         𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷 

 

 

 

 

 

 
𝑃𝑑𝑔𝑒𝑚𝑚 𝑐 = 67.97 + 12.75 𝑐 
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Cost of energy 

Modeling power (mainboard) 

 Dynamic power of task-parallelCholesky 

𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷 

 

 

 

 

 

 

 

  

 

 

for (k=1; k<=n/b; k++){ 

  Chol(A[k,k]);   

  for (i=k+1; i<=n/b; i++) 

    Trsm(A[k,k], A[i,k]); 

  for (i=k+1; i<nb; i++){ 

    Syrk(A[i,k],A[i,i]);  

    for (j=k+1; j<=i; j++) 

      Gemm(A[i,k], A[j,k], A[i,j]);  

  } 

} 

 

F: 

T: 

U1: 

U2: 

1st iter. 

2nd iter. 

3rd iter. 
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Cost of energy 

Modeling power (mainboard) 

 Dynamic power of task-parallelCholesky 

For a given kernel, execute repeatedly till power stabilizes: 

𝑃𝐷𝑑𝑔𝑒𝑚𝑚 = 𝑃𝑑𝑔𝑒𝑚𝑚 − (𝑃
𝑌 + 𝑃𝑆) 

 

 

 

 

 

 

 

Power increases linearly with #cores, from 1 to 4 mapped to a single socket 

When two sockets are used, linear function changes 
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Cost of energy 

Modeling power (mainboard) 

 Power of task-parallel Cholesky 

𝑃𝑐ℎ𝑜𝑙 = 𝑃
𝑌 + 𝑃𝑆 +  𝑃𝐷𝑖  𝑁𝑖,𝑗(𝑡)

𝑐

𝑗=1

𝑟

𝑖=1

 

where 

 𝑟 is #different types of tasks 

 𝑐is #cores 

 𝑃𝐷𝑖  is the average dynamic power for task of type  

  𝑁𝑖,𝑗 𝑡 = 1 if thread 𝑗 is executing a task of type 𝑖 at 

time t ;  𝑁𝑖,𝑗 𝑡 = 0 otherwise 

 
 

 



June, 2012 Universidad Complutense de Madrid 

Cost of energy 

Modeling power (mainboard) 

 Energy of task-parallel Cholesky 

𝐸𝑐ℎ𝑜𝑙 = (𝑃
𝑌+𝑃𝑆) 𝑇 +  𝑃𝐷𝑖   𝑁𝑖,𝑗 𝑡  𝑑𝑡

𝑇

𝑡=0

𝑐

𝑗=1

𝑟

𝑖=1

 

= 𝑃𝑌 + 𝑃𝑆  𝑇 +  𝑃𝐷𝑖  𝑇𝑖,𝑗

𝑐

𝑗=1

𝑟

𝑖=1

 

where 

 𝑇 is the total execution time 

  𝑇𝑖,𝑗 𝑡 = 1 is the time that thread 𝑗 has executed 

tasks of type 𝑖 
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Cost of energy 

Modeling power (mainboard) 
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Cost of energy 

Modeling power (mainboard) 
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Cost of energy 

Modeling power (mainboard) 
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Cost of energy 

Modeling power (mainboard) 
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Cost of energy 

Saving opportunities 

 ACPI (Advanced Configuration and Power 

Interface): industry-standard interfaces enabling 

OS-directed configuration, power/thermal 

management of mobile/desktop/server platforms 

 

 

 Revision 5.0 (december 2011) 

 In the processor: Power states (C-states) and 

performance states (P-states) 
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Cost of energy 

Saving opportunities 

 Power states (C-states): 

 C0: normal execution (also a P-state) 

 Cx, x>0 : no instructions being executed. As x  grows, more 

savings but longer latency to reach C0 

 Stop clock signal 

 Flush and shutdown cache (L1 and L2 flushed to LLC) 

 Turn off cores 
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Cost of energy 

Saving opportunities 

 Package power states (PC-states): 

 PC0, PC1, PC2,… 

 

 

Uncore subsystem remains active 

and consumes power as long as  

there is any active core on the CPU 

 

Intel Xeon 5500 (4 cores) 
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Cost of energy 

Saving opportunities 

 Intel Core i7 processor: 
 Core C0 State 

 The normal operating state of a core where code is being executed 

 Core C1/C1E State 

 The core halts;  it processes cache coherence snoops 

 Core C3 State 

 The core flushes the contents of its L1 instruction cache, L1 data cache, and 

L2 cache to the shared L3 cache, while maintaining its architectural state. All 

core clocks are stopped at this point.  No snoops 

 Core C6 State 

 Before entering core C6, the core will save its architectural state to a 

dedicated SRAM on chip. Once complete, a core will have its voltage 

reduced to zero volts 
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Cost of energy 

Saving opportunities 

 Performance states (P-states): 

 P0: Highest performance and power  

 Pi, i>0: As igrows, more savings but lower performance 

 

 

 

 

 

 𝑃 = 𝑎 𝑉2 𝑓, where 𝑎 depends on the technology (but 

𝐸 =  𝑃 𝑑𝑡
𝑇

0
= 𝑎 𝑉2) 

 
 

 

DVFS! 

AMD platform 
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Cost of energy 

Saving opportunities 

 Leveraging DVFS: cpufreq  

 

 

 

quintana@watts2:~$ cpufreq-info 
analyzing CPU 15: 
  driver: powernow-k8 
  CPUs which run at the same hardware frequency: 15 
  CPUs which need to have their frequency coordinated by software: 15 
  maximum transition latency: 10.0 us. 
  hardware limits: 800 MHz - 2.00 GHz 
  available frequency steps: 2.00 GHz, 1.50 GHz, 1.20 GHz, 1000 MHz, 800 MHz 
  available cpufreq governors: ondemand, userspace, performance 
  current policy: frequency should be within 800 MHz and 2.00 GHz. 
                  The governor "ondemand" may decide which speed to use 
                  within this range. 
  current CPU frequency is 800 MHz (asserted by call to hardware). 
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Cost of energy 

Saving opportunities 

 Leveraging DVFS (transparent): Linux governors 
 Performance: Highest frequency/performance 

 Powersave: Lowest frequency/performance 

 Userspace: User’s decision 

 Ondemand: If CPU utilization rises above the threshold value set in the 

up_threshold parameter, the ondemand governor increases the CPU 

frequency to scaling_max_freq. When CPU utilization falls below this 

threshold, the governor decreases the frequency in steps. Lowest 

performance, growing with workload 

 Conservative: If CPU utilization is above up_threshold, this governor 

will step up the frequency to the next highest frequency below or equal 

to scaling_max_freq. If CPU utilization is below down_threshold, this 

governor will step down the frequency to the next lowest frequency until 
it reaches scaling_min_freq 
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Cost of energy 

Saving opportunities 

 Which one is better, A or B ? 
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 Which one is better, A or B ? 

 

 

But consideralso 
𝑃𝑌 + 𝑃𝑆  ≃ 50% of power 

P 

t 
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 To DVFS or not? General consensus: 

 No for compute-intensive apps.: reducing frequency 

increases execution time linearly 

 

 

 

 

 

 

 Yes for memory-bounded apps. as cores are idle most of 

the time 
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 …but, in many platforms, reducing frequency via 

DVFS also reduces memory bandwidth 

proportionally! 
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 Alternative strategies for compute-intensive apps.: 

 Idle-wait in multithreaded apps. 

 Idle-wait in hybrid CPU-GPU apps. 

 Idle-wait during communications in MPI apps. 
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 Idle-wait in multithreaded apps. (ILU preconditioner) 
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 Idle-wait in hybrid CPU-GPU apps. (multi-GPU 

Cholesky factorization via SuperMatrix runtime) 

 

 

 

 

 

 

 Intel Xeon E5540 @ 2.83 GHz (4 cores) and NVIDIA Tesla 

S2050 (4 “Fermis”) 

  

 



June, 2012 Universidad Complutense de Madrid 

Cost of energy 

Saving opportunities 

 

 

EA1: no polling when there is no work 

EA2: no polling when work is in GPU 
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Performance and energy consumption 

Summary 

 A battle to be won in the core arena 

 More concurrency 

 Heterogeneous designs 

 A related battle to be won in the power arena 

 Do nothing, efficiently… (V. Pallipadi, A. Belay) 

 Don’t forget the cost of uncore power 

 

 

 

…but don’t always believe the salesman! 


