
June, 2012 Universidad Complutense de Madrid

Enrique S. Quintana-Ortí

Energy-Aware Matrix Computations on

Multi-Core and Many-core Platforms

June, 2012 Universidad Complutense de Madrid

Performance and energy consumption

 Top500 (November 2011)

Rank Site #Cores LINPACK
(TFLOPS)

 1 RIKEN AICS K Computer– Spar64
VIIIfx (8-core)

705,024 10,510.00*

 2 NSC Tianjin – NUDT YH MPP, Xeon
X5670 6C 2.93 GHz, NVIDIA 2050

186,368 2,566.00

 3 DOE ORNL – Cray XT5-HE Opteron
6-core 2.6 GHz

224,162 1,759.00

 9 CEA (France) – Bull bullx super-node
S6010/S6030

138,368 1,050.00

114 BSC (Spain) – Bull B505, Xeon E5649
6C 2.53 GHz, NVIDIA 2090

5,544 103.20

*1 day K Computer = 394 years of the world population (7.000 million people) with a hand calculator

June, 2012 Universidad Complutense de Madrid

Performance and energy consumption

 Green500 (November 2011)

Rank

Green/Top

Site #Cores MFLOPS/W LINPACK
(TFLOPS)

 1/29 IBM Rochester – BlueGene/Q,
Power BQC 16C 1.60 GHz

32,768 2,026.48 339.83

 7/114 BSC (Spain) – Bull B505, Xeon
E5649 6C 2.53 GHz, NVIDIA
2090

5,544 1,266.26 103.20

 32/1 RIKEN AICS K Computer–
Spar64 VIIIfx (8-core)

705,024 830.18 10,510.00

 47/2 NSC Tianjin – NUDT YH MPP,
Xeon X5670 6C 2.93 GHz,
NVIDIA 2050

186,368 635.15 2,566.00

 53/3 DOE ORNL – Cray XT5-HE
Opteron 6-core 2.6 GHz

582,00 Cray 1,759.00

June, 2012 Universidad Complutense de Madrid

Multi-core and many-core platforms

 “Conventional” architectures

 New challengers…

June, 2012 Universidad Complutense de Madrid

Matrix computations

 Linear algebra? Please, don’t run away!

 Determinants, linear systems,

least squares fitting, FFT, etc.

 Importance:

 Intel MKL, AMD ACML, IBM ESSL, NVIDIA CUBLAS,

ongoing for TI

June, 2012 Universidad Complutense de Madrid

Index

1. Scientific applications

2. Leveraging concurrency

3. Cost of energy

June, 2012 Universidad Complutense de Madrid

Index

1. Scientific applications

2. Leveraging concurrency

3. Cost of energy

June, 2012 Universidad Complutense de Madrid

Scientific applications

Biological systems

 Simulations of molecular

dynamics

 Solve

AX = BX,

 dense A,B → n x n

 n = 134,484

June, 2012 Universidad Complutense de Madrid

Scientific applications

Industrial processes

 Optimal cooling of steel

profiles

 Solve

AT X + X A – X S X + Q = 0,

 dense A → n x n

 n = 5,177 for a mesh

width of 6.91∙10-3

June, 2012 Universidad Complutense de Madrid

Scientific applications

Summary

 Dense linear algebra is at the bottom of the “food

chain” for many scientific and engineering apps.

 Fast acoustic scattering problems

 Dielectric polarization of nanostructures

 Magneto-hydrodynamics

 Macro-economics

June, 2012 Universidad Complutense de Madrid

Index

1. Scientific applications

2. Leveraging hardware concurrency

3. Cost of energy

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Threads

 Linear system
2 x + 3 y = 3

4 x - 5 y = 6

A X = B, with dense A, B

→ n x n:

≈ 2n3/3 + 2n3 flops

 Intel Xeon:

4 DP flops/cycle, e.g.,

at f=2.0 GHz

n Time

1 core

Time

8 cores

Time
16-node
cluster,
8-core
per node,
i.e., 192
cores

 100 33.33 ms -- --

1.000 0.33 s -- --

 104 333.33 s 41.62 s --

 105

 > 92 h > 11 h > 28 m

}

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Threads

2010 PFLOPS (1015 flops/sec.)

2010 JUGENE

 109 core level
(PowerPC 450, 850MHz → 3.4 GFLOPS)

 101 node level
(Quad-Core)

 105 cluster level
(73.728 nodes)

2020 EFLOPS (1018 flops/sec.)

 109.5 core level

 103 node level!

 105.5 cluster level

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Cholesky factorization

Key in the solution of s.p.d. linear systems

 A x = b  (LLT)x = b

 L y = b  y

 LT x = y  x

A = * L LT

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Cholesky factorization (blocked)

A11 = L11 * L11

T F:

L21  A21 * L11
-T T:

A22  A22 – L21 * L21
T U:

Reuse data in cache

MT processor: Employ a MT
implementation of T and P

1st iteration

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Cholesky factorization (blocked)

…

1st iteration 2nd iteration 3rd iteration

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Cholesky factorization (blocked)

for (k=1; k<=n/b; k++){

 Chol(A[k,k]); // Akk = Lkk * Lkk
T

 if (k<=n/b){

 Trsm(A[k,k], A[k+1,k]); // Lk+1,k  Ak+1,k * Lkk
-T

 Syrk(A[k+1,k], A[k+1,k+1]); // Ak+1,k+1  Ak+1,k+1

 // - Lk+1,k * Lk+1,k
T

 }

}

F:

T:

U:

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Cholesky factorization (blocked)

71% peak

57% peak

80% peak

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Algorithmic parallelism

 Why?

Excessive thread synchronization

for (k=1; k<=n/b; k++){

 Chol(A[k,k]); // Akk = Lkk * Lkk
T

 if (k<=n/b){

 Trsm(A[k,k], A[k+1,k]); // Lk+1,k  Ak+1,k * Lkk
-T

 Syrk(A[k+1,k], A[k+1,k+1]); // Ak+1,k+1  Ak+1,k+1

 // - Lk+1,k * Lk+1,k
T

 }

}

F:

T:

U:

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Algorithmic parallelism

 …but there is much more parallelism!!!

1st iteration 2nd iteration 3rd iteration

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Algorithmic parallelism

 …but there is much more parallelism!!!

1st iteration

Inside the same iteration

2nd iteration

In different iterations

How can we leverage it?

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Task parallelism

Scalar code

loop: ld f0, 0(r1)

 addd f4, f0, f2

 sd f4, 0(r1)

 addi r1, r1, #8

 subi r2, r2, #1

 bnez r2, loop

IF ID ISS UF0

UF1

UF2

(Super)scalar processor

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Task parallelism

 Something similar for (dense) linear algebra?

for (k=1; k<=n/b; k++){

 Chol(A[k,k]);

 for (i=k+1; i<=n/b; i++)

 Trsm(A[k,k], A[i,k]);

 for (i=k+1; i<nb; i++){

 Syrk(A[i,k],A[i,i]);

 for (j=k+1; j<=i; j++)

 Gemm(A[i,k], A[j,k], A[i,j]);

 }

}

F:

T:

U1:

U2:

1st iter.

2nd iter.

3rd iter.

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Task parallelism

 Something similar for (dense) linear algebra?

 Apply “scalar” techniques at the block level

 Software implementation

 Thread/Task-level parallelism

 Target the cores/GPUs of the platform

1st iter.

2nd iter.

3rd iter.

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Task parallelism

 Read/written blocks determine dependencies, as in scalar case

 loop: ld f0, 0(r1) for (k=1; k<=n/b; k++){

 addd f4, f0, f2 Chol(A[k,k]);

 sd f4, 0(r1) for (i=k+1; i<=n/b; i++)

 addi r1, r1, #8 … Trsm(A[k,k], A[i,k]); …

 Dependencies form a dependency DAG (task tree)

… …

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Task parallelism

 Runtime:

 Decode (ID): Generate

the task tree with a

“symbolic analysis” of the

code at execution time

 Issue (ISS): Architecture-

aware execution of the

tasks in the tree


ID ISS N0

N1

N2

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Task parallelism

 Decode stage:

 “Symbolic analysis” of the code



 Blocked code: Task tree:

 for (k=1; k<=n/b; k++){

 Chol(A[k,k]);

 for (i=k+1; i<=n/b; i++)

 Trsm(A[k,k], A[i,k]); …

ID ISS N0

N1

N2

…

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Task parallelism

 Issue stage:
 Temporal scheduling of tasks,

attending to dependencies

 Mapping (spatial scheduling) of

tasks to resources, aware of

locality

ID ISS N0

N1

N2

…
 

June, 2012 Universidad Complutense de Madrid

Leveraging hw. concurrency

Implementations

 SuperMatrix (UT@Austin and UJI)

 Read/written blocks defined implicitly by the operations

 Only valid for dense linear algebra operations encoded in
libflame

 SMPSs (BSC) and GPUSs (BSC and UJI)

 OpenMP-like languages
 #pragma css task inout(A[b*b])

 void Chol(double *A);

 Applicable to task-parallel codes on different platforms:

multi-core, multi-GPU, multi-accelerators, Grid,…

June, 2012 Universidad Complutense de Madrid

Index

1. Scientific applications

2. Leveraging hardware concurrency

3. Cost of energy

June, 2012 Universidad Complutense de Madrid

Cost of energy

“Computer Architecture: A Quantitative Approach”

J. Hennessy, D. Patterson, 2011

June, 2012 Universidad Complutense de Madrid

Cost of energy

 “The free lunch is over” (H. Sutter, 2005)

 Frequency wall

 Instruction-level parallelism (ILP) wall

 Memory wall

June, 2012 Universidad Complutense de Madrid

Cost of energy

 Frequency wall

 Power - energy

consumption proportional
to f3 - f2

 Electricity = money

 1st Law of

Thermodynamics: Energy

cannot be created or

destroyed, only converted

 Cost of extracting heat

 Heat reduces lifetime

June, 2012 Universidad Complutense de Madrid

Cost of energy

Rank

Green/Top

Site #Cores MFLOPS/W LINPACK
(TFLOPS)

MW to
EXAFLOPS?

 1/29 IBM Rochester – BlueGene/Q,
Power BQC 16C 1.60 GHz

32.768 2.026.48 339,83 493,47

 7/114 BSC (Spain) – Bull B505,
Xeon E5649 6C 2.53 GHz,
NVIDIA 2090

5.544 1.266,26 103,20 789,73

 32/1 RIKEN AICS K Computer–
Spar64 VIIIfx (8-core)

705.024 830,18 10.510,00 1.204,60

NVIDIA GTX 480 (250 W) (=1/4 low power hair dryer)

2 million GTXs ≈ 493,47 MW!

or 500.000 hair dryers

June, 2012 Universidad Complutense de Madrid

Cost of energy

Most powerful reactor under construction in France

Flamanville (EDF, 2017 for US $9billion):

1,630 MWe

Rank

Green/Top

Site #Cores MFLOPS/W LINPACK
(TFLOPS)

MW to
EXAFLOPS?

 1/29 IBM Rochester – BlueGene/Q,
Power BQC 16C 1.60 GHz

32.768 2.026.48 339,83 493,47

 7/114 BSC (Spain) – Bull B505,
Xeon E5649 6C 2.53 GHz,
NVIDIA 2090

5.544 1.266,26 103,20 789,73

 32/1 RIKEN AICS K Computer–
Spar64 VIIIfx (8-core)

705.024 830,18 10.510,00 1.204,60

June, 2012 Universidad Complutense de Madrid

Cost of energy

Setup

 Modeling power of task-parallel apps.

 Two Intel Xeon E5504 @ 2.0 GHz (8 cores)

 Experience: more stable

 Saving opportunities for task-parallel apps.

 Two AMD Opteron 6128 cores @ 2.0 GHz (16 cores)

 Experience: more flexible (DVFS at core level)

June, 2012 Universidad Complutense de Madrid

Cost of energy

Setup

 DC powermeter with sampling freq. = 25 Hz

 LEM HXS 20-NP transductors with PIC microcontroller

 RS232 serial port

Only 12 V lines

June, 2012 Universidad Complutense de Madrid

Cost of energy

Setup

June, 2012 Universidad Complutense de Madrid

Cost of energy

Setup

June, 2012 Universidad Complutense de Madrid

Cost of energy

Power vs. energy

June, 2012 Universidad Complutense de Madrid

Cost of energy

Power vs. energy

 Which one is better, A or B ?

P

t

𝐸𝐴 = 𝑃𝐴𝑡𝐴
𝐸𝐵 = 𝑃𝐵𝑡𝐵

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

𝑃 = 𝑃 𝑆 𝑌(𝑠𝑡𝑒𝑚) + 𝑃𝐶(𝑃𝑈) = 𝑃𝑌 + 𝑃𝑆(𝑡𝑎𝑡𝑖𝑐) + 𝑃𝐷(𝑦𝑛𝑎𝑚𝑖𝑐)

𝑃𝐶 is power dissipated by CPU (socket): 𝑃𝑆 + 𝑃𝐷

𝑃𝑌 is power of remaining components (e.g., RAM)

Considerations:
 𝑃𝑌 and 𝑃𝑆 are constants (though 𝑃𝑆grows with temperature)

 Hot system

 Task-parallel routines

 Intel platform

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

 System power: 𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷

Estimated as idle power

Due to off-chip components:

e.g, RAM (only mainboard)

𝑃𝑌 ≈ 𝑃𝐼 = 46.37 W

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

 Static power: 𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷

Also known as Uncore power (Intel):

 LLC

 Mem. controller

 Interconnect controller

 Power control logic

 etc.

Intel Xeon 5500 (4 cores)

The Uncore: A Modular Approach to Feeding the High-performance Cores.

D. L. Hill et al. Intel Technology Journal, Vol. 14(3), 2010

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

 Static power: 𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷

𝑃𝑑𝑔𝑒𝑚𝑚 𝑐 = 67.97 + 12.75 𝑐

𝑃𝑆= 67.97- 46.37 = 21.6 W

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

 Dynamic power: 𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷

Also known as Core power (Intel):

 Execution units

 L1 and L2 cache

 Branch prediction logic

 etc.

Intel Xeon 5500 (4 cores)

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

 Dynamic power: 𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷

𝑃𝑑𝑔𝑒𝑚𝑚 𝑐 = 67.97 + 12.75 𝑐

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

 Dynamic power of task-parallelCholesky

𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷

for (k=1; k<=n/b; k++){

 Chol(A[k,k]);

 for (i=k+1; i<=n/b; i++)

 Trsm(A[k,k], A[i,k]);

 for (i=k+1; i<nb; i++){

 Syrk(A[i,k],A[i,i]);

 for (j=k+1; j<=i; j++)

 Gemm(A[i,k], A[j,k], A[i,j]);

 }

}

F:

T:

U1:

U2:

1st iter.

2nd iter.

3rd iter.

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

 Dynamic power of task-parallelCholesky

For a given kernel, execute repeatedly till power stabilizes:

𝑃𝐷𝑑𝑔𝑒𝑚𝑚 = 𝑃𝑑𝑔𝑒𝑚𝑚 − (𝑃
𝑌 + 𝑃𝑆)

Power increases linearly with #cores, from 1 to 4 mapped to a single socket

When two sockets are used, linear function changes

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

 Power of task-parallel Cholesky

𝑃𝑐ℎ𝑜𝑙 = 𝑃
𝑌 + 𝑃𝑆 + 𝑃𝐷𝑖 𝑁𝑖,𝑗(𝑡)

𝑐

𝑗=1

𝑟

𝑖=1

where

 𝑟 is #different types of tasks

 𝑐is #cores

 𝑃𝐷𝑖 is the average dynamic power for task of type

 𝑁𝑖,𝑗 𝑡 = 1 if thread 𝑗 is executing a task of type 𝑖 at

time t ; 𝑁𝑖,𝑗 𝑡 = 0 otherwise

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

 Energy of task-parallel Cholesky

𝐸𝑐ℎ𝑜𝑙 = (𝑃
𝑌+𝑃𝑆) 𝑇 + 𝑃𝐷𝑖 𝑁𝑖,𝑗 𝑡 𝑑𝑡

𝑇

𝑡=0

𝑐

𝑗=1

𝑟

𝑖=1

= 𝑃𝑌 + 𝑃𝑆 𝑇 + 𝑃𝐷𝑖 𝑇𝑖,𝑗

𝑐

𝑗=1

𝑟

𝑖=1

where

 𝑇 is the total execution time

 𝑇𝑖,𝑗 𝑡 = 1 is the time that thread 𝑗 has executed

tasks of type 𝑖

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

June, 2012 Universidad Complutense de Madrid

Cost of energy

Modeling power (mainboard)

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 ACPI (Advanced Configuration and Power

Interface): industry-standard interfaces enabling

OS-directed configuration, power/thermal

management of mobile/desktop/server platforms

 Revision 5.0 (december 2011)

 In the processor: Power states (C-states) and

performance states (P-states)

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 Power states (C-states):

 C0: normal execution (also a P-state)

 Cx, x>0 : no instructions being executed. As x grows, more

savings but longer latency to reach C0

 Stop clock signal

 Flush and shutdown cache (L1 and L2 flushed to LLC)

 Turn off cores

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 Package power states (PC-states):

 PC0, PC1, PC2,…

Uncore subsystem remains active

and consumes power as long as

there is any active core on the CPU

Intel Xeon 5500 (4 cores)

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 Intel Core i7 processor:
 Core C0 State

 The normal operating state of a core where code is being executed

 Core C1/C1E State

 The core halts; it processes cache coherence snoops

 Core C3 State

 The core flushes the contents of its L1 instruction cache, L1 data cache, and

L2 cache to the shared L3 cache, while maintaining its architectural state. All

core clocks are stopped at this point. No snoops

 Core C6 State

 Before entering core C6, the core will save its architectural state to a

dedicated SRAM on chip. Once complete, a core will have its voltage

reduced to zero volts

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 Performance states (P-states):

 P0: Highest performance and power

 Pi, i>0: As igrows, more savings but lower performance

 𝑃 = 𝑎 𝑉2 𝑓, where 𝑎 depends on the technology (but

𝐸 = 𝑃 𝑑𝑡
𝑇

0
= 𝑎 𝑉2)

DVFS!

AMD platform

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 Leveraging DVFS: cpufreq

quintana@watts2:~$ cpufreq-info
analyzing CPU 15:
 driver: powernow-k8
 CPUs which run at the same hardware frequency: 15
 CPUs which need to have their frequency coordinated by software: 15
 maximum transition latency: 10.0 us.
 hardware limits: 800 MHz - 2.00 GHz
 available frequency steps: 2.00 GHz, 1.50 GHz, 1.20 GHz, 1000 MHz, 800 MHz
 available cpufreq governors: ondemand, userspace, performance
 current policy: frequency should be within 800 MHz and 2.00 GHz.
 The governor "ondemand" may decide which speed to use
 within this range.
 current CPU frequency is 800 MHz (asserted by call to hardware).

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 Leveraging DVFS (transparent): Linux governors
 Performance: Highest frequency/performance

 Powersave: Lowest frequency/performance

 Userspace: User’s decision

 Ondemand: If CPU utilization rises above the threshold value set in the

up_threshold parameter, the ondemand governor increases the CPU

frequency to scaling_max_freq. When CPU utilization falls below this

threshold, the governor decreases the frequency in steps. Lowest

performance, growing with workload

 Conservative: If CPU utilization is above up_threshold, this governor

will step up the frequency to the next highest frequency below or equal

to scaling_max_freq. If CPU utilization is below down_threshold, this

governor will step down the frequency to the next lowest frequency until
it reaches scaling_min_freq

June, 2012 Universidad Complutense de Madrid

P

t

Cost of energy

Saving opportunities

 Which one is better, A or B ?

June, 2012 Universidad Complutense de Madrid

P

t

Cost of energy

Saving opportunities

 Which one is better, A or B ?

But consideralso
𝑃𝑌 + 𝑃𝑆 ≃ 50% of power

P

t

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 To DVFS or not? General consensus:

 No for compute-intensive apps.: reducing frequency

increases execution time linearly

 Yes for memory-bounded apps. as cores are idle most of

the time

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 …but, in many platforms, reducing frequency via

DVFS also reduces memory bandwidth

proportionally!

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 Alternative strategies for compute-intensive apps.:

 Idle-wait in multithreaded apps.

 Idle-wait in hybrid CPU-GPU apps.

 Idle-wait during communications in MPI apps.

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 Idle-wait in multithreaded apps. (ILU preconditioner)

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

 Idle-wait in hybrid CPU-GPU apps. (multi-GPU

Cholesky factorization via SuperMatrix runtime)

 Intel Xeon E5540 @ 2.83 GHz (4 cores) and NVIDIA Tesla

S2050 (4 “Fermis”)

June, 2012 Universidad Complutense de Madrid

Cost of energy

Saving opportunities

EA1: no polling when there is no work

EA2: no polling when work is in GPU

June, 2012 Universidad Complutense de Madrid

Performance and energy consumption

Summary

 A battle to be won in the core arena

 More concurrency

 Heterogeneous designs

 A related battle to be won in the power arena

 Do nothing, efficiently… (V. Pallipadi, A. Belay)

 Don’t forget the cost of uncore power

…but don’t always believe the salesman!

