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Concurrency and energy efficiency

 Green500 vs Top500 (June 2013) 

Rank

Top/Green

Site Technology MFLOPS/W

1/32 Tianhe-2 - National 
University of Defense 
Technology

Intel Xeon E5 + Intel 
Xeon Phi

1.901

467/1 Eurora - CINECA Intel Xeon E5 + 
NVIDIA K20

3.208



October, 2013The University of Texas at Austin

Concurrency and energy efficiency

 Green500 vs Top500 (June 2013) 

Most powerful reactor under construction in France

Flamanville (EDF, 2017 for US $9 billion): 

1,630 MWe

Rank

Top/Green

Site Technology MFLOPS/W MW to
EXAFLOPS?

1/32 Tianhe-2 - National 
University of Defense 
Technology

Intel Xeon E5 + Intel 
Xeon Phi

1.901 408

467/1 Eurora - CINECA Intel Xeon E5 + 
NVIDIA K20

3.208 312
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 Green500 vs Top500 (November 2012) 

Rank

Top/Green

Site Technology MFLOPS/W MW to
EXAFLOPS?

1/32 Tianhe-2 - National 
University of Defense 
Technology

Intel Xeon E5 + Intel 
Xeon Phi

1.901 408

467/1 Eurora - CINECA Intel Xeon E5 + 
NVIDIA K20

3.208 312

Concurrency and energy efficiency

Most powerful reactor under construction in France

Flamanville (EDF, 2017 for US $9 billion): 

1,630 MWe

1 MW ≈ $1 Million/year!
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Concurrency and energy efficiency

 System ranked #1 in Green500
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Concurrency and energy efficiency

 System ranked #1 in Green500

MFLOPS/W

IBM BlueGene/Q

Intel Xeon Phi

Goal: 20MW for 1 EXAFLOP by 2020

Maintaining the improvement rate of last

five years (x5)  40 MW by 2020!!!
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Concurrency and energy efficiency

 Reduce energy consumption!

 Costs over lifetime of an HPC facility often exceed 

acquisition costs

 Carbon dioxide is a hazard for health and environment

 Heat reduces hardware reliability

 Personal view

 Hardware features some power-saving mechanisms

 Scientific apps. are in general energy-oblivious
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Experimental setup

AMD

 2 AMD Opteron 6128, 48GB 

 DVFS per core

Intel

 2 Intel Xeon E5504, 32GB

 DVFS per socket

C-states:
C0: normal operation mode

C1, C1E: disable core components (L1/L2 caches), clock signal, mem. controller,… 

increases energy savings at the expense of recovery time
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Experimental setup

 National Instruments NI9205+NIcDAQ-9178

 1,000 Samples/s per channel

Only 12 V lines
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Outline

 Modeling power

 Saving power in task-parallel applications

 ILUPACK for multicore processors

 CG for hybrid CPU-GPU platforms

 Conclusions
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Modeling Power
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Modeling Power

 System power: 𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷

Estimated as idle power

Due to off-chip components: 

e.g., RAM (only mainboard)

𝑃𝑌 ≈ 𝑃𝐼 = 80.15 W
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Modeling Power

 Static power: 𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷

𝑃𝑇
0 𝑐 = 𝑎0 + 𝑏0 ∙ 𝑐 = 168.59 + 9.12 ∙ c W

𝑃𝑆
0 ≈ 𝑎0 − 𝑃𝑌 = 88.44 W
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Modeling Power

 Dynamic power: 𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷

𝑃𝑇
0 𝑐 = 𝑎0 + 𝑏0 𝑐 = 168.59 + 9.12 ∙ c W

Busy-wait: 𝑃𝐷
0 ≈ 𝑏0 𝑐 = 9.12 ∙ c W
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Modeling Power

 Dynamic power: 𝑃 = 𝑃𝑌 + 𝑃𝑆 + 𝑃𝐷

𝑃𝑇
0 𝑐 = 𝑎0 + 𝑏0 𝑐 = 168.59 + 9.12 ∙ c W

Busy-wait: 𝑃𝐷
0 ≈ 𝑏0 𝑐 = 9.12 ∙ c W

An operation more challenging 

than busy-wait?



October, 2013The University of Texas at Austin

Modeling Power

 Task-parallel DLA on multicore and CPU-GPU
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Modeling Power

 Task-parallel DLA on multicore and CPU-GPU

• Use average 

Power

• Depends also 

on #active 

sockets!
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Modeling Power

 Task-parallel DLA on multicore and CPU-GPU

 Accommodate to memory contention
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 Task-parallel DLA on multicore and CPU-GPU

 Accommodate memory contention
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Modeling Power

 Simple, yet accurate:

 Dense factorizations (Cholesky, LU, QR)

 Multicore processors

 CPU-GPU platforms

 ILUPACK on multicore processors

"Modeling power and energy consumption of dense matrix factorizations on multicore processors"

P. Alonso, M. F. Dolz, R. Mayo, E. S. Quintana. CCPE 2013

"Enhancing performance and energy consumption of runtime schedulers for dense linear algebra"

P. Alonso, M. F. Dolz, F. D. Igual, R. Mayo, E. S. Quintana. CCPE 2013 (submitted)

"Assessing the impact of the CPU power-saving modes on the task-parallel solution of sparse linear systems"

J. Aliaga, M. Barreda, M. F. Dolz, A. Martín, R. Mayo, E. S. Quintana. Cluster Computing 2013 (submitted)
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Outline

 Modeling power

 Saving power in task-parallel appl.

 ILUPACK for multicore processors

 CG for hybrid CPU-GPU platforms

 Conclusions
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ILUPACK on multicore

 Incomplete LU Package (http://ilupack.tu-bs.de)

 Iterative Krylov subspace methods

 Multilevel ILU preconditioners for 

general/symmetric/Hermitian positive definite systems

 Based on inverse ILUs with control over growth of inverse 

triangular factors

 Specially competitive for linear systems from 3D PDEs

http://ilupack.tu-bs.de/
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ILUPACK on multicore

Task parallelism

 Multi-threaded parallelism (real s.p.d. systems)

 Leverage task parallelism

 Dynamic scheduling via runtime (OpenMP)
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ILUPACK on multicore

Task parallelism

 Run-time in charge of scheduling

"Exploiting thread-level parallelism in the iterative solution of sparse linear systems"

J. I. Aliaga, M. Bollhöfer, A. F. Martín, E. S. Quintana. Parallel Computing, 2011
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ILUPACK on multicore

Experimental setup

 Sparse linear system benchmark

 Laplacian equation –Δu = f  in a 3D unit cube Ω = [0,1]3

 Linear system Au = b  with A → n x n, n = 2523 ≈ 16 million 

unknowns and 111 millions of nonzero entries
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ILUPACK on multicore

Leveraging P-states (AMD)

 DVFS = P-states (see ACPI standard)

 Moving to a higher P-state results in ↓power

 ↓Power = ↓Energy?

 For a compute-bounded operation, fi is linear to time-1

 In principle, for a memory-bounded operation (ILUPACK), 

reducing fi should have a minor impact on performance
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ILUPACK on multicore

Leveraging P-states (AMD)

 1st attempt: Dynamic Static voltage-frequency scaling

Why?



October, 2013The University of Texas at Austin

ILUPACK on multicore

Leveraging P-states (AMD)

 1st attempt: Dynamic Static voltage-frequency scaling

• Combined effect of linear decrease of CPU 

performance and memory bandwidth!

• Decrease of Ps
i (P0  P2 :  -21.47%), decrease of PD

i

(P0  P3 :  -60.73%) but Py
i does not change!
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ILUPACK on multicore

Leveraging P-states (AMD)

 2nd attempt: DVFS during idle periods
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ILUPACK on multicore

Leveraging P-states (AMD)

 2nd attempt: DVFS during idle periods
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ILUPACK on multicore

Leveraging P-states (AMD)

 Active polling for work…
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ILUPACK on multicore

Leveraging P- and C-states (AMD)

 3rd attempt: DVFS and idle-wait
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ILUPACK on multicore

Leveraging P- and C-states (AMD)

 3rd attempt: DVFS and idle-wait:

 Savings of 6.92% of total energy

 Negligible impact on execution time

 …but take into account that

 Idle time: 23.70%

 Dynamic power: 32.32%

 Upper bound of savings: 39.32 ∙ 0.2370 = 9.32%
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ILUPACK on multicore

Leveraging P-states (Intel)

DVFS
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ILUPACK on multicore

Leveraging P- and C-states (Intel)

DVFS DVFS+idle-wait

Average reduction: 9.5% for LU and 6.5% for Solve
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Outline

 Modeling power

 ILUPACK for multicore processors

 Saving power in task-parallel appl.

 ILUPACK for multicore processors

 CG for hybrid CPU-GPU platforms

 Conclusions
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The CG method on CPU-GPU

 Leveraging P-states on CPU-GPU platforms?

 Apply DVFS to the CPU while computation proceeds on the 

GPU?

 Leveraging C-states on CPU-GPU platforms?

 What is the CPU doing while computation proceeds on the 

GPU?
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The CG method on CPU-GPU 

Experimental setup

 Sandy: 

 Intel i7-3770K, 16GB

 NVIDIA GeForce GTX480

 Cases from two matrix collections
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The CG method on CPU-GPU

Basic implementation

 CG: Sparse matrix-vector (SpMV) + CUBLAS
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The CG method on CPU-GPU

Basic implementation

 CG: Sparse matrix-vector (SpMV) + CUBLAS

Leveraging P-states:
• Basically all computation performed on the GPU

• Apply static VFS to reduced power in CPU!
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The CG method on CPU-GPU

Basic implementation

 CG: Sparse matrix-vector (SpMV) + CUBLAS

Leveraging C-states:
• What is the CPU doing while computation proceeds on 

the GPU?

• CUDA offers polling (active-wait) vs blocking (idle-wait) 

operation modes 
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The CG method on CPU-GPU

Basic implementation

 Trading off energy for time: variations of CUDA 

blocking mode w.r.t. CUDA polling mode
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The CG method on CPU-GPU

Basic implementation

 Trading off energy for time: variations of CUDA 

blocking mode w.r.t. CUDA polling mode

Energy = Time ∙ Power

For AUDIKW_1:

• Time 3.6% 

• Power 29.16% ↓

•  Energy 26.6% ↓
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The CG method on CPU-GPU

Basic implementation

 Trading off energy for time: variations of CUDA 

blocking mode w.r.t. CUDA polling mode
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The CG method on CPU-GPU

Merged implementation

 Can we attain polling performance and blocking 

energy advantage?

 Requires a reformulation of CG (merge kernels)
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The CG method on CPU-GPU

Merged implementation

 Time vs. CPU energy

Maintain performance of polling…

…while leveraging energy-efficiency 

of C-states+idle-wait
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Performance and energy consumption

Summary

“Do nothing, efficiently…” (V. Pallipadi, A. Belay) 

or

“Doing nothing well” (D. E. Culler)
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