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Algebraic Bernoulli Equation (ABE)

Solve the equation:

ATX + XA−XGX = 0,

where

• A ∈ Rn×n,

• G ∈ Rn×n is symmetric,

• X ∈ Rn×n is the sought-after solution.
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What is the ABE?

A degenerate Algebraic Riccati Equation (ARE):

ATX + XA−XGX + Q = 0,

with Q = 0, as well as a special case of the more general equation

L(X) + X

k−1∏
j=1

AjX

 = 0,

where

• L(X) is a linear operator,

• Aj ∈ Rn×n, j = 1, . . . , k − 1.
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Interest?

Dealing with dynamical linear time-invariant (LTI) systems:

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,

• n state-space variables, i.e., n is the order of the system;

• m inputs.

Applications in systems and control theory:

• Stabilization.

• Model reduction.
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Interest? (Cont. I)

Stabilization problem: Find u(t) s.t. the solution of

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,

asymptotically converges to zero.

The maximal solution X∗ of the ABE

ATX + XA−XBBTX = 0,

defines the feedback law

u(t) = −BTX∗x(t), t ≥ 0,

which stabilizes the system!

4& %



' $
Parallel solution of large-scale ABEs with the matrix sign function Oslo - June 2005

Interest? (Cont. II)

Large-scale unstable dynamical LTI systems [Kamon, Wang, White’98]:

RLC cicuits VLSI chip design

Large-scale means n as large as 103 − 104!
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Numerical Solvers

Specialized cases of ARE solvers [Mehrmann’91]:

Compute a basis [
UT V T

]T
, U, V ∈ Rn×n,

for the invariant subspace of the 2n× 2n matrix

H :=

[
A G
0 −AT

]
associated with the eigenvalues of H in the open left half plane.

Then, the stabilizing solution of the ABE (provided it exists) can be
computed by

X∗ := −V U−1.
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Numerical Solvers (Cont. I)

Computing the appropriate basis:

• Compute the real Schur form of H (actually, just A) and reorder the
eigenvalues.

• Use a spectral projector such as the matrix sign function [Roberts, 80].

Computational and storage costs O(n3) and O(n2), respectively.

=⇒ Need for parallel computing!

7& %



' $
Parallel solution of large-scale ABEs with the matrix sign function Oslo - June 2005

Numerical Solvers (Cont. II)

• Real Schur form of H via the QR algorithm:

– Implicitly iterative.

– Composed of fine grain operations.

– Hard to parallelize, but doable [ScaLAPACK’97].

– Parallel reordering procedure not available :-(

• Matrix sign function:

– Explicitly iterative.

– Claim: Easy to parallelize.

The convergence of the methods depends on the problem:

=⇒ Difficult to infer general results!
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Sign Function Method

The classical Newton iteration for the matrix sign function

Z0 ← Z, Zk+1 ←
1

2
(Zk + Z−1

k ), k = 0, 1, 2, . . . ,

when applied to H :=

[
A G
0 −AT

]
boils down to

A0 ← A, Ak+1 ← 1
2

(
1
ck

Ak + ckA
−1
k

)
,

G0 ← G, Gk+1 ← 1
2

(
1
ck

Gk + ckA
−1
k GkA

−T
k

)
,

k = 0, 1, 2, . . . .
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Sign Function Method (Cont. I)

Scaling for acceleration of convergence:

• Determinantal:
ck := |det(Hk)|1/n.

• Optimal norm:

ck :=

√
‖Hk‖2
‖H−1

k ‖2
.

• Approximate optimal norm:

ck :=

√
‖Hk‖F
‖H−1

k ‖F
=

√√√√ √
2‖Ak‖2F + ‖Gk‖2F√

2‖A−1
k ‖2F + ‖A−1

k GkA
−T
k ‖2F

.
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Sign Function Method (Cont. II)

Convergence criterion:

• Stop when
‖Ak+1 − Ak‖F ≤ τ · ‖A‖F ,

where τ is a tolerance threshold.

• Use τ =
√

ε, with ε as the machine precision, and perform 1–3
additional iterations once this criterion is satisfied.

At convergence, after k̄ iterations, solve the full-rank linear least-squares
problem [

Gk̄

In − AT
k̄

]
X =

[
Ak̄ + In

0n

]
.
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Operation Costs

• Matrix factorization and triangular linear systems solves. . .

Ak+1 ← 1
2

(
Ak + A−1

k

)
,

Gk+1 ← 1
2

(
Gk + A−1

k GkA
−T
k

)
.

Cost: 6n3 flops per iteration.

• Full-rank least squares problem via QR factorization:[
Gk̄

In − AT
k̄

]
X =

[
Ak̄ + In

0n

]
.

Cost: 14
3 n3 flops.
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Parallel Implementation

Easy parallelization using, e.g., ScaLAPACK.

Computing the iterates:

Ak+1 ←
1

2

(
Ak + A−1

k

)
, Gk+1 ←

1

2

(
Gk + A−1

k GkA
−T
k

)
.

• LU factorization of A, followed by triangular linear system solve, and
matrix inversion from LU factors.

• A−1 needs to be computed anyway!
Invert A first and then perform two matrix products.
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Parallel Implementation (Cont. I)

Matrix inversion:

• LU factorization, triangular matrix inversion, and triangular linear system
solve.

• Direct inversion via Gauss-Jordan elimination [Quintana-Ort́ı2, Sun, van
de Geijn’01].

– Well suited for distributed memory machines.

– Cyclic distribution not necessary for load balance.

– All computations in rank-k update: High performance.
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Numerical Experiments

Unstable systems in the ARE benchmark [Benner, Laub, Mehrmann’95]
(AREb) and others.

Stabilization of (Â, B) = (A + δIn, B).

Test:

• Relative residual

R1(X∗) :=
‖ÂTX∗ + X∗Â−X∗BBTX∗‖1

‖X∗‖1
.

• Stabilized closed-loop A−BBTX∗?
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Numerical Experiments (Cont. I)

Example n δ Iter. R1(X∗) Stab.? Observ.

AREb 1 2 1.0e-4 4 4.9e-28 Yes

AREb 2 2 0.0 5 5.8e-15 Yes

AREb 7 2 0.0 5 0.0e+00 Yes

AREb 9 2 1.0 4 1.3e-15 Yes

AREb 10 2 0.0 5 8.5e-09 Yes

AREb 11 2 0.0 5 1.0e-15 Yes

AREb 12 3 0.0 7 3.3e-09 Yes

AREb 13 4 1.0e-8 7 2.9e-10 Yes

AREb 14 4 0.0 5 5.5e-11 Yes

AREb 15 39 1.0e-6 6 8.4e-11 Yes

AREb 16 64 1.0e-4 17 1.2e-11 Yes

AREb 17 21 1.0 8 5.1e-01 No All eig. at 0.0

AREb 19 60 1.0e-4 17 1.1e-14 Yes

RLC 199 1.0e-6 31 1.1e-14 Yes Gen. system
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Parallel Experiments

Double precision arithmetic using random unstable systems of order n.

Two parallel platforms:

• HPCx system with POWER4+ Regatta nodes:

– 32 POWER4+ processor@1.7 GHz, with 1.5 Mbytes of L2 cache, and
32 Gbytes RAM.

• Cluster of Intel processors:

– 20 Intel Xeon@2.4 GHz, with 1 Gbyte of RAM, connected via Myrinet
switches.
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Parallel Experiments (Cont. I)

Reduction in execution time for ABE of dimension n=3200.
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Parallel Experiments (Cont. II)

Speed-up for ABE of dimension n=3200.

np 2 4 6 8 10 12

HPCx 1.92 3.31 4.75 6.41 7.30 9.38
Intel cluster 1.49 2.62 3.47 3.93 4.90 4.89

Efficiency on Linux cluster quite more reduced!
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Parallel Experiments (Cont. III)

Scalability for ABEs of dimension n/
√

(np)=3200.
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Parallel Experiments (Cont. IV)

Impact of matrix inversion procedure (not included in ABE solvers):
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Concluding Remarks

• Matrix sign function is a efficient tool to solve large-scale ABE.

• As with most iterative algorithms, performance depends on the problem.

• Convergence criterion works fine in most situations.

• Determinantal scaling “seems” to work better than approx. optimal
norm scaling.

• Easy and efficient (Intel cluster?) parallelization.

Some other conclusions/future work:

• Direct extension to ATXE + ETXA− ETXGXE = 0.

• Possible specialization to compute a full-rank factor of X.

• Easy to exploit symmetry of A.
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