Design of Scalable Dense Linear Algebra Libraries
for Multicore Processors and Multi-GPU Platforms

Enrique S. Quintana-Orti
quintana@icc.uji.es

High Performance Computing & Architectures Group
Universidad Jaime | de Castellén (Spain)

Braunschweig — July, 2008

UNIVERSITAT
JAUME-1

Dense Linear Algebra on Parallel Architectures 1



e

Sergio Barrachina Ernie Chan

Maribel Castillo Robert van de Geijn
Field G. Van Zee

Rafael Mayo

Rafael Rubio

Universidad Jaime | (Spain) The University of Texas at Austin

Supported by:

National Science Foundation (NSF)
Spanish Office of Science

National Instruments
NVIDIA

Dense Linear Algebra on Parallel Architectures 2



General Motivation 73

Who has a multicore processor on the desktop/laptop?

Who has a recent graphics card on the desktop/laptop?

Dense Linear Algebra on Parallel Architectures 3



General Motivation 73

Who has a multicore processor on the desktop/laptop?

Are you using more than 1 core?

Who has a recent graphics card on the desktop/laptop?

Are you using it for something else than games? ;-)

Dense Linear Algebra on Parallel Architectures 4



Part |: Multicore processors

Part 1I: GPUs

Dense Linear Algebra on Parallel Architectures 5



New dense linear algebra libraries for multicore processors

@ Scalability for manycore
@ Data locality
@ Heterogeneity?

Dense Linear Algebra on Parallel Architectures 6



Motivation 73

LAPACK (Linear Algebra Package)

Fortran-77 codes

One routine (algorithm) per operation in the library

Storage in column major order

Parallelism extracted from calls to multithreaded BLAS )

Extracting parallelism only from BLAS limits the amount of
parallelism and, therefore, the scalability of the solution!

@ Column major order does hurt data locality

Dense Linear Algebra on Parallel Architectures 7



e
Motivation 73

FLAME (Formal Linear Algebra Methods Environment)

@ Libraries of algorithms, not codes
@ Notation reflects the algorithm

@ APIs to transform algorithms into codes

Systematic derivation procedure (automated using
MATHEMATICA)

Storage and algorithm are independent

Dense Linear Algebra on Parallel Architectures 8



Part I: Multicore processors
@ Motivation
@ Cholesky factorization (Overview of FLAME)
© Parallelization
@ Other matrix factorizations: LU & QR
© Experimental results

@ Concluding remarks

Part Il: GPUs

Dense Linear Algebra on Parallel Architectures 9



The Cholesky Factorization

Definition

Given A — n X n symmetric positive definite, compute
A=1L L7,

with L — n X n lower triangular

Dense Linear Algebra on Parallel Architectures 10



I

The Cholesky Factorization: Whiteboard Presentation

done done
A Va1
done|l  (partially .
updated) an /(422
2 MAgg—anial,
done done
11 *
A
a21| Agg done |(partially
updated)

Dense Linear Algebra on Parallel Architectures 11



done done

(partially
updated)

done

Dense Linear Algebra on Parallel Architectures

12

Repartition
Arp | Arr
Apr | ABr
Aoo ao1 | Aoz
- a}l] 11 (IH_»
Ao | ao1 | A2z

where o1 is a scalar



FLAME Notatio

Algorithm: [A] := CHOL_UNB(A)

A A
Partition A — ( iL 1L )
Apr | ABr

where Arp is 0 X 0
while n(Aggr) #0 do

Repartition

Aoo ao1 | Ao2
Arp, | Arg .
1 ) — aig @11 aio

BL BR
Ao azi A2
where o1 is a scalar
Q11 = 4/011

az1 = az1/011
— T
Az = Agz — az10a4;

Continue with
Aoo | ao1 Ao2

Arp | Arr = =
A ) — 210 11 412
BL BR

endwhile

Dense Linear Algebra on Parallel Architectures 13



FLAME/C Code

From algorithm to code. ..

FLAME notation

Repartition
Aoo | ao1 | Aoz
Arp | Arr
— a’lro
ABL ABR
A20 Ago

where «11 is a scalar

FLAME/C code
FLA_Repart_2x2_to_3x3(
ATL, /**x/ ATR, &AOO, /**/ &al1, &A02,
/* kkkskskokkkkkokkkk k/ [k kkkokkkokokokkkokkkkokokkkkokkkkkkk k/

&al0t, /**/ &alphall, &al2t,
ABL, /%%/ ABR, gA20, /**/ &a21l, &A22,
1, 1, FLA_BR );

Dense Linear Algebra on Parallel Architectures 14



(Unblocked) FLAME/C Code

int FLA_Cholesky_unb( FLA_Obj A )
{
/* ... FLA_Part_2x2( ); ... */
while ( FLA_Obj_width( ATL ) < FLA_Obj_width( A ) ){
FLA_Repart_2x2_to_3x3(
ATL, /*x/ ATR, &A00, /**/ &aO1, &A02,
/% kkkkskkokkkkokkk k/ /% sokokokskokokokkkokok ko kokok ok kokokkkkokk ok /
&alOt, /#*/ &alphall, &al2t,
ABL, /**/ ABR, &A20, /**/ &a21, &A22,
1, 1, FLA_BR );
/* */
FLA_Sqrt( alphall ); /* a21 := sqrt( alphall ) %/
FLA_Inv_Scal( alphall, a21 ); /* a21 := a21 / alphall */
FLA_Syr ( FLA_MINUS_ONE,
a21, A22 ); /* A22 := A22 - a21 * a2lt */
/* *
/* FLA_Cont_with_3x3_to_2x2( ); ... */
}
}

Dense Linear Algebra on Parallel Architectures 15



Blocked FLAME/C Code

int FLA_Cholesky_blk( FLA_Obj A, int nb_alg )
{
/* ... FLA_Part_2x2( ); ... */
while ( FLA_Obj_width( ATL ) < FLA_Obj_width( A ) ){
b = min( FLA_Obj_length( ABR ), nb_alg );
FLA_Repart_2x2_to_3x3(
ATL, /*x/ ATR, &A00, /*x/ &AO1, &AO2,
/% kkkkskkokkkkokkk k/ /* kokkskskokokokkkokokkkkokkkkk K/
&A10, /**/ &A11, &A12,
ABL, /*x/ ABR, &A20, /**/ &A21, &A22,
b, b, FLA_BR );
/* */
FLA_Cholesky_unb( A1l ); /* A21 := Cholesky( A1l ) */
FLA_Trsm_rltn( FLA_ONE, A1l1,
A21 ); /* A21 := A21 * inv( A1l )’x/
FLA_Syrk_1n ( FLA_MINUS_ONE, A21,
A22 );/x A22 := A22 - A21 * A21’° */
/* */
/* FLA_Cont_with_3x3_to_2x2( ); ... */
}
}

Dense Linear Algebra on Parallel Architectures 16




FLAME Code

Visit http://www.cs.utexas.edu/users/flame/Spark/. ..

T e

H

((Gensrote Cose ordior Updois Forn |  FessiForm

Dense Linear Algebra on Parallel Architectures

17

@ C code: FLAME/C

;. @ M-script code for

MATLAB: FLAMEG®Iab
@ Other APlIs:

FIATEX
Fortran-77
LabView
Message-passing
parallel:
PLAPACK
FLAG: GPUs


http://www.cs.utexas.edu/users/flame/Spark/

@ Motivation

@ Cholesky factorization (Overview of FLAME)
© Parallelization

@ Other matrix factorizations: LU & QR

© Experimental results

O Concluding remarks

Part Il: GPUs

Dense Linear Algebra on Parallel Architectures 18



Parallelization on Multithreaded Architectures

LAPACK parallelization: kernels in multithread BLAS

A11 *

5 All isbxb
Agi Ago

o Advantage: Use legacy code
@ Drawbacks:

e Each call to BLAS is a synchronization point for threads
e As the number of threads increases, serial operations with cost
O(nb?) are no longer negligible compared with O(n2b)

Dense Linear Algebra on Parallel Architectures 19



Parallelization on Multithreaded Architectures

FLAME parallelization: SuperMatrix

e Traditional (and pipelined) parallelizations are limited by the
control dependencies dictated by the code

@ The parallelism should be limited only by the data
dependencies between operations!

@ In dense linear algebra, imitate a superscalar processor:
dynamic detection of data dependencies

Dense Linear Algebra on Parallel Architectures 20



FLAME Parallelization: SuperMatrix

int FLA_Cholesky_blk( FLA_Obj A, int nb_alg )
{
/* ... FLA_Part_2x2( ); ... */
while ( FLA_Obj_width( ATL ) < FLA_Obj_width( 4 ) ){
b = min( FLA_Obj_length( ABR ), nb_alg );

/* ... FLA_Repart_2x2_to_3x3( ); ... */
/* */
FLA_Cholesky_unb( A1l ); /* A21 := Cholesky( A1l ) */
FLA_Trsm_rltn( FLA_ONE, A1l1,

A21 ); /* A21 := A21 * inv( A1l )’x/
FLA_Syrk_ln ( FLA_MINUS_ONE, A21,

A22 );/* A22 := A22 - A21 * A21’ x/
/* */
/* FLA_Cont_with_3x3_to_2x2( ); ... */
}
T

The FLAME runtime system “pre-executes’ the code:

@ Whenever a routine is encountered, a pending task is
annotated in a global task queue

Dense Linear Algebra on Parallel Architectures 21



FLAME Parallelization: SuperMatrix

*

Aoo *
AIO All
A20 A21

SuperMatrix

@ Tasks with all input operands available are runnable; other
tasks must wait in the global queue

@ Upon termination of a task, the corresponding thread updates

A22

)

@ Once all tasks are annotated, the real execution begins!

Runtime

—

the list of pending tasks

@ FLA _Cholesky_unb(Ago)
Q Ao := Ao TRIL (Aoo)_T
© Aso = Agg TRIL (Agg) ™"
Q A= An — AwAf

Q ...

Dense Linear Algebra on Parallel Architectures 22



FLAME Storage-by-Blocks: FLASH

@ Algorithm and storage are independent
@ Matrices stored by blocks are viewed as matrices of matrices

e No significative modification to the FLAME codes

Dense Linear Algebra on Parallel Architectures 23



@ Motivation

@ Cholesky factorization (Overview of FLAME)
© Parallelization

@ Other matrix factorizations: LU & QR

© Experimental results

O Concluding remarks

Part Il: GPUs

Dense Linear Algebra on Parallel Architectures 24



LU factorization

@ Pivoting for stability limits the amount of parallelism

A Al2

s AH isbxb
Az Ago

. _ A . .
All operations on Asy must wait till < AH > is factorized
21

o Algorithms-by-blocks for the Cholesky factorization do not
present this problem

@ Is it possible to design an algorithm-by-blocks for the LU
factorization while maintaining pivoting?

Dense Linear Algebra on Parallel Architectures 25



LU factorization with incremental pivoting

A1 | Ar2 | Ass )

s A,L ISt Xt
Agr | Agg | Agg /
Az | Azz | A3z

@ Factorize Pj1 A1 = L11U11
@ Apply permutation P;1 and factor Lq1:
L' PiiAsg | Ly PriAss

. A
© Factorize Py < 1 > = Lo1Usq,
Aoy

@ Apply permutation P»; and factor Loy:

_ A _ A
L211P21( A ) ‘Lp( A;)

© Repeat steps 2—4 with Ag;

Dense Linear Algebra on Parallel Architectures 26



e
LU factorization with incremental pivoting 7

Different from LU factorization with column pivoting

@ To preserve structure, permutations only applied to blocks on

the right!

@ To obtain high performance a blocked algorithm with block
size b < t, is used in the factorization and application of

factors

@ To maintain the computational cost, the upper triangular
structure of Ay, is exploited during the factorization

A | Aia | Ags )

s AZ Istxt
Ag1 | Aga | Aag /
Az | Azz | A3z

Dense Linear Algebra on Parallel Architectures 27



LU factorization with incremental pivoting

Stability? Element growth with random matrices:

Stability of the algorithms for the LU factorization
20 T T T

T
—8—pa rl\all .
1al | = * = painvise -
*incremental .

Magnitude of element growth
2

o L L . L L
a 10 20 a0 40 50 80 70 8a 20 100
Dimension of £

Dense Linear Algebra on Parallel Architectures 28



QR factorization 73]

@ Same problem as with LU: proceeding by blocks of columns
limits the amount of parallelism

A

Aqo

Az

s AH isbxb
Ao

. _ A . .
All operations on Asy must wait till < 1 > is factorized

Az

@ Is it possible to design an algorithm-by-blocks for the QR
factorization while maintaining pivoting?

Dense Linear Algebra on Parallel Architectures

29



QR factorization by blocks

A1 | Ar2 | Ass .

s A,L Ist Xt
A9y | Agg | Asgg /
Az | Azp | As3

@ Factorize Q11411 = R11

@ Apply factor Q11:
Q1A | Ql1 A

A2y

@ Apply factor Qo1:
QQTI( e ) ‘ Q21< o )

© Repeat steps 2-4 with A3

© Factorize Q21 ( An ) = Ry,

Dense Linear Algebra on Parallel Architectures 30



@ Motivation

@ Cholesky factorization (Overview of FLAME)
© Parallelization

@ Other matrix factorizations: LU & QR

© Experimental results

O Concluding remarks

Part Il: GPUs

Dense Linear Algebra on Parallel Architectures 31



e
Experimental Results ]

Platform Specs.
SET CC-NUMA with 16 Intel Itanium-2 processors

NEUMANN || SMP with 8 dual-core Intel Pentium4 processors

Implementations
o LAPACK 3.0 routine + multithreaded MKL

@ Multithreaded routine in MKL
@ AB + serial MKL
@ AB + serial MKL -+ storage-by-blocks

Dense Linear Algebra on Parallel Architectures 32



Experimental Results

Cholesky factorization on 16 Intel Itanium 2@1.5GHz

0| = AB ]
MKL

80— LAPACK 1

70 | LooE T

n 60 - ¢ |

& =

O 50F 1

0 .

G 40t 1
30 | 1
20+ I e
10 B o + % = T
O % 1 1 1 1

0 2000 4000 6000 8000 10000

Matrix size

Dense Linear Algebra on Parallel Architectures 33



Experimental Results

Cholesky factorization on 8 dual AMD Opteron@2.2GHz

- AB
i MKL |
60 . LAPACK
50 |+ .
%)
o 40 r 5 @ o ° .
(@) =
i 30 f - N i
O] 8
20 + T
0, ]
A&
O * 1 1 1 1
0 2000 4000 6000 8000 10000
Matrix size

Dense Linear Algebra on Parallel Architectures 34



Experimental Results

LU factorization on 16 Intel Itanium 2@1.5GHz

0| = AB ]
MKL
80— LAPACK 1

GFLOPS
a1
o

0 2000 4000 6000 8000 10000
Matrix size

Dense Linear Algebra on Parallel Architectures 35



Experimental Results

LU factorization on 8 dual AMD Opteron@2.2GHz

- AB
i MKL |
60 . LAPACK
50 |+ .
%)
o 40 r x . . E
(@] 2| o R
i 30 - ° J
O] =
20 + T
0t ]
O i 1 1 1 1
0 2000 4000 6000 8000 10000
Matrix size

Dense Linear Algebra on Parallel Architectures 36



Experimental Results

QR factorization on 16 Intel ltanium 2@1.5GHz

0| = AB ]
MKL

80— LAPACK 1

70 B - g a =] 1

n 60 o ° |

o

O 50F ° 1

0 .

o 40 B ) I T
30 | - S 1
20t 7 ]
10 | - |
O 1 1 1 1

0 2000 4000 6000 8000 10000

Matrix size

Dense Linear Algebra on Parallel Architectures 37



Experimental Results

QR factorization on 8 dual AMD Opteron@2.2GHz

- AB
I MKL ]
60 . |APACK
50 | ]
wn
o 40 | ]
O - o a =] e} =]
d 30 L B i
o =)
20t . ]
0F: ]
/
O 1 1 1 1
0 2000 4000 6000 8000 10000

Matrix size

Dense Linear Algebra on Parallel Architectures 38



Experimental Results

Band Cholesky factorization on 16 Intel ltanium 2@1

45

o x— —

—— LAPACK (4 proc.)
40 b AB .
35 X i
30 | x .
25 | > .

20 X=X b

GFLOPS

15 b < :

10 P -

OMJ%' L L L L L
200 400 600 800 1000 1200

Bandwidth (kd)

Dense Linear Algebra on Parallel Architectures 39



Experimental Results

Band Cholesky factorization on 8 dual AMD Opteron@2.2

30 \
—+— LAPACK
-« - AB
25} E
X
ol
» 20f Y 1
o X~ 57
o xex”
i 15+ Renle 8
o Jx=x
X
10} X L —
X ! A "
X e
5L e P 4
Q™ ‘ ‘ ‘ ‘
200 400 600 800 1000 1200

Bandwidth (kd)

Dense Linear Algebra on Parallel Architectures 40



@ Motivation

@ Cholesky factorization (Overview of FLAME)
© Parallelization

© Experimental results

@ Concluding remarks

Part Il: GPUs

Dense Linear Algebra on Parallel Architectures 41



Concluding Remarks ]

@ More parallelism is needed to deal with the large number of
cores of future architectures and data locality issued:
traditional dense linear algebra libraries will have to be
rewritten

@ Some operations require new algorithms to better expose
parallelism: LU with incremental pivoting, tiled QR,. ..

@ The FLAME infrastructure (FLAME/C API, FLASH, and
SuperMatrix) reduces the time to take an algorithm from
whiteboard to high-performance parallel implementation

Dense Linear Algebra on Parallel Architectures 42



Part |: Multicore processors

Part 1I: GPUs

Dense Linear Algebra on Parallel Architectures 43



GFLOPS
GBOGL = Quadro 5600 FX G&O
G80 = GeForce 8800 GTX
3004
G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX G71
G70-512
200 ot NV40 = GeForce 6800 Ultra G70
NV35 = GeForce FX 5950 Ultra
NV30 = GeForce FX 5800
1004 3.0 GHz
Intel Corg2 Duo
NV3 - 4/’5
T T - T T T T
Jan Jun Apr May Nov Mar Nov
2003 2004 2005 2006

The power and versatility of modern GPU have transformed them
into the first widely extended HPC platform J

Dense Linear Algebra on Parallel Architectures



Outline

Part |: Multicore processors

Part Il: GPUs
@ Motivation
@ Introduction
@ LAPACK on 1 GPU
@ LAPACK on multiple GPUs
@ FLAGGIlab

@ Concluding remarks

Dense Linear Algebra on Parallel Architectures 45



Outline

Part |: Multicore processors

Part Il: GPUs
© Motivation
@ Introduction
© LAPACK on 1 GPU
@ LAPACK on multiple GPUs
© FLAGQIab

@ Concluding remarks

Dense Linear Algebra on Parallel Architectures 46



CUDA Hardware 75

@ A CUDA-enabled device is seen as a coprocessor to the CPU,
capable of executing a very high number of threads in parallel

@ Example: nVIDIA G80 as a set of SIMD Multiprocessors with

On-Chip Shared Memory

[ \/ERTEX\SSUE ] | ceom.issue | [ FRacmenT issUE |

3
3
g
£
9
3
5
3
g
g

Pro

l

FRENEEE.

Dense Linear Algebra on Parallel Architectures

Up to 128 Streaming
Processors (SP), grouped in
clusters

@ SP are SIMD processors
@ Small and fast Shared Memory

shared per SP cluster

Local 32-bit registers per
processor



CUDA Software

@ The CUDA API provides a simple framework for writing C
programs for execution on the GPU
o Consists of:
e A minimal set of extensions to the C language
o A runtime library of routines for controlling the transfers
between video and main memory, run-time configuration,

execution of device-specific functions, handling multiple
GPUs,. ..

CUDA libraries

On top of CUDA, nVIDIA provides two optimized libraries:
CUFFT and CUBLAS

Dense Linear Algebra on Parallel Architectures 48



CUBLAS Example

int R id .
it main( veid )t A typical CUDA (and
float* h_vector, * d_vector; CUBLAS) program has 3
h_vector = (floatx)malloc(Mxsizeof(float)); phaseS‘
(I:.u‘blasAlloc(M, sizeof (float), H
Cvordee) &dwestor): © Allocation and transfer of

cublasSetVector (M, sizeof(float), h_vector, data to GPU

d_vector, 1); .
cublasSscal (M, ALPHA. d_vector, 1); @ Execution of the BLAS
cublasGetVector (M, sizeof(float), d_vector,

hovector, 1); kernel
cublasFree(d_vector); © Transfer of results back to
i main memory

Dense Linear Algebra on Parallel Architectures 49



Outline

Part |: Multicore processors

Part Il: GPUs

© Motivation

© Introduction

© LAPACK on 1 GPU

@ LAPACK on multiple GPUs
© FLAGQIab

@ Concluding remarks

Dense Linear Algebra on Parallel Architectures 50



Cholesky factorization. Blocked variants

Algorithm: A := CHoL_BLK(A)

Partition ...
where ...

while m(Arr) < m(A) do
Determine block size b
Repartition

Aogo | Ao1 | Aoz
A A
( ATL ATR >—> Ao | A1 | Are
BL BR Ao | A21 | A2z

where Ai1isbxb

Variant 1: Variant 2: Variant 3:
A1 := CHOL-UNB(A11) | Ayg:= AjoTRIL (Agg) | A1 := A1 — A10A])
As1 := A1 TRIL (An)*T Al = Ay — AmAfer Aj1 := CHOL_UNB(A11)

A22 = A22 - AglAer‘l A21 = A21 - AQOA}‘O

A = CHOL,UNB(All) Aoy := Agy TRIL (All)iT

Continue with

endwhile

Dense Linear Algebra on Parallel Architectures 51



Cholesky factorization. Experimental results

Cholesky factorization. Blocked variants

40 T T
—— CPU Variant 1
35t CPU Variant 2 .
rrrrrr = CPU Variant 3
30 | o GPU Variant 1 e
GPU Variant 2
o 25 e GPU Variant 3 o 1
S 20t o ©
tL B S SR
O 15¢ e .
T g8
10 {;."4" .
5F f D. b
0 »éz.nﬂg‘""”xr\ | | |
0 1000 2000 3000 4000 5000

Matrix dimension

Dense Linear Algebra on Parallel Architectures 52



Cholesky padding. Experimental results

Cholesky factorization. Blocked variants with padding

4 T T T
0 o GPU Variant 1 + padding
35+ GPU Variant 2 + padding T
-~e-— GPU Variant 3 + padding Pl
30 f —— GPU Variant 1 o
GPU Variant 2
25 F x— GPU Variant 3

GFLOPS

1000 2000 3000 4000 5000
Matrix dimension

Dense Linear Algebra on Parallel Architectures 53



Cholesky hybrid and recursive. Experimental results

50

40

£ 30
o
|
LL

S 20

10

0

Cholesky factorization. Recursive and hybrid variants

- = GPU variant 1 ]
GPU Variant 1. Hybrid

|+ GPU Variant 1. Recursive+tHybrid

0 1000 2000 3000 4000 5000

Matrix dimension

Dense Linear Algebra on Parallel Architectures 54

I



Iterative refinement for extended precision

Compute the Cholesky factorization A = LLT and solve
(LLT)z = b in the GPU

— 32 bits of accuracy!

71
repeat
r@ —p— A. @
(@) i
T
7 -T —1 7
“(32) T L(32)(L(32)T(32))
D #(32)
q:(i+1) “«— IIZ'(Z) _|_ Z(Z)
g—1i+1

until (1] < V/E]l2®]

Dense Linear Algebra on Parallel Architectures 55



lterative refinement. Experimental results

Solution of a linear system - Cholesky

6 ‘ ‘ ‘
—————— *-— LAPACK - Double precision
= Variant 1 - Mixed precision

5t Variant 1 - Single precision A

4 r 4 .
z
0] L ) |
£ 3 P
I_ e}

1 i Z &= i

O Py | i ! 1 1

0 100 2000 3000 4000 5000
Problem size

Dense Linear Algebra on Parallel Architectures 56



Outline

Part |: Multicore processors

Part Il: GPUs

@ Motivation

© Introduction

© LAPACK on 1 GPU

@ LAPACK on multiple GPUs
© FLAGQIab

@ Concluding remarks

Dense Linear Algebra on Parallel Architectures 57



What if multiple GPUs are available?

Already here:
@ Multiple ClearSpeed boards
@ Multiple NVIDIA cards
@ nVIDIA Tesla series

Dense Linear Algebra on Parallel Architectures 58



What if multiple GPUs are available?

Already here:
@ Multiple ClearSpeed boards
@ Multiple NVIDIA cards
@ nVIDIA Tesla series

How are we going to program these?

Dense Linear Algebra on Parallel Architectures 58



Porting SuperMatrix to multiple GPUs

Employ the equivalence: 1 core = 1 GPU

Difference: Transference from RAM to video memory

Run-time system (scheduling), storage, and code are
independent

No significative modification to the FLAME codes: Interfacing
to CUBLAS

A software effort of two hours!

Dense Linear Algebra on Parallel Architectures 59



Experimental setup

CPU GPU
Processor 16 x Intel Itanium2 NVIDIA Tesla s870 (4 G80)
Clock frequency 1.5 GHz 575 MHz

Dense Linear Algebra on Parallel Architectures (0]



Porting SuperMatrix. Experimental results

GFLOPS

140

120

100

40

20

Cholesky factorization on 4 GPU of NVIDIA S870

AB + no 2d

AB + 2d

AB + 2d + block cache
it ‘ AB + 2d + block cache + page-locked

£

2048 4096 6144

Matrix size

Dense Linear Algebra on Parallel Architectures 61




Porting SuperMatrix. Experimental results

A more elaborate port required for high-performance:

@ 2-D work distribution

@ Memory/cache coherence techniques to reduce transferences
between RAM and video memory: write-back and
write-invalidate

Dense Linear Algebra on Parallel Architectures 62



Porting SuperMatrix. Experimental results

Cholesky factorization on several platforms

500 TG Ramic spotrf on Tesla S870 (4 GPUs) )
= = Dynamic spotrf on SGI Altix 350 (16 Intel Itanium2) -
s | *---- MKL spotrf on Xeon QuadCore (4 cores) J—

S 400} MKL spotrf on SGI Altix 350 (16 Itanium2) |
Q -
s T
0
& 300 | / 1
<
]
o
o
@ 200 | b
[]
4
2
O 100 r b
—
(T8 a
O
- %

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Dense Linear Algebra on Parallel Architectures

Matrix size

63



Outline

Part |: Multicore processors

Part Il: GPUs
@ Motivation
© Introduction
© LAPACK on 1 GPU
@ LAPACK on multiple GPUs
© FLAGOGIab
@ Concluding remarks

Dense Linear Algebra on Parallel Architectures 64



FLAG®Iab

Assorted flavours:
o FLAG: A M-script API for GPU computing from
MATLAB/OCTAVE

e FLAGOOC: A M-script API for Out-of-Core GPU computing
from MATLAB/OCTAVE

Dense Linear Algebra on Parallel Architectures 65



High-level API

function [ A T = FLAG_Chol( A )

% [ ... 1 = FLAG Part_2x2( ...

)3

while ( FLAG_Obj_length( ATL, 1 ) < FLAG_Obj_length( A, 1) )
b = min( FLAG_Obj_length( ABR, 1 ), nb_alg );

end

% [ ... 1 = FLAG_Repart_2x2_to_3x3( ... );
A %
FLAG_Chol_unb( A1l ); % A1l = Chol( A11 )
FLAG_Trsm_rltn( 1.0, A11,
A21 ); % A21 = A21 * tril( A11 )~-T

FLAG_Syrk_1n( -1.0, A21,

1.0, A22 ); % A22 = A22 - A21 * A21’;
YA %
% [ ... 1 = FLAG_Cont_with_3x3_to_2x2( ... );

Just replace FLA_ in FLAME®Ilab by FLAG_!

Dense Linear Algebra on Parallel Architectures

66




Concluding Remarks

@ Simple precision may not be enough. Double precision is
coming, but at the expense of speed?

@ Overlap transferences and computation is also needed (close?)

@ Programming dense linear algebra using CUBLAS on NVIDIA
hardware is easy

@ Programming at CUDA level?

Dense Linear Algebra on Parallel Architectures 67



Concluding Remarks

@ Simple precision may not be enough. Double precision is
coming, but at the expense of speed?

@ Overlap transferences and computation is also needed (close?)

@ Programming dense linear algebra using CUBLAS on NVIDIA
hardware is easy

@ Programming at CUDA level?
I'll need to ask my student Francisco...

Dense Linear Algebra on Parallel Architectures 67



Related Publicatio

A
@ E. Chan, E.S. Quintana-Orti, G. Quintana-Orti, R. van de Geijn. SuperMatrix
out-of-order scheduling of matrix operations for SMP and multicore

architectures. 19th ACM Symp. on Parallelism in Algorithms and Architectures
— SPAA’2007.

@ E. Chan, F. Van Zee, R. van de Geijn, E.S. Quintana-Orti, G. Quintana-Orti.
Satisfying your dependencies with SuperMatrix. IEEE Cluster 2007.

@ E. Chan, F.G. Van Zee, P. Bientinesi, E.S. Quintana-Orti, G. Quintana-Orti, R.
van de Geijn. SuperMatrix: A multithreaded runtime scheduling system for

algorithms-by-blocks. Principles and Practices of Parallel Programming —
PPoPP’2008.

@ E.S. Quintana-Orti, R. van de Geijn. Updating an LU factorization with
pivoting. ACM Trans. on Mathematical Software, 2008.

Dense Linear Algebra on Parallel Architectures 68



Related Publicatio

(A

@ S. Barrachina, M. Castillo, Francisco D. Igual, R. Mayo, E. S. Quintana-Ort” i.
Evaluation and tuning of the level 3 CUBLAS for graphics processors. Workshop
on Parallel and Distributed Scientific and Engineering Computing,
— PDSEC’2008.

@ S. Barrachina, M. Castillo, F. Igual, R. Mayo, E. S. Quintana. Solving dense
linear systems on graphics processors. Euro-Par'2008.

@ M. Castillo, F. Igual, R. Mayo, R. Rubio, E. S. Quintana, G. Quintana, R. van
de Geijn. Out-of-Core Solution of Linear Systems on Graphics Processors.
Parallel/High-Performance Object-Oriented Scientific Computing — POOSC'08 .

Dense Linear Algebra on Parallel Architectures 69



Related Approaches ]

Cilk (MIT) and CellSs (Barcelona SuperComputing Center)

° parallel programming

e Cilk — irregular problems
o CellSs — for the Cell B.E.

@ High-level language based on OpenMP-like pramas +
+ runtime system

@ Moderate results for dense linear algebra

PLASMA (UTK - Jack Dongarra)

° of implementing algorithms: Fortran-77

@ Runtime system + 7

Dense Linear Algebra on Parallel Architectures ()



For more information. . .

Visit http://www.cs.utexas.edu/users/flame

@ National Science Foundation awards CCF-0702714 and
CCF-0540926 (ongoing till 2010)

@ Spanish CICYT project TIN2005-09037-C02-02

Dense Linear Algebra on Parallel Architectures 71


http://www.cs.utexas.edu/users/flame

	Motivation
	Multiple GPUs
	High-level APIs

