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Introduction and motivation

Motivation

@ Reduce energy consumption!
o Costs over the lifetime of an HPC facility in the range of acquisition
costs
o Produces carbon dioxide, a risk for the health and the environment
o Produces heat which reduces hardware reliability
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Introduction and motivation

Motivation

@ Reduce energy consumption!
o Costs over the lifetime of an HPC facility in the range of acquisition
costs
o Produces carbon dioxide, a risk for the health and the environment
o Produces heat which reduces hardware reliability
o It gave us a reason to meet here in nice Lausanne ;-)

Personal view

@ Hardware features mechanisms and modes to save energy

@ Software (scientific apps) are in general power oblivious
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Introduction and motivation

Outline

o Part 1. Scheduling dense linear algebra kernels in multi-core
processors

@ Part 2. Dense linear algebra message-passing libraries for clusters

@ Part 3. Sparse linear algebra kernels in multi-core and many-core
processors
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Part 1. Scheduling dense linear algebra kernels in
multi-core processors
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To improve power-performance ratio via scheduling and DVFS

e P. Alonso
Universitat Politécnica de Valencia

e M. Dolz, F. Igual, R. Mayo
Universitat Jaume |
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Qutline of Part 1

@ Introduction

@ Dense linear algebra operations
© Slack Reduction Algorithm

© Race-to-Idle Algorithm

© Experimental results

@ Conclusions
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Introduction

1.1 Introduction

@ Scheduling tasks of dense linear algebra algorithms
@ Examples: Cholesky, QR and LU factorizations

o Energy saving tools available for multi-core processors
@ Example: Dynamic Voltage and Frequency Scaling (DVFS)
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Introduction

1.1 Introduction

@ Scheduling tasks of dense linear algebra algorithms
@ Examples: Cholesky, QR and LU factorizations

o Energy saving tools available for multi-core processors
@ Example: Dynamic Voltage and Frequency Scaling (DVFS)

Scheduling tasks + DVFS

Power-aware scheduling on multi-core processors

@ Our strategies:

@ Reduce the frequency of cores that will execute non-critical tasks to decrease idle
times without sacrifying total performance of the algorithm

@ Execute all tasks at highest frequency to “enjoy” longer inactive periods

4

Energy savings
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Dense linear algebra operations

1.2 Dense linear algebra operations i3]

LU factorization

e Factor
A= LU,

where L/U € R™ " unit lower/upper triangular matrices

@ For numerical stability, permutations are introduced to prevent
operation with small pivot elements

@ Two algorithms of LU factorization

o LU with partial (row) pivoting (traditional version) and

o LU with incremental pivoting
“Rapid development of high-performance out-of-core solvers for
electromagnetics”
T. Joffrain, E. S. Quintana, R. van de Geijn
State-of-the-Art in Scientific Computing — PARA 2004,
Copenhaguen (Denmark), June 2004

Later called “Tile LU factorization” or “Communication-Avoiding LU
factorization with flat tree”
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Dense linear algebra operations

LU factorization with partial (row) pivoting

for k =1:5sdo
Akis,k = Lis,k - Uk
forj=k+1:sdo

Ay — Lt Ay

(s — k+ 2)b° flops

Apitis,j — Aktiis,j — Aktiisk - Ay MATRIX-MATRIX PRODUCT | 2(s — k)b® flops

end for
end for
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Dense linear algebra operations

LU factorization with partial (row) pivoting

for k =1:5sdo

Akis,k = Lis,k - Uk

(s — k+ 2)b° flops
forj=k+1:sdo

A — Lt Ay _
Ak41:s,j < Ak41is,j — Aktlis,k - Ay MATRIX-MATRIX PRODUCT 2(s — I<)b3 flops

end for
end for

DAG with a matrix consisting of 3 x 3 blocks

K -\P
Vs
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Dense linear algebra operations

LU factorization with incremental pivoting

for k =1:sdo

Ak = Lik - Unk
forj=k+1:sdo
A — L - Ay

end for
fori=k+1:sdo

Axk _ [ L
Ak - Lik

forj=k+1:sdo

>'Uik

Ag N ( Lw O NTH [ Ay
Ajj Ly 1 Ajj
end for
end for
end for

2 X 1 LU FACTORIZATION

| D
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Dense linear algebra operations

LU factorization with incremental pivoting

DAG with a matrix consisting of 3 x 3 blocks

GZ 211
GZ 311
5 246)

@ Nodes contain execution time of tasks (in milliseconds, ms), for a
block size b = 256 on a single-core of and AMD Opteron 6128
running at 2.00 GHz.

@ We will use this info to illustrate our power-saving approach of the
SRA!

62.322
5 246)
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Slack Reduction Algorithm Introduction

1.3 Slack Reduction Algorithm

Stragegy

Obtain the dependency graph corresponding to the computation of a
dense linear algebra algorithm; apply the Critical Path Method to analize
slacks; and reduce them with our Slack Reduction Algorithm
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Slack Reduction Algorithm Introduction

1.3 Slack Reduction Algorithm

Stragegy

Obtain the dependency graph corresponding to the computation of a
dense linear algebra algorithm; apply the Critical Path Method to analize
slacks; and reduce them with our Slack Reduction Algorithm

The Critical Path Method:

@ DAG of dependencies

@ Nodes = Tasks
@ Edges = Dependencies

@ Times: Early and latest times to start and finalize execution of task T; with cost C;

@ Total slack: Amount of time that a task can be delayed without increasing the total
execution time of the algorithm

@ Critical path: Formed by a succession of tasks, from initial to final node of the graph, with
total slack = 0
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Slack Reduction Algorithm Application to dense linear algebra algorithms

Application of CPM to the DAG of the LU factorization with incremental
pivoting of a matrix consisting of 3 x 3 blocks:

[Tk [ € [ B [ IF [ 5 ]

G111

T2.332 7.373 24.488 31.861 0

Objective: tune the slack of those tasks with S > 0, reducing its execution
frequency and yielding low power usage — Slack Reduction Algorithm
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Slack Reduction Algorithm Previous steps

Slack Reduction Algorithm

@ Frequency assignment
@ Critical subpath extraction
© Slack reduction
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Slack Reduction Algorithm Previous steps

Slack Reduction Algorithm

@ Frequency assignment
@ Critical subpath extraction
© Slack reduction

% Frequency assignment

Example: LU factorization
with incremental pivoting
of 3x3 blocks:

(5.246)

@ : =2.00 =2.00
G2311
(5.246)

f=200  £=2.00
: Discrete collection of frequencies: {2.00, 1.50, 1.20, 1.00, 0.80} GHz

We have obtained execution time of tasks running at each available frequency
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Slack Reduction Algorithm Previous steps

2 (Critical subpath extraction

Iteration O

CP; Tasks Execution time
CP, {G.111,G2.211,T2.221,G 222, G2_322, T2_332, G_333} 35.171 ms
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Slack Reduction Algorithm Previous steps

2 Critical subpath extraction

Iteration 1
CP; Tasks Execution time
CPy {G,lll, G2_211,T2.221,G_222,G2_322, T2_332, G,333} 35.171 ms
CcP, {T,131, T2.231, T,232} 15.918 ms
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Slack Reduction Algorithm Previous steps

2 Critical subpath extraction

Iteration 2

G2311

(5.246)

T.121 T2.321

(4.273) 372)
CP; Tasks Execution time
CPy {G,lll7 G2_211, T2.221,G_222,G2_322, T2_332, G,333} 35.171 ms
CcP, {T,131, T2.231, T,232} 15.918 ms
CP, {G2.311,T2331} 12.619 ms

Power-aware execution of linear algebra libraries 7 CECAM-Lausanne, Sept. 2011




Slack Reduction Algorithm Previous steps

2 Critical subpath extraction

Iteration 3
@z Tasks Execution time
CP, G_111,G2 211, T2 221, G 222, G2_322, T2_332, G_333} 35.171 ms
CP; T_131,T2.231, T,232} 15.918 ms
CP, G2_311, T2,331} 12.619 ms
CPs T-121, T2,321} 11.646 ms

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Slack Reduction Algorithm Slack reduction

Process critical subpath CP; = {T_131, 72231, T_232}:

d(6-111~~T-232) —d(GUU1T-131) _ 21,176 _ 4 3307

@ Increase ratio for CP;: () o1 ,
@ Slack is reduced by reducing execution frequency of task:
@ T_131: 2.00 GHz = ; 4.273 ms = ;
@ T2.231: 2.00 GHz = H 7.372 ms = ;
@ T_232:2.00 GHz = ; 4.273 ms = ;

Total execution time:
35.171 ms

CECAM-Lausanne, Sept. 2011
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Slack Reduction Algorithm Slack reduction

Process critical subpath CP; = {T_131, 72231, T_232}:

d(6-111~~T-232) —d(GUU1T-131) _ 21,176 _ 4 3307
- - b

@ Increase ratio for CP;: () ot
@ Slack is reduced by reducing execution frequency of task:
@ T_131: 2.00 GHz = ; 4.273 ms = ;
@ T2.231: 2.00 GHz = H 7.372 ms = ;
@ T_232:2.00 GHz = ; 4.273 ms = ;

Total execution time:
35.867 ms > 35.171 ms

CECAM-Lausanne, Sept. 2011
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Slack Reduction Algorithm Slack reduction

Process critical subpath CP; = {T_131, 72231, T_232}:

@ Increase ratio for CP;: d(G’i11WT23,2()C;‘:§G’111WT’131) = —fé';g =1,33%
@ Slack is reduced by reducing execution frequency of task:
@ T_131: 2.00 GHz = ; 4.273 ms = ;
@ T2.231: 2.00 GHz = H 7.372 ms = ;
@ T_232:2.00 GHz = ; 4273 ms = ;

Total execution time:
35.171 ms
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Slack Reduction Algorithm Slack reduction

Process critical subpath CP, = {G2_311,T2_331}:
d(G,iiiWTZJEI)C—ngG,iiinZ,Sii) — i;:é;g — 1,67%

@ |Increase ratio for CP;:

@ Slack is reduced by reducing execution frequency of task:
5.246 ms = 5

@ G2.311: 2.00 GHz = ;
@ T2.331: 2.00 GHz = : 7.372 ms = 8

f=2.00

Total execution time:
35.171 ms

CECAM-Lausanne, Sept. 2011
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Slack Reduction Algorithm Slack reduction

Process critical subpath CP, = {G2_311,T2_331}:
d(G,iiiWTZJEI)C—ngG,iiinZ,Sii) — i;:é;g — 1,67%

@ |Increase ratio for CP;:

@ Slack is reduced by reducing execution frequency of task:
5.246 ms = 5

@ G2.311: 2.00 GHz = ;
@ T2.331: 2.00 GHz = : 7.372 ms = 8

Total execution time:
35.676 ms > 35.171 ms

CECAM-Lausanne, Sept. 2011
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Slack Reduction Algorithm Slack reduction

Process critical subpath CP, = {G2_311,T2_331}:
d(G,iiiWTZJEI)C—ngG,iiinZ,Sii) — i;:é;g — 1,67%

@ |Increase ratio for CP;:

@ Slack is reduced by reducing execution frequency of task:
; 5.246 ms = B

@ G2.311: 2.00 GHz =
@ T2.331: 2.00 GHz = 7.372 ms = H

f=2.00

Total execution time:
35.171 ms

CECAM-Lausanne, Sept. 2011

Power-aware execution of linear algebra libraries



Slack Reduction Algorithm Slack reduction

Process critical subpath CP3 = {T_121,T2_321}:

. d(G.111~~T2.321) —d(G-111~~T_121
@ Increase ratio for Cpy: L(CM1=1232) Za(GAn~T121) _ 15,930 _ g 367

(CP3) 11,646
@ Slack is reduced by reducing execution frequency of task:

@ T_121: 2.00 GHz = ; 4.273 ms =
@ T2.321: 2.00 GHz = : 7.372 ms =

(12.083)

Total execution time:
35.171 ms

Power-aware execution of linear algebra libi
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Slack Reduction Algorithm Slack reduction

Process critical subpath CP3 = {T_121,T2_321}:

. d(G.111~~T2.321) —d(G-111~~T_121
@ Increase ratio for Cpy: L(CM1=1232) Za(GAn~T121) _ 15,930 _ g 367

(CP3) 11,646
@ Slack is reduced by reducing execution frequency of task:
@ T_121: 2.00 GHz = ; 4.273 ms =

@ T2.321: 2.00 GHz = : 7.372 ms =

Total execution time:
36.285 ms > 35.171 ms
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Slack Reduction Algorithm Slack reduction

Process critical subpath CP3 = {T_121,T2_321}:

. d(G.111~~T2.321) —d(G-111~~T_121
@ Increase ratio for Cpy: L(CM1=1232) Za(GAn~T121) _ 15,930 _ g 367

(CP3) 11,646
@ Slack is reduced by reducing execution frequency of task:

@ T_121: 2.00 GHz = ; 4.273 ms =
@ T2.321: 2.00 GHz = ; 7.372 ms =

Total execution time:
35.171 ms
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1.4 Race-to-ldle Algorithm

Race-to-ldle = complete execution as soon as possible by executing
tasks of the algorithm at the highest frequency to “enjoy” longer inactive
periods

@ Alternative strategy to reduce power consumption
@ DAG requires no processing, unlike SRA

@ Tasks are executed at highest frequency, during idle periods CPU
frequency is reduced at lowest possible
o Why?
@ Current processors are quite efficient at saving power when idle

@ Power of idle core is much smaller than power in working periods

Power-aware execution of linear algebra libraries 2 CECAM-Lausanne, Sept. 2011



Experimental results ~ Simulator

1.5 Experimental results

We use a simulator to evaluate the performance of the two strategies

Input parameters:
@ DAG capturing tasks and dependencies of a blocked algorithm and frequencies
recommended by the Slack Reduction Algorithm and Race-to-Idle Algorithm
@ A simple description of the target architecture:

@ Number of sockets (physical processors)
@ Number of cores per socket

@ Discrete range of frequencies and its associated voltages
@ Collection of real power for each combination of frequency idle/busy state per core

@ The cost (overhead) required to perform frequency changes

Static priority list scheduler:
@ Duration of tasks at each available frequency is known in advance

@ Tasks that lie on critical path must be prioritized

Power-aware execution of linear algebra libraries 2 CECAM-Lausanne, Sept. 2011



Experimental results Benchmark algorithms

Blocked algorithms:

o LU with partial /incremental pivoting

Block size: b = 256

@ Matrix size varies from 768 to 5,632

@ Execution time of tasks on AMD Opteron 6128 (8 cores)
@ LU with incremental pivoting: tasks G, T, G2 and T2
@ LU with partial (row) pivoting: Duration of tasks G and M depends on the iteration!

We evaluate the time of 1 flop for each type of task; then, from the theoretical cost
of the task we obtain an approximation of its execution time

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Experimental results Environment setup

@ Environment setup
@ AMD Opteron 6128 (1 socket of 8 cores)
@ Discrete range of frequencies: {2.00, 1.50, 1.20, 1.00, 0.80} GHz

@ Power required by the tasks: we measure the power running p copies of DGEMM at
different frequencies:

Frequency-Running/Idle

Core T 7 3 7 5 6 7 8 Power (W)
157.60
156.86
0.80-1 0.80-1 113.45
0.80-1 0.80-1 0.80-1 110.37
0.80-1 0.80-1 0.80-1 0.80-1 0.80-1 0.80-1 91.81
0.80-1 0.80-1 0.80-I 0.80-1 0.80-1 0.80-1 0.80-1 88.58

We measure with an internal power meter (ASIC with 25 samples/sec)

@ Frequency change latency:
Destination freq.

2.00 1.50 1.20 1.00 0.80
g 2.00 - 40.36 43.18 43.77 49.85
= 1.50 302.5 - 50.98 54.00 58.19
8 1.20 301.7 302.7 - 61.60 66.05
§ 1.00 297.4 302.3 306.0 - 74.70
v 0.80 291.6 292.7 294.0 295.80 -

Power-aware execution of linear algebra libr:



Experimental results Environment setup

Evaluation = In order to evaluate experimental results obtained with
the simulator, we compare execution time and consumption with no
policy and with SRA/RIA

Metrics:

Execution time

Q@ Tsra/RIA Policy @ Csra/RiA policy = 2j—g Wa - Ta
@ Two policy @ Cho policy = V2 T(fmax)
@ Impact of SRA/RIA on time @ Impact of SRA/RIA on consumption

TSRA/RIA policy 100

CSRA/RIA Policy 100
TNo policy

% C. =
0CsrA/RIA TNo policy

% Tsra/riA =

Power-aware execution of linear algebra libraries 2 CECAM-Lausanne, Sept. 2011



Experimental results Results

Impact of the SRA/RIA on energy and time for the LU factorization with
partial pivoting:

LU factorization with partial pivoting (b = 256)

oy T T T T T T T T T T T T—T

X impact on consumption of RIA"

= 140 Ifiipact on consumption of SRA m====3 ]| 140 —

5 IImpact on time 0{&%{2 — IS

£ 120 mpact on time of [ ] 120 :/

:

Z 100 | - - 4 100 %
<

5 80} | 480 2

=60 [ : 4 60

= %]

w40 1 4 40 2

T 20 : 4 20 g

& =

E 0 0

® ¥ O v N B ¥ QO N O F QO AN XY DO O A

© A B M F QB 4 kA B F DR QOO A @

E SO a4 1B E o ® 1 0 o N ©w o ®»n S ®Hm B R =< m D

I T R TR - B Hwom FOF T F L B oo

Matrix size (n)
@ SRA: Time is compromised and increases the consumption for largest problem sizes

@ The increase in execution time is due to the SRA being oblivious to the real resources

@ RIA: Time is not compromised and consumption is maintained for largest problem sizes
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Experimental results Results

Impact of the SRA/RIA on energy and time for the LU factorization with
incremental pivoting:

LU factorization with incremental pivoting (b = 256)

S ' ' ' " Impact on conSumption of RIA" mmmm
= 140 lxrlll))act on consum;r))tion of SRA == 7] 140 —
g Tmpact on time of RIA mmmmm IS
g 120 Impact on time of SRA mmmm 120 \;
£
2 100 100 &
8 S
<
o
s 80 80 =
: Z
=
& 60 60
= %]
o %
G 40 40 2
3 g
S
a
T 20 20 E
g =
)
= 0 0

768 £
1024
1280
1536

792
2048 £
2304
2560
2816 £

b
Matrix size (n)

@ SRA: Yields higher execution time that produces an increase in power consumption

@ RIA: Maintains execution time but reduces energy needs

ware execution of linear algebra librari CECAM-Lausanne, Sep



Conclusions  Conclusions

1.6 Conclusions

Idea: Use of DVFS to save energy during the execution of dense linear
algebra algorithms on multi-core architectures

Objective: To evaluate two alternative strategies to save energy
consumption

Slack Reduction Algorithm

Race-to-ldle Algorithm

@ DAG requires a processing @ DAG requires no processing

) i . . .
Currently does not take into account @ Algorithm is applied on-the-fly
number Of resources
. . . @ Maintains in all of cases execution time
@ Increases execution time when matrix
size increases @ Reduce energy consumption (around

5%)

@ Increases, also, energy consumption

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Conclusions  Future work

Results of dense linear algorithms: LU with partial /incremental pivoting
@ Simulation under realistic conditions show that RIA produces more energy savings than SRA
@ Current processors are quite good saving power when idle, so It's generally better to run as
fast as possible to produce longer idle periods
@ In our target platform (AMD Opteron 6128) RIA strategy is capable to produce more energy
savings than SRA
@ Power consumption:
Working at highest frequency > Working at lowest frequency > Idle at lowest frequency

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Conclusions  Future work

More information

@ “Improving power-efficiency of dense linear algebra algorithms on multi-core
processors via slack control”
P. Alonso, M. Dolz, R. Mayo, E. S. Quintana
Workshop on Optimization Issues in Energy Efficient Distributed Systems —
OPTIM 2011, Istanbul (Turkey), July 2011

@ “DVFS-control techniques for dense linear algebra operations on multi-core

processors”
P. Alonso, M. F. Dolz, F. Igual, R. Mayo, E. S. Quintana
2nd Int. Conf. on Energy-Aware High Performance Computing — EnaHPC 2011,

Hamburg (Germany), Sept. 2011

CECAM-Lausanne, Sept. 2011
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Part 2. Dense linear algebra message-passing
libraries for clusters

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



To analyze the impact of power-saving strategies on the performance and
power-consumption of mesage-passing dense linear algebra operations

e M. Castillo, J. C. Fernandez, R. Mayo, V. Roca
Universitat Jaume |
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Qutline of Part 2

@ Target application

@ Experimental setup

© Analysis of power consumption
@ Multi-thread vs. multi-process
@ DVFS (Linux governors)

©® MPI communication mode
@ Clusters of hw. accelerators

© Conclusions

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Target application

2.1 Target application i3]

Generalized symmetric definite eigenproblems

@ Solve
AX = BXA, (1)

with A, B € R™" given, A € R"*" a diagonal matrix with the
eigenvalues, and X € R"*" the eigenvectors

@ Collaboration with Structural Bioinformatics Research Group —

CSIC, to analyze and model molecular structures: Solve (1) with
n ~ 300, 000

@ First (and more expensive) step: Factorize the s.p.d. matrix
A=UTU

with U € R" " upper triangular

Power-aware execution of linear algebra libraries
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Experimental setup

2.2 Experimental setup

Hardware platform
o |IEEE double-precision arithmetic
@ 9-node Linux cluster

Intel Xeon Quad-core E5520 (2.27 GHz)
24 GB of DDR3 memory

)
)
o NVIDIA Tesla C2050 (disconnected during CPU-only experiments)
o PCl-Express (16x)

)

Standard HD, PSU, network card...
@ Infiniband Mellanox switch/cards

Power-aware execution of linear algebra libraries
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Experimental setup

Measurement setup

@ 2x Watts-Up? .NET, connected to switch and node 0
@ Sampling frequency of 1 Hz

@ Power consumption of switch only varied slightly: 102.7-103 Watts:
Discarded from results!

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Experimental setup

Message-passing kernels from ScaLAPACK

@ Matrix-vector product (PDGEMV): memory-bounded operation/high
concurrency

@ Matrix-matrix product (PDGEMM): CPU-bounded operation/high
concurrency

@ Cholesky factorization (PDPOTRF): CPU-bounded operation/complex
data dependencies

Basic libraries

@ BLAS and LAPACK from GotoBLAS 1.11/CUBLAS 3.2.16
e MPI from MVAPICH2 1.5.1

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Analysis of power consumption

2.3 Analysis of power consumption i3]

How to exploit core parallelism in clusters of multi-core processors?
© 1 MPI rank per node combined with a multi-threaded BLAS
@ 1 MPI rank per core combined with a serial BLAS

© For complex operations (e.g., Cholesky factorization), exploit task parallelism at
node level via a run-time. See
“Parallelizing dense matrix factorizations on clusters of multi-core
processors using SMPSs”

R. M. Badia, J. Labarta, V. Marjanovic, A. F. Martin, R. Mayo,
E. S. Quintana-Orti, R. Reyes

Int. Conf. on Parallel Computing — ParCo 2011, Ghent (Belgium)

Power-aware execution of linear algebra libraries

CECAM-Lausanne, Sept. 2011



Analysis of power consumption

Experiment #1.2

What is the impact of DVFS (via Linux governors)?
@ Performance (per). Static frequency at fiax

@ 0Ondemand (ond). Dynamic frequency with rapid increase, slow
decrease

@ Conservative (con). Dynamic frequency with slow increase, slow
decrease

@ Powersave (pwr). Static frequency at fin

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Analysis of power consumption

Experiment #1.3

What is the impact of the MPI operation mode?
@ Blocking primitives
@ Polling primitives

Power-aware execution of linear algebra libraries 7 CECAM-Lausanne, Sept. 2011



Analysis of power consumption

PDGEMM, 9 nodes, m = n = k=45,000

FLOPS ETS
600 | 250 - |
500
20
400
150
o
g E
9 0 3
e 2
&} 2
100
200
Y
100 per — per m—
ond ond
con con
, o — , P —
Pe Be P72 B2 Po Be P72 872
Policy/#processes Policyl#processes
[ I Performance of PDGEMM (GFLOPS) | [ [[_Power consumption of PDGEMM (KJoules) |
[ [ P9 [ B9 [ P72 [ B72 | [ [ Po T B9 [ P72 [ B72 |
per 517.1 518.3 524.9 451.6 per 160.5 149.7 161.7 175.7
ond 517.2 517.2 521.8 456.3 ond 160.1 150.4 162.6 174.1
con 517.3 517.2 522.6 453.9 con 160.8 151.2 162.5 174.4
pWI 354.7 354.1 356.2 308.1 pwWr 189.4 190.6 189.6 210.6
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Analysis of power consumption

PDGEMV, 9 nodes, m = n=45,000

FLOPS ETS
0 | 50 |
&0
W
50
Y
o 4 0
i i
@ g
6 5 3
20
20
10
per m— per m—
10
ond ond
con con
, o — , P —
Pe Be P72 B2 Po Be P72 872
Policy/#processes Policyl#processes
[ I Performance of PDGEMV (GFLOPS) | [ [[_Power consumption of PDGEMV (Joules) |
[ [ P9 [ B9 [ P72 [ B72 | [ [ Po [ B9 [ P72 [ B72 |
per 54.13 54.21 63.15 34.82 per 25.86 25.27 26.05 40.77
ond 54.05 54.14 63.41 34.64 ond 25.61 25.99 25.92 41.03
con 54.09 54.17 63.27 34.86 con 25.70 24.75 25.86 42.09
pWI 53.21 53.29 62.13 34.48 pwWr 24.12 23.72 23.24 40.92

cution of linear algebra libraries CECAM



Analysis of power consumption

PDPOTRF, 8 nodes, n=30,000

FLOPS ETS
300 - 1 20 1
250
15
200 [ |
o i
g 4
SERE] 3 10
Iy 9
&} 2
100
5
50 per — per —
ond ond
aon con
por — pr —
0 0
P9 89 P72 872 Pg E] P72 872

Policy/#processes Policyl#processes

[ [[ Performance of PDPOTRF (GFLOPS) | [ [[_Power consumption of PDPOTRF (KJoules) |

[ [ P& [ B8 [ P64 | B64 | [ [ P& ] B8 [ P64 | B64 |
per 2073 | 2055 | 2645 2313 per 1130 | 1167 | 1279 14.86
ond 2964 | 2939 | 2646 230.2 ond 11.65 | 11.09 | 13.66 14.52
con 2069 | 2924 | 2615 2113 con 1119 | 1119 | 1264 14.38
pwr 2214 | 2185 | 2081 1712 pwr 1294 | 1185 1413 15.85
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Analysis of power consumption

Experiment #2

What is the impact of the use of hardware accelerators (1 per node)?
@ Only Cholesky factorization (PDPOTRF)
@ Off-load matrix-matrix products to GPU
@ Polling/blocking (busy/idle) detection of GPU kernel termination

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Analysis of power consumption

aFLoPs

FLOPS

f200

1000

800

800

400

200 per —

ond
o
, por —
FB BB Pl Bl
NP/ comm. mode/CPU state

[ [ Performance of GPDGEMM (GFLOPS)

[ PB | BB [ PI | BI
per 1,055 1,050 1,054 1,049
ond 1,055 1,050 1,049 1,045
con 1,055 1,051 1,050 1,045
pPWr 1,050 1,046 1,050 1,045

KJOULES

ETS

8 1
0
60
50
W
30
20

per m—
10 ond

con

por —
0

PB 88 Pl Bl

MPI comm. mode/CPL state

Power consumption GPDGEMM (KJoules)

[%PB[BB[PI[BI

per 76.81 77.33 72.94 72.98
ond 76.95 76.62 71.93 71.56
con 77.14 77.07 71.63 72.27
pwr 72.52 73.06 71.15 71.45
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Conclusions

2.4 Conclusions

Linux governors

@ CPU-bounded PDGEMM: lower frequency implies higher
execution time/energy consumption

@ Memory-bounded PDGEMV: selecting the appropriate
governor can render savings with no impact on
performance

@ CPU-bounded with complex dependencies PDPOTRF:
delicate balance between power and performance

Communication mode

@ Polling mode is beneficial with one process per core
@ Savings of blocking mode lower than expected

Hybrid computing

@ Idle-wait of multi-core processors saves energy
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More information

@ “Evaluation of the energy performance of dense linear algebra kernels on
multi-core and many-core processors”
M. Castillo, J. C. Ferndndez, R. Mayo, E. S. Quintana-Orti, V. Roca
7th Workshop on High-Performance, Power-Aware Computing — HPPAC 2011,
Anchorage (Alaska, USA), May 2011

@ “Strategies to save energy for message-passing dense linear algebra kernels”
M. Castillo, J. C. Ferndndez, R. Mayo, E. S. Quintana-Orti, V. Roca
Tech. Report DICC, Universitat Jaume |, July 2011
20th Euromicro Int. Conf. on Parallel, Distributed and Network-based Processing
— PDP 2012, Garching (Germany). Submitted
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Part 3. Sparse linear algebra kernels in multi-core
and many-core processors
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N

To analyze in detail energy consumption in the execution of sparse linear
system solvers (via iterative methods) on current platforms

Jointly with:

@ M. Castillo, J. C. Fernandez, R. Mayo
Universitat Jaume |

@ H. Anzt, V. Heuveline
Karlsruhe Institute of Technology
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QOutline of Part 3

@ Target application

@ Experimental setup

© Analysis of power consumption
@ DVFS

Q Idle-wait

@ Conclusions
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Target application

3.1 Target application

Sparse linear systems
@ Solve

Ax = b,
with A sparse and large, arise in many apps. that involve PDEs
modeling physical, chemical or economical processes

@ Low-cost iterative Krylov-based solvers for large-scale systems: A
s.p.d. — Conjugate Gradient (CG), Preconditioned CG (PCG)

Power-aware execution of linear algebra libraries
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Target application

CG (Matlab)
1function [x] = cg(A,b,x,tol) %BLAS SBLAS Arch.
2 %
3 r=b—Axx; % spmv CPU/GPU
4  p=r,;
5 rsold=r"'xr; % dot CPU
6
7 for i=l:size(A,1)
8 Ap=Axp; % spmv CPU/GPU
9 alpha=rsold /(p'*Ap); % dot CPU
10 x=x+alphaxp; % axpy CPU
11 r=r—alphaxAp; % axpy CPU
12 rsnew=r "*r; % dot CPU
13 if sqrt(rsnew)<tol
14 break ;
15 end
16 p=r—+rsnew/rsold xp; % axpy CPU
17 rsold=rsnew ;
18 end
19end

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Experimental setup

3.2 Experimental setup

Hardware platform

@ AMD Opteron 6128 (8 cores)©2.0 GHz
with 24 GBytes of RAM

@ NVIDIA Tesla C1060 (240 cores).
Disconnected during CPU-only
experiments!

o PCl-Express (16x)

Software implementation of CG, PCG
e AMD: Intel MKL (11.1) for BLAS-1 and own implementation of
spmv
o NVIDIA: CUBLAS (3.0) and implementation of spmv based on
Garland and Bell's approach

@ gcc -03 (4.4.3) and nvce (3.2)

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Experimental setup

PCl-Brpress

Meamurernent
Software

Motherboard
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Experimental setup

Linear systems

| Matrix name [[  Size (n) [ Nonzeros (nnz) |
A318 32,157,432 224,495,280
APACHE2 715,176 4,817,870
AUDIKW_1 943,695 77,651,847
BONES10 014,898 40,878,708
ECOLOGY?2 999,999 4,995,991
G3_CIRCUIT 1,585,478 7,660,826
LDOOR 952,203 42,493,817
ND24K 72,000 28,715,634

Solvers Ax = b

@ lterative: xg > x1 = X0 — -+ — X, & X
e Stopping criterion: ¢ = 10710|rg |2

@ Initial solution: xg =0

Power-aware execution of linear algebra libraries 2 CECAM-Lausanne, Sept. 2011



Analysis of power consumption

3.3 Analysis of power consumption

Experiment #1

@ Power consumption of CG and PCG on CPU (1T, 2T, 4T, 8T on 1,
2, 4, 8 cores) and hybrid CPU (4T)+GPU

e G3_CIRCUIT (moderate dimension, complex sparsity pattern)

S
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Analysis of power consumption

CG method

Hardware || # iter | Time [s] | Energy consumption [Wh]
Chipset ‘ GPU ‘ Total
CPU 4T 21,424 | 1,076.97 42.18 - 42.18
GPU 4T 21,467 198.43 8.04 | 3.44 11.48

@ Hybrid CPU-GPU code clearly outperforms CPU one in both
performance (5x) and energy (4x)

@ Energy gap mostly from reduction in execution time:

CPU4T GPU4T

42.18 1148
_222% 3600 = 140.0 W , .
1,076.97 Tonaz 3600 =2082 W

Power-aware execution of linear algebra libraries
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Analysis of power consumption

PCG method (Jacobi preconditioner)

Hardware || # iter | Time [s] | Energy consumption [Wh]
Chipset | GPU |  Total
CPU 4T 4,613 348.79 13.31 - 13.31
GPU 4T 4,613 46.28 1.89 | 0.83 2.72

@ Important reduction in #iterations: 21,424 — 4,613

e Time/iteration and energy/iteration not significantly increased
(preconditioning this matrix only requires diagonal scaling):

CGGPU4T PCG GPU 4 T
198.4 46.2
8.43 = 0.0092 s/iter 46.28 = 0.0100 s/iter
21,467 4,613
11.48 2.72
=5.34.10"* Wh/iter =5.89-107* Wh/iter
21,467 4,613

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



DVFS

3.4 DVFS I

Experiment #2

@ In general, for memory-bounded operations a decrease of the
processor operation frequency can yield energy savings
e Memory-bounded or 1/O-bounded?
o Decreasing processor frequency impacts memory latency?

@ The sparse matrix-vector product is indeed memory-bounded: 2nnz
flops vs. nnz memops

@ AMD Opteron 6128: 800 MHz — 2.0 GHz

o A318 (large size to match powermeter sampling rate)

20

o
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DVFS

CG method

Hardware Freq. Time | Power/Energy consumption
Chipset GPU | Total

[MHz] [s] | [Ave. W] | [Ave. W] | [Wh]

CPU 4T 2,000 | 1441.78 123.99 - | 49.66

CPU 4T 800 1674.62 108.11 - | 50.29
GPU 4T 2,000 253.22 149.04 61.89 | 14.84
GPU 4T 800 254.25 138.50 61.45 | 14.12

o For the CPU solver, lowering the processor frequency increases the
execution time, which blurs savings in power consumption

@ For the hybrid CPU-GPU solver, as the computationally intensive

parts are executed on the GPU, lowering the frequency yields some
energy savings... Why not larger?
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DVFS

@ GPU and CPU operate in asynchronous mode but... when the GPU
is executing a kernel, and the CPU encounters a call to a second
kernel, it enters into a polling loop

@ In the polling state, the power usage of the CPU is almost as high as
that of a fully-loaded processor!

@ Alternatives:

(i) Plain solver
(i) Solver + DVFS during GPU execution

Power-aware execution of linear algebra libraries CECAM-Lausanne, Sept. 2011



Power-friendly CPU

Power usage by CPU
160 T T

100

a0 -

Power (Watts)

60

[ —t—
CG+DVFS

a 10 20 30 40 50

Time
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DVFS

CG method: Energy consumption of chipset+GPU

matrix Energy consumption [Wh] || improvement [ %)]

(i) | (ii) (i) —(ii)
A318 14.84 14.12 5.1
APACHE2 1.98 1.99 -0.5
AUDIKW_1 no convergence -
BONES10 no convergence -
ECOLOGY2 2.30 2.27 -1.3
G3_circulT || 11.48 11.11 3.3
LDOOR no convergence -
N24K 26.43 | 25.42 3.97

@ A moderate gain, in some cases a loss...

Power-aware execution of linear algebra libraries
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DVFS

PCG method: Energy consumption of chipset+GPU

matrix Energy consumption [Wh] || improvement [ %)]

(i) | (i) (i)—(ii)
A318 14.84 14.12 51
APACHE2 1.75 1.76 -0.6
AUDIKW_1 47.98 38.15 5.2
BONES10 157.32 150.16 4.8
ECOLOGY?2 2.51 2.45 2.4
G3_CIRCUIT 2.71 2.38 3.0
LDOOR 43.22 41.18 5.0
N24K 34.62 32.97 5.0

@ Moderate but more consistent gain
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Idle-wait

3.5 Idle-wait

Experiment #3

@ Solution: set the CPU to “sleep” during the execution of the GPU
kernels: Execution time of GPU spmv can be measured and
accurately adjusted

@ Use of nanosleep() function from sys/time.h

@ Alternatives:
(i) Plain solver
(i) Solver + DVFS during GPU execution
(iii) Solver + DVFS + idle-wait during GPU execution

CECAM-Lausanne, Sept. 2011
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Idle-wait

Power-friendly CPU modes

Power usage by CPU

— 100 - 4
w
2
&
o
2 go b 1
L
w
g
o B0 - 1
40 b .
[ w——
20 CG+DVFS =i 1

Chtidle-wail =—i—
Co+DVFS+Hidle-wait —m—
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Time
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Idle-wait

CG method: Energy consumption of chipset+GPU

matrix energy consumption [Wh] improvement [ %]

0 [ G ] (i) || ()—=(@i) | ()—(in)
A318 14.84 | 14.12 12.18 5.1 21.8
APACHE2 1.98 1.99 1.82 -0.5 8.8
AUDIKW_1 no convergence - -
BONES10 no convergence - -
ECOLOGY?2 2.30 2.27 2.09 -1.3 10.0
G3_circulT || 11.48 | 11.11 10.10 3.3 13.7
LDOOR no convergence - -
N24K 2643 [ 2542 [ 21.17 3.97 24.8
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Idle-wait

PCG method: Energy consumption of chipset+GPU

matrix energy consumption [Wh] improvement [ %]

() | M T G [ O=G)T O
A318 14.84 14.12 12.18 51 21.8
APACHE2 1.75 1.76 1.64 -0.6 6.7
AUDIKW_1 47.98 4561 38.15 5.2 25.8
BONES10 157.32 | 150.16 | 125.78 4.8 25.1
ECOLOGY?2 2.51 2.45 2.29 2.4 9.6
G3_CIRCUIT 2.71 2.63 2.38 3.0 13.9
LDOOR 43.22 41.18 34.79 5.0 242
N24K 34.62 32.97 27.64 5.0 25.3
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Conclusions

3.6 Conclusions

@ The concurrency of spmv enables the efficient usage of GPUs, that
render important savings in execution time and energy consumption

@ For memory-bounded operations, DVFS can potentially render
energy savings. ..
but the busy-wait of the host system during the kernel calls still
consumes about 80 % of full-demand power

@ The use of GPU-accelerated HPC-systems combined with
power-saving techniques leads to more reduced energy consumption
of all test problems without impacting the performance
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More information

@ “Power consumption of mixed precision in the iterative solution of sparse linear
systems”
H. Anzt, M. Castillo, J. C. Fernandez, V. Heuveline, R. Mayo, E. S. Quintana,
B. Rocker
7th Workshop on High-Performance, Power-Aware Computing — HPPAC 2011,
Anchorage (Alaska, USA), May 2011

@ “Analysis and optimization of power consumption in the iterative solution of
sparse linear systems on multi-core and many-core platforms”
J. I. Aliaga, H. Anzt, M. Castillo, J. C. Ferndndez, V. Heuveline, R. Mayo, E. S.
Quintana
Int. Workshop on Power Measurement and Profiling — PMP 2011, Orlando
(Miami, USA), July 2011

@ “Optimization of power consumption in the iterative solution of sparse linear
systems on graphics processors”
H. Anzt, V. Heuveline, M. Castillo, J. C. Fernandez, R. Mayo, E. S. Quintana, F.
D. Igual
2nd Int. Conf. on Energy-Aware High Performance Computing — EnaHPC 2011,
Hamburg (Germany), Sept. 2011
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