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Introduction and motivation

Motivation

Reduce energy consumption!

Costs over the lifetime of an HPC facility in the range of acquisition
costs
Produces carbon dioxide, a risk for the health and the environment
Produces heat which reduces hardware reliability
It gave us a reason to meet here in nice Lausanne ;-)

Personal view

Hardware features mechanisms and modes to save energy

Software (scientific apps) are in general power oblivious
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Introduction and motivation

Outline

Part 1. Scheduling dense linear algebra kernels in multi-core
processors

Part 2. Dense linear algebra message-passing libraries for clusters

Part 3. Sparse linear algebra kernels in multi-core and many-core
processors
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Part 1. Scheduling dense linear algebra kernels in
multi-core processors
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Goal:

To improve power-performance ratio via scheduling and DVFS

Jointly with:

P. Alonso
Universitat Politécnica de Valencia

M. Dolz, F. Igual, R. Mayo
Universitat Jaume I
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Outline of Part 1

1 Introduction

2 Dense linear algebra operations

3 Slack Reduction Algorithm

4 Race-to-Idle Algorithm

5 Experimental results

6 Conclusions
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Introduction

1.1 Introduction

Scheduling tasks of dense linear algebra algorithms
Examples: Cholesky, QR and LU factorizations

Energy saving tools available for multi-core processors
Example: Dynamic Voltage and Frequency Scaling (DVFS)

Scheduling tasks + DVFS

⇓
Power-aware scheduling on multi-core processors

Our strategies:
Reduce the frequency of cores that will execute non-critical tasks to decrease idle
times without sacrifying total performance of the algorithm

Execute all tasks at highest frequency to “enjoy” longer inactive periods

⇓
Energy savings
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Dense linear algebra operations

1.2 Dense linear algebra operations

LU factorization

Factor
A = LU,

where L/U ∈ Rn×n unit lower/upper triangular matrices

For numerical stability, permutations are introduced to prevent
operation with small pivot elements

Two algorithms of LU factorization

LU with partial (row) pivoting (traditional version) and
LU with incremental pivoting

“Rapid development of high-performance out-of-core solvers for
electromagnetics”
T. Joffrain, E. S. Quintana, R. van de Geijn
State-of-the-Art in Scientific Computing – PARA 2004,
Copenhaguen (Denmark), June 2004

Later called “Tile LU factorization” or “Communication-Avoiding LU

factorization with flat tree”
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Dense linear algebra operations

LU factorization with partial (row) pivoting

for k = 1 : s do

Ak:s,k = Lk:s,k · Ukk LU factorization (s − k + 2
3 )b3 flops

for j = k + 1 : s do

Akj ← L−1
kk · Akj Triangular solve b3 flops

Ak+1:s,j ← Ak+1:s,j − Ak+1:s,k · Akj Matrix-matrix product 2(s − k)b3 flops

end for
end for

DAG with a matrix consisting of 3× 3 blocks

M 21

M 31

G 11

G 22

T 32 M 32

T 21

T 31

G 33
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Dense linear algebra operations

LU factorization with incremental pivoting

for k = 1 : s do

Akk = Lkk · Ukk LU factorization 2b3

3 flops

for j = k + 1 : s do

Akj ← L−1
kk · Akj Triangular solve b3 flops

end for
for i = k + 1 : s do„

Akk

Aik

«
=

„
Lkk

Lik

«
· Uik 2× 1 LU factorization b3 flops

for j = k + 1 : s do„
Akj

Aij

«
←
„

Lkk 0
Lik I

«−1

·
„

Akj

Aij

«
2× 1 Triangular solve b3

2 flops

end for
end for

end for
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Dense linear algebra operations

LU factorization with incremental pivoting

DAG with a matrix consisting of 3× 3 blocks

T 232
(4.273)

T2 221
(7.372)

T2 231
(7.372)

G2 211
(5.246)

G 222
(3.311)

T 121
(4.273)

T 131
(4.273)

G2 322
(5.246)

G2 311
(5.246)

T2 332
(7.372)

G 111
(3.311)

G 333
(3.311)

T2 321
(7.372)

T2 331
(7.372)

Nodes contain execution time of tasks (in milliseconds, ms), for a
block size b = 256 on a single-core of and AMD Opteron 6128
running at 2.00 GHz.

We will use this info to illustrate our power-saving approach of the
SRA!
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Slack Reduction Algorithm Introduction

1.3 Slack Reduction Algorithm

Stragegy

Obtain the dependency graph corresponding to the computation of a
dense linear algebra algorithm; apply the Critical Path Method to analize
slacks; and reduce them with our Slack Reduction Algorithm

The Critical Path Method:

DAG of dependencies

Nodes ⇒ Tasks
Edges ⇒ Dependencies

Times: Early and latest times to start and finalize execution of task Ti with cost Ci

Total slack: Amount of time that a task can be delayed without increasing the total
execution time of the algorithm

Critical path: Formed by a succession of tasks, from initial to final node of the graph, with
total slack = 0
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Slack Reduction Algorithm Application to dense linear algebra algorithms

Application of CPM to the DAG of the LU factorization with incremental
pivoting of a matrix consisting of 3× 3 blocks:

Task C ES LF S

G 111 3.311 0.000 3.311 0

T 121 4.273 3.311 8.558 0.973

G2 211 5.246 3.311 8.558 0

G2 311 5.246 3.311 11.869 3.311

T 131 4.273 3.311 12.842 5.257

T2 321 7.372 8.558 19.241 3.311

G2 322 5.246 19.241 24.488 0

T2 332 7.373 24.488 31.861 0

G 333 3.311 31.861 35.171 0

T2 331 7.372 8.558 24.488 8.558

T2 221 7.372 8.558 15.930 0

G 222 3.311 15.930 19.241 0

T 232 4.273 19.241 24.488 0.973

T2 231 7.372 8.558 20.214 4.284

Objective: tune the slack of those tasks with S > 0, reducing its execution
frequency and yielding low power usage → Slack Reduction Algorithm
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Slack Reduction Algorithm Previous steps

Slack Reduction Algorithm

1 Frequency assignment

2 Critical subpath extraction

3 Slack reduction

1 Frequency assignment

Example: LU factorization
with incremental pivoting
of 3×3 blocks: T 232

(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =2.00

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =2.00

G2 322
(5.246)

f =2.00

G2 311
(5.246)

f =2.00

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(7.372)

f =2.00

Discrete collection of frequencies: {2.00, 1.50, 1.20, 1.00, 0.80} GHz
We have obtained execution time of tasks running at each available frequency
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Slack Reduction Algorithm Previous steps

2 Critical subpath extraction

Iteration 0

T 232
(4.273)

T2 221
(7.372)

T2 231
(7.372)

G2 211
(5.246)

G 222
(3.311)

T 121
(4.273)

T 131
(4.273)

G2 322
(5.246)

G2 311
(5.246)

T2 332
(7.372)

G 111
(3.311)

G 333
(3.311)

T2 321
(7.372)

T2 331
(7.372)

CPi Tasks Execution time

CP0 {G 111, G2 211, T2 221, G 222, G2 322, T2 332, G 333} 35.171 ms

Power-aware execution of linear algebra libraries 15 CECAM–Lausanne, Sept. 2011



Slack Reduction Algorithm Previous steps

2 Critical subpath extraction

Iteration 1

T 232
(4.273)

T2 231
(7.372)

T 121
(4.273)

T 131
(4.273)

G2 311
(5.246)

T2 321
(7.372)

T2 331
(7.372)

CPi Tasks Execution time

CP0 {G 111, G2 211, T2 221, G 222, G2 322, T2 332, G 333} 35.171 ms
CP1 {T 131, T2 231, T 232} 15.918 ms
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Slack Reduction Algorithm Previous steps

2 Critical subpath extraction

Iteration 2

T 121
(4.273)

G2 311
(5.246)

T2 321
(7.372)

T2 331
(7.372)

CPi Tasks Execution time

CP0 {G 111, G2 211, T2 221, G 222, G2 322, T2 332, G 333} 35.171 ms
CP1 {T 131, T2 231, T 232} 15.918 ms
CP2 {G2 311, T2 331} 12.619 ms

Power-aware execution of linear algebra libraries 17 CECAM–Lausanne, Sept. 2011



Slack Reduction Algorithm Previous steps

2 Critical subpath extraction

Iteration 3

T 121
(4.273)

T2 321
(7.372)

CPi Tasks Execution time

CP0 {G 111, G2 211, T2 221, G 222, G2 322, T2 332, G 333} 35.171 ms
CP1 {T 131, T2 231, T 232} 15.918 ms
CP2 {G2 311, T2 331} 12.619 ms
CP3 {T 121, T2 321} 11.646 ms
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Slack Reduction Algorithm Slack reduction

Iteration 1

Process critical subpath CP1 = {T 131, T2 231, T 232}:
1 Increase ratio for CP1: d(G 111 T 232)−d(G 111 T 131)

l(CP1)
= 21,176

15,919 = 1,33 %

2 Slack is reduced by reducing execution frequency of task:

T 131: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;
T2 231: 2.00 GHz ⇒ 1.50 GHz; 7.372 ms ⇒ 9.690 ms;
T 232: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =2.00

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =2.00

G2 322
(5.246)

f =2.00

G2 311
(5.246)

f =2.00

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(7.372)

f =2.00

Total execution time:
35.171 ms

Power-aware execution of linear algebra libraries 19 CECAM–Lausanne, Sept. 2011



Slack Reduction Algorithm Slack reduction

Iteration 1

Process critical subpath CP1 = {T 131, T2 231, T 232}:
1 Increase ratio for CP1: d(G 111 T 232)−d(G 111 T 131)

l(CP1)
= 21,176

15,919 = 1,33 %

2 Slack is reduced by reducing execution frequency of task:

T 131: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;
T2 231: 2.00 GHz ⇒ 1.50 GHz; 7.372 ms ⇒ 9.690 ms;
T 232: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;

T 232
(5.598)

f =1.50

T2 221
(7.372)

f =2.00

T2 231
(9.690)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(5.598)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(5.246)

f =2.00

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(7.372)

f =2.00

Total execution time:
35.867 ms > 35.171 ms
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Slack Reduction Algorithm Slack reduction
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T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(9.690)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(5.598)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(5.246)

f =2.00

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(7.372)

f =2.00

Total execution time:
35.171 ms
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Slack Reduction Algorithm Slack reduction

Iteration 2

Process critical subpath CP2 = {G2 311, T2 331}:
1 Increase ratio for CP2: d(G 111 T2 331)−d(G 111 G2 311)

l(CP2)
= 21,176

12,619 = 1,67 %

2 Slack is reduced by reducing execution frequency of task:

G2 311: 2.00 GHz ⇒ 1.20 GHz; 5.246 ms ⇒ 8.717 ms;
T2 331: 2.00 GHz ⇒ 1.20 GHz; 7.372 ms ⇒ 12.083 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(5.246)

f =2.00

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(7.372)

f =2.00

Total execution time:
35.171 ms
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Slack Reduction Algorithm Slack reduction

Iteration 2

Process critical subpath CP2 = {G2 311, T2 331}:
1 Increase ratio for CP2: d(G 111 T2 331)−d(G 111 G2 311)

l(CP2)
= 21,176

12,619 = 1,67 %

2 Slack is reduced by reducing execution frequency of task:

G2 311: 2.00 GHz ⇒ 1.20 GHz; 5.246 ms ⇒ 8.717 ms;
T2 331: 2.00 GHz ⇒ 1.20 GHz; 7.372 ms ⇒ 12.083 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(8.717)

f =1.20

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(12.083)

f =1.20

Total execution time:
35.676 ms > 35.171 ms
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Slack Reduction Algorithm Slack reduction

Iteration 2

Process critical subpath CP2 = {G2 311, T2 331}:
1 Increase ratio for CP2: d(G 111 T2 331)−d(G 111 G2 311)

l(CP2)
= 21,176

12,619 = 1,67 %

2 Slack is reduced by reducing execution frequency of task:

G2 311: 2.00 GHz ⇒ 1.20 GHz 1.50 GHz; 5.246 ms ⇒ 8.717 ms 7.010 ms;
T2 331: 2.00 GHz ⇒ 1.20 GHz; 7.372 ms ⇒ 12.083 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(7.010)

f =1.50

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(12.083)

f =1.20

Total execution time:
35.171 ms
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Slack Reduction Algorithm Slack reduction

Iteration 2

Process critical subpath CP3 = {T 121, T2 321}:
1 Increase ratio for CP3: d(G 111 T2 321)−d(G 111 T 121)

l(CP3)
= 15,930

11,646 = 1,36 %

2 Slack is reduced by reducing execution frequency of task:

T 121: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;
T2 321: 2.00 GHz ⇒ 1.50 GHz; 7.372 ms ⇒ 9.690 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(7.010)

f =1.50

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(12.083)

f =1.20

Total execution time:
35.171 ms
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Slack Reduction Algorithm Slack reduction

Iteration 2

Process critical subpath CP3 = {T 121, T2 321}:
1 Increase ratio for CP3: d(G 111 T2 321)−d(G 111 T 121)

l(CP3)
= 15,930

11,646 = 1,36 %

2 Slack is reduced by reducing execution frequency of task:

T 121: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;
T2 321: 2.00 GHz ⇒ 1.50 GHz; 7.372 ms ⇒ 9.690 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(5.598)

f =1.50

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(7.010)

f =1.50

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(9.690)

f =1.50

T2 331
(12.083)

f =1.20

Total execution time:
36.285 ms > 35.171 ms
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Slack Reduction Algorithm Slack reduction

Iteration 2

Process critical subpath CP3 = {T 121, T2 321}:
1 Increase ratio for CP3: d(G 111 T2 321)−d(G 111 T 121)

l(CP3)
= 15,930

11,646 = 1,36 %

2 Slack is reduced by reducing execution frequency of task:

T 121: 2.00 GHz ⇒ 1.50 GHz 2.00 GHz; 4.273 ms ⇒ 5.598 ms 4.273 ms;
T2 321: 2.00 GHz ⇒ 1.50 GHz 2.00 GHz; 7.372 ms ⇒ 9.690 ms 7.372 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(7.010)

f =1.50

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(12.083)

f =1.20

Total execution time:
35.171 ms
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Race-to-Idle Algorithm

1.4 Race-to-Idle Algorithm

Race-to-Idle ⇒ complete execution as soon as possible by executing
tasks of the algorithm at the highest frequency to “enjoy” longer inactive
periods

Alternative strategy to reduce power consumption

DAG requires no processing, unlike SRA

Tasks are executed at highest frequency, during idle periods CPU
frequency is reduced at lowest possible

Why?
Current processors are quite efficient at saving power when idle

Power of idle core is much smaller than power in working periods
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Experimental results Simulator

1.5 Experimental results

We use a simulator to evaluate the performance of the two strategies

Input parameters:
DAG capturing tasks and dependencies of a blocked algorithm and frequencies
recommended by the Slack Reduction Algorithm and Race-to-Idle Algorithm

A simple description of the target architecture:

Number of sockets (physical processors)
Number of cores per socket

Discrete range of frequencies and its associated voltages

Collection of real power for each combination of frequency idle/busy state per core

The cost (overhead) required to perform frequency changes

Static priority list scheduler:
Duration of tasks at each available frequency is known in advance

Tasks that lie on critical path must be prioritized
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Experimental results Benchmark algorithms

Blocked algorithms:

LU with partial/incremental pivoting

Block size: b = 256

Matrix size varies from 768 to 5,632

Execution time of tasks on AMD Opteron 6128 (8 cores)
LU with incremental pivoting: tasks G, T, G2 and T2

LU with partial (row) pivoting: Duration of tasks G and M depends on the iteration!

We evaluate the time of 1 flop for each type of task; then, from the theoretical cost
of the task we obtain an approximation of its execution time
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Experimental results Environment setup

Environment setup
AMD Opteron 6128 (1 socket of 8 cores)

Discrete range of frequencies: {2.00, 1.50, 1.20, 1.00, 0.80} GHz

Power required by the tasks: we measure the power running p copies of dgemm at
different frequencies:

Frequency-Running/Idle
Core 1 2 3 4 5 6 7 8 Power (W)

2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 157.60
2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 1.50-R 156.86

. . . . . .
1.20-R 1.20-R 1.00-R 1.00-R 1.00-R 0.80-R 0.80-I 0.80-I 113.45
1.20-R 1.20-R 1.00-R 1.00-R 1.00-R 0.80-I 0.80-I 0.80-I 110.37

. . . . . .
0.80-R 0.80-R 0.80-I 0.80-I 0.80-I 0.80-I 0.80-I 0.80-I 91.81
0.80-R 0.80-I 0.80-I 0.80-I 0.80-I 0.80-I 0.80-I 0.80-I 88.58

We measure with an internal power meter (ASIC with 25 samples/sec)

Frequency change latency:
Destination freq.

2.00 1.50 1.20 1.00 0.80

S
o

u
rc

e
fr

eq
. 2.00 – 40.36 43.18 43.77 49.85

1.50 302.5 – 50.98 54.00 58.19
1.20 301.7 302.7 – 61.60 66.05
1.00 297.4 302.3 306.0 – 74.70
0.80 291.6 292.7 294.0 295.80 –
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Experimental results Environment setup

Evaluation ⇒ In order to evaluate experimental results obtained with
the simulator, we compare execution time and consumption with no
policy and with SRA/RIA

Metrics:

Execution time

TSRA/RIA Policy

TNo policy

Impact of SRA/RIA on time

%TSRA/RIA =
TSRA/RIA policy

TNo policy
· 100

Consumption

CSRA/RIA policy =
Pn

i=1 Wn · Tn

CNo policy = v 2 T(fmax )

Impact of SRA/RIA on consumption

%CSRA/RIA =
CSRA/RIA Policy

CNo policy
· 100
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Experimental results Results

Impact of the SRA/RIA on energy and time for the LU factorization with
partial pivoting:

DVFS-Control Techniques for Dense Linear Algebra Operations on Multi-Core Processors 7
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Fig. 5 Impact of the SRA and the RIA on the energy and execution time of the blocked algorithm for the LU factorization
with partial pivoting.

6.4 The LU factorization with partial pivoting

Figure 5 reports the results for the LU factorization
with partial pivoting. The first thing to notice is the
increase of execution time that the usage of the SRA
produces for the largest problem sizes. The RIA, on
the other hand, maintains the execution time for all
problem dimensions, demonstrating that the overhead
of frequency changes is negligible compared with the
cost (i.e., time) of the individual tasks (at least, for such
block size). If we focus on the energy, the higher execu-
tion times required by SRA increases the consumption
as well, and this is not compensated by the reduction
that, in principle, an execution at a slower pace (fre-
quency) brings. A deeper investigation revealed that
the increase in execution time of SRA that appears for
n ≥ 2, 560 is actually due to the algorithm being oblivi-
ous to the real number of available resources (cores). A
resource-aware implementation of SRA would solve this
issue and is among future work. With this, we expect
that the SRA maintains the TSRA ratio close to 1, but
still render power consumption worse than that of the
RIA.

6.5 The LU factorization with incremental pivoting

Due to the cost of the simulation and the higher com-
plexity of the DAG associated with this algorithm, in
this case we could only evaluate the impact of SRA for

problems of dimension n up to 2,816. Figure 6 reports
the results for the LU factorization with incremental
pivoting. In general, the behaviour is similar to that of
the previous algorithm: in some cases the SRA yields
a higher execution time that produces an increase in
power consumption while the RIA maintains execution
time but reduces energy needs.

7 Conclusions and Future Work

In this paper, we have evaluated two alternative strate-
gies that leverage DVFS to save energy during the exe-
cution of dense linear algebra algorithms on multi-core
architectures. The SRA aims at reducing idle periods,
identifying the slacks in the DAG representing the tasks
and dependencies of the algorithm, and slowing down
the execution of the appropriate tasks, while poten-
tially maintaining the global execution time. The RIA
pursues the power-conservation goal but from a totally
opposite approach; specifically, this strategy generates
inactive times during the execution of the DAG by ex-
ecuting all tasks at the highest frequency, and relies on
the power savings attained via a reduction of frequency
operation during these idle periods. In the end, both
alternatives investigate on the trade-off between power
and performance.

We have evaluated these two power-control poli-
cies using two algorithms of the LU factorization which
differ in the pivoting strategy, and are representative

SRA: Time is compromised and increases the consumption for largest problem sizes

The increase in execution time is due to the SRA being oblivious to the real resources

RIA: Time is not compromised and consumption is maintained for largest problem sizes
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Experimental results Results

Impact of the SRA/RIA on energy and time for the LU factorization with
incremental pivoting:

8 Pedro Alonso et al.
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Fig. 6 Impact of the SRA and the RIA on the energy and execution time of the blocked algorithm for the LU factorization
with incremental pivoting.

of many other high-performance Level 3 BLAS-based
dense linear algebra operations. The results of this anal-
ysis using a simulator that reflects realistic conditions
show the superior performance of the RIA policy over
the SRA one, both from the point of view of execution
time and energy savings.
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SRA: Yields higher execution time that produces an increase in power consumption

RIA: Maintains execution time but reduces energy needs
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Conclusions Conclusions

1.6 Conclusions

Idea: Use of DVFS to save energy during the execution of dense linear
algebra algorithms on multi-core architectures

Objective: To evaluate two alternative strategies to save energy
consumption

Slack Reduction Algorithm

DAG requires a processing

Currently does not take into account
number of resources

Increases execution time when matrix
size increases

Increases, also, energy consumption

Race-to-Idle Algorithm

DAG requires no processing

Algorithm is applied on-the-fly

Maintains in all of cases execution time

Reduce energy consumption (around
5 %)
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Conclusions Future work

Results of dense linear algorithms: LU with partial/incremental pivoting
Simulation under realistic conditions show that RIA produces more energy savings than SRA

Current processors are quite good saving power when idle, so It’s generally better to run as
fast as possible to produce longer idle periods

In our target platform (AMD Opteron 6128) RIA strategy is capable to produce more energy
savings than SRA

Power consumption:
Working at highest frequency > Working at lowest frequency ≫ Idle at lowest frequency
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Conclusions Future work

More information

“Improving power-efficiency of dense linear algebra algorithms on multi-core
processors via slack control”
P. Alonso, M. Dolz, R. Mayo, E. S. Quintana
Workshop on Optimization Issues in Energy Efficient Distributed Systems –
OPTIM 2011, Istanbul (Turkey), July 2011

“DVFS-control techniques for dense linear algebra operations on multi-core
processors”
P. Alonso, M. F. Dolz, F. Igual, R. Mayo, E. S. Quintana
2nd Int. Conf. on Energy-Aware High Performance Computing – EnaHPC 2011,
Hamburg (Germany), Sept. 2011
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Part 2. Dense linear algebra message-passing
libraries for clusters
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Goal:

To analyze the impact of power-saving strategies on the performance and
power-consumption of mesage-passing dense linear algebra operations

Jointly with:

M. Castillo, J. C. Fernández, R. Mayo, V. Roca
Universitat Jaume I
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Outline of Part 2

1 Target application

2 Experimental setup
3 Analysis of power consumption

1 Multi-thread vs. multi-process
2 DVFS (Linux governors)
3 MPI communication mode
4 Clusters of hw. accelerators

4 Conclusions
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Target application

2.1 Target application

Generalized symmetric definite eigenproblems

Solve
AX = BXΛ, (1)

with A, B ∈ Rn×n given, Λ ∈ Rn×n a diagonal matrix with the
eigenvalues, and X ∈ Rn×n the eigenvectors

Collaboration with Structural Bioinformatics Research Group –
CSIC, to analyze and model molecular structures: Solve (1) with
n ≈ 300, 000

First (and more expensive) step: Factorize the s.p.d. matrix

A = UT U

with U ∈ Rn×n upper triangular
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Experimental setup

2.2 Experimental setup

Hardware platform

IEEE double-precision arithmetic

9-node Linux cluster

Intel Xeon Quad-core E5520 (2.27 GHz)
24 GB of DDR3 memory
NVIDIA Tesla C2050 (disconnected during CPU-only experiments)
PCI-Express (16×)
Standard HD, PSU, network card...

Infiniband Mellanox switch/cards
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Experimental setup

Measurement setup

2× Watts-Up? .NET, connected to switch and node 0

Sampling frequency of 1 Hz

Power consumption of switch only varied slightly: 102.7–103 Watts:
Discarded from results!
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Experimental setup

Message-passing kernels from ScaLAPACK

Matrix-vector product (PDGEMV): memory-bounded operation/high
concurrency

Matrix-matrix product (PDGEMM): CPU-bounded operation/high
concurrency

Cholesky factorization (PDPOTRF): CPU-bounded operation/complex
data dependencies

Basic libraries

BLAS and LAPACK from GotoBLAS 1.11/CUBLAS 3.2.16

MPI from MVAPICH2 1.5.1
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Analysis of power consumption

2.3 Analysis of power consumption

Experiment #1.1

How to exploit core parallelism in clusters of multi-core processors?

1 1 MPI rank per node combined with a multi-threaded BLAS

2 1 MPI rank per core combined with a serial BLAS

3 For complex operations (e.g., Cholesky factorization), exploit task parallelism at

node level via a run-time. See

“Parallelizing dense matrix factorizations on clusters of multi-core
processors using SMPSs”
R. M. Badia, J. Labarta, V. Marjanovic, A. F. Martin, R. Mayo,
E. S. Quintana-Ort́ı, R. Reyes
Int. Conf. on Parallel Computing – ParCo 2011, Ghent (Belgium)
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Analysis of power consumption

Experiment #1.2

What is the impact of DVFS (via Linux governors)?

1 Performance (per). Static frequency at fmax

2 Ondemand (ond). Dynamic frequency with rapid increase, slow
decrease

3 Conservative (con). Dynamic frequency with slow increase, slow
decrease

4 Powersave (pwr). Static frequency at fmin
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Analysis of power consumption

Experiment #1.3

What is the impact of the MPI operation mode?

1 Blocking primitives

2 Polling primitives
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Analysis of power consumption

PDGEMM, 9 nodes, m = n = k=45,000

Performance of PDGEMM (GFLOPS)

P9 B9 P72 B72

per 517.1 518.3 524.9 451.6

ond 517.2 517.2 521.8 456.3

con 517.3 517.2 522.6 453.9

pwr 354.7 354.1 356.2 308.1

Power consumption of PDGEMM (KJoules)

P9 B9 P72 B72

per 160.5 149.7 161.7 175.7

ond 160.1 150.4 162.6 174.1

con 160.8 151.2 162.5 174.4

pwr 189.4 190.6 189.6 210.6
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Analysis of power consumption

PDGEMV, 9 nodes, m = n=45,000

Performance of PDGEMV (GFLOPS)

P9 B9 P72 B72

per 54.13 54.21 63.15 34.82

ond 54.05 54.14 63.41 34.64

con 54.09 54.17 63.27 34.86

pwr 53.21 53.29 62.13 34.48

Power consumption of PDGEMV (Joules)

P9 B9 P72 B72

per 25.86 25.27 26.05 40.77

ond 25.61 25.99 25.92 41.03

con 25.70 24.75 25.86 42.09

pwr 24.12 23.72 23.24 40.92
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Analysis of power consumption

PDPOTRF, 8 nodes, n=30,000

Performance of PDPOTRF (GFLOPS)

P8 B8 P64 B64

per 297.3 295.5 264.5 231.3

ond 296.4 293.9 264.6 230.2

con 296.9 292.4 261.5 211.3

pwr 221.4 218.5 208.1 171.2

Power consumption of PDPOTRF (KJoules)

P8 B8 P64 B64

per 11.30 11.67 12.79 14.86

ond 11.65 11.09 13.66 14.52

con 11.19 11.19 12.64 14.38

pwr 12.94 11.85 14.13 15.85
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Analysis of power consumption

Experiment #2

What is the impact of the use of hardware accelerators (1 per node)?

1 Only Cholesky factorization (PDPOTRF)

2 Off-load matrix-matrix products to GPU

3 Polling/blocking (busy/idle) detection of GPU kernel termination
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Analysis of power consumption

Performance of GPDGEMM (GFLOPS)

PB BB PI BI

per 1,055 1,050 1,054 1,049

ond 1,055 1,050 1,049 1,045

con 1,055 1,051 1,050 1,045

pwr 1,050 1,046 1,050 1,045

Power consumption GPDGEMM (KJoules)

PB BB PI BI

per 76.81 77.33 72.94 72.98

ond 76.95 76.62 71.93 71.56

con 77.14 77.07 71.63 72.27

pwr 72.52 73.06 71.15 71.45
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Conclusions

2.4 Conclusions

Linux governors

CPU-bounded PDGEMM: lower frequency implies higher
execution time/energy consumption
Memory-bounded PDGEMV: selecting the appropriate
governor can render savings with no impact on
performance
CPU-bounded with complex dependencies PDPOTRF:
delicate balance between power and performance

Communication mode

Polling mode is beneficial with one process per core
Savings of blocking mode lower than expected

Hybrid computing

Idle-wait of multi-core processors saves energy
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More information

“Evaluation of the energy performance of dense linear algebra kernels on
multi-core and many-core processors”
M. Castillo, J. C. Fernández, R. Mayo, E. S. Quintana-Ort́ı, V. Roca
7th Workshop on High-Performance, Power-Aware Computing – HPPAC 2011,
Anchorage (Alaska, USA), May 2011

“Strategies to save energy for message-passing dense linear algebra kernels”
M. Castillo, J. C. Fernández, R. Mayo, E. S. Quintana-Ort́ı, V. Roca
Tech. Report DICC, Universitat Jaume I, July 2011
20th Euromicro Int. Conf. on Parallel, Distributed and Network-based Processing
– PDP 2012, Garching (Germany). Submitted
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Part 3. Sparse linear algebra kernels in multi-core
and many-core processors
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Goal:

To analyze in detail energy consumption in the execution of sparse linear
system solvers (via iterative methods) on current platforms

Jointly with:

M. Castillo, J. C. Fernández, R. Mayo
Universitat Jaume I

H. Anzt, V. Heuveline
Karlsruhe Institute of Technology
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Outline of Part 3

1 Target application

2 Experimental setup

3 Analysis of power consumption

4 DVFS

5 Idle-wait

6 Conclusions
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Target application

3.1 Target application

Sparse linear systems

Solve
Ax = b,

with A sparse and large, arise in many apps. that involve PDEs
modeling physical, chemical or economical processes

Low-cost iterative Krylov-based solvers for large-scale systems: A
s.p.d. → Conjugate Gradient (CG), Preconditioned CG (PCG)

Power-aware execution of linear algebra libraries 58 CECAM–Lausanne, Sept. 2011



Target application

CG (Matlab)

1 f u n c t i o n [ x ] = cg (A, b , x , t o l ) % BLAS SBLAS Arch .
2 %−−−−−−−−−−−−−−−−−−−−−−
3 r=b−A∗x ; % spmv CPU/GPU
4 p=r ;
5 r s o l d=r ’∗ r ; % dot CPU
6

7 f o r i =1: s i z e (A, 1 )
8 Ap=A∗p ; % spmv CPU/GPU
9 a l p h a=r s o l d /( p ’∗Ap ) ; % dot CPU

10 x=x+a l p h a ∗p ; % axpy CPU
11 r=r−a l p h a ∗Ap ; % axpy CPU
12 rsnew=r ’∗ r ; % dot CPU
13 i f s q r t ( rsnew)< t o l
14 break ;
15 end
16 p=r+rsnew / r s o l d ∗p ; % axpy CPU
17 r s o l d=rsnew ;
18 end
19 end
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Experimental setup

3.2 Experimental setup

Hardware platform

AMD Opteron 6128 (8 cores)@2.0 GHz
with 24 GBytes of RAM

NVIDIA Tesla C1060 (240 cores).
Disconnected during CPU-only
experiments!

PCI-Express (16×)

Software implementation of CG, PCG

AMD: Intel MKL (11.1) for BLAS-1 and own implementation of
spmv

NVIDIA: CUBLAS (3.0) and implementation of spmv based on
Garland and Bell’s approach

gcc -O3 (4.4.3) and nvcc (3.2)
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Experimental setup

Measurement setup

ASIC with sampling frequency of 25 Hz

Power-aware execution of linear algebra libraries 61 CECAM–Lausanne, Sept. 2011



Experimental setup

Linear systems

Matrix name Size (n) Nonzeros (nnz)

A318 32,157,432 224,495,280
apache2 715,176 4,817,870
audikw 1 943,695 77,651,847
boneS10 914,898 40,878,708
ecology2 999,999 4,995,991
G3 circuit 1,585,478 7,660,826
ldoor 952,203 42,493,817
nd24k 72,000 28,715,634

Solvers Ax = b

Iterative: x0 → x1 → x2 → · · · → xn ≈ x

Stopping criterion: ε = 10−10‖r0‖2

Initial solution: x0 ≡ 0
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Analysis of power consumption

3.3 Analysis of power consumption

Experiment #1

Power consumption of CG and PCG on CPU (1T, 2T, 4T, 8T on 1,
2, 4, 8 cores) and hybrid CPU (4T)+GPU

G3 circuit (moderate dimension, complex sparsity pattern)
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Analysis of power consumption

CG method

Hardware # iter Time [s] Energy consumption [Wh]
Chipset GPU Total

CPU 4T 21,424 1,076.97 42.18 - 42.18
GPU 4T 21,467 198.43 8.04 3.44 11.48

Hybrid CPU-GPU code clearly outperforms CPU one in both
performance (5×) and energy (4×)

Energy gap mostly from reduction in execution time:

CPU 4 T GPU 4 T

42.18

1, 076.97
· 3, 600 = 140.0 W

11.48

198.43
· 3, 600 = 208.2 W
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Analysis of power consumption

PCG method (Jacobi preconditioner)

Hardware # iter Time [s] Energy consumption [Wh]
Chipset GPU Total

CPU 4T 4,613 348.79 13.31 - 13.31
GPU 4T 4,613 46.28 1.89 0.83 2.72

Important reduction in #iterations: 21,424 → 4,613

Time/iteration and energy/iteration not significantly increased
(preconditioning this matrix only requires diagonal scaling):

CG GPU 4 T PCG GPU 4 T
198.43

21, 467
= 0.0092 s/iter

46.28

4, 613
= 0.0100 s/iter

11.48

21, 467
= 5.34 · 10−4 Wh/iter

2.72

4, 613
= 5.89 · 10−4 Wh/iter
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DVFS

3.4 DVFS

Experiment #2

In general, for memory-bounded operations a decrease of the
processor operation frequency can yield energy savings

Memory-bounded or I/O-bounded?
Decreasing processor frequency impacts memory latency?

The sparse matrix-vector product is indeed memory-bounded: 2nnz
flops vs. nnz memops

AMD Opteron 6128: 800 MHz – 2.0 GHz

A318 (large size to match powermeter sampling rate)
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DVFS

CG method

Hardware Freq. Time Power/Energy consumption
Chipset GPU Total

[MHz] [s] [Avg. W] [Avg. W] [Wh]

CPU 4T 2,000 1441.78 123.99 - 49.66
CPU 4T 800 1674.62 108.11 - 50.29
GPU 4T 2,000 253.22 149.04 61.89 14.84
GPU 4T 800 254.25 138.50 61.45 14.12

For the CPU solver, lowering the processor frequency increases the
execution time, which blurs savings in power consumption

For the hybrid CPU-GPU solver, as the computationally intensive
parts are executed on the GPU, lowering the frequency yields some
energy savings... Why not larger?
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DVFS

GPU and CPU operate in asynchronous mode but... when the GPU
is executing a kernel, and the CPU encounters a call to a second
kernel, it enters into a polling loop

In the polling state, the power usage of the CPU is almost as high as
that of a fully-loaded processor!

Alternatives:

(i) Plain solver
(ii) Solver + DVFS during GPU execution
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DVFS

Power-friendly CPU modes
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DVFS

CG method: Energy consumption of chipset+GPU

matrix Energy consumption [Wh] improvement [ %]
(i) (ii) (i)→(ii)

A318 14.84 14.12 5.1
apache2 1.98 1.99 -0.5
audikw 1 no convergence -
boneS10 no convergence -
ecology2 2.30 2.27 -1.3
G3 circuit 11.48 11.11 3.3
ldoor no convergence -
n24k 26.43 25.42 3.97

A moderate gain, in some cases a loss...
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DVFS

PCG method: Energy consumption of chipset+GPU

matrix Energy consumption [Wh] improvement [ %]
(i) (ii) (i)→(ii)

A318 14.84 14.12 5.1
apache2 1.75 1.76 -0.6
audikw 1 47.98 38.15 5.2
boneS10 157.32 150.16 4.8
ecology2 2.51 2.45 2.4
G3 circuit 2.71 2.38 3.0
ldoor 43.22 41.18 5.0
n24k 34.62 32.97 5.0

Moderate but more consistent gain
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Idle-wait

3.5 Idle-wait

Experiment #3

Solution: set the CPU to “sleep” during the execution of the GPU
kernels: Execution time of GPU spmv can be measured and
accurately adjusted

Use of nanosleep() function from sys/time.h

Alternatives:

(i) Plain solver
(ii) Solver + DVFS during GPU execution
(iii) Solver + DVFS + idle-wait during GPU execution
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Idle-wait

Power-friendly CPU modes
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Idle-wait

CG method: Energy consumption of chipset+GPU

matrix energy consumption [Wh] improvement [ %]
(i) (ii) (iii) (i)→(ii) (i)→(iii)

A318 14.84 14.12 12.18 5.1 21.8
apache2 1.98 1.99 1.82 -0.5 8.8
audikw 1 no convergence - -
boneS10 no convergence - -
ecology2 2.30 2.27 2.09 -1.3 10.0
G3 circuit 11.48 11.11 10.10 3.3 13.7
ldoor no convergence - -
n24k 26.43 25.42 21.17 3.97 24.8
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Idle-wait

PCG method: Energy consumption of chipset+GPU

matrix energy consumption [Wh] improvement [ %]
(i) (ii) (iii) (i)→(ii) (i)→(iii)

A318 14.84 14.12 12.18 5.1 21.8
apache2 1.75 1.76 1.64 -0.6 6.7
audikw 1 47.98 45.61 38.15 5.2 25.8
boneS10 157.32 150.16 125.78 4.8 25.1
ecology2 2.51 2.45 2.29 2.4 9.6
G3 circuit 2.71 2.63 2.38 3.0 13.9
ldoor 43.22 41.18 34.79 5.0 24.2
n24k 34.62 32.97 27.64 5.0 25.3
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Conclusions

3.6 Conclusions

The concurrency of spmv enables the efficient usage of GPUs, that
render important savings in execution time and energy consumption

For memory-bounded operations, DVFS can potentially render
energy savings. . .
but the busy-wait of the host system during the kernel calls still
consumes about 80 % of full-demand power

The use of GPU-accelerated HPC-systems combined with
power-saving techniques leads to more reduced energy consumption
of all test problems without impacting the performance
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“Power consumption of mixed precision in the iterative solution of sparse linear
systems”
H. Anzt, M. Castillo, J. C. Fernández, V. Heuveline, R. Mayo, E. S. Quintana,
B. Rocker
7th Workshop on High-Performance, Power-Aware Computing – HPPAC 2011,
Anchorage (Alaska, USA), May 2011

“Analysis and optimization of power consumption in the iterative solution of
sparse linear systems on multi-core and many-core platforms”
J. I. Aliaga, H. Anzt, M. Castillo, J. C. Fernández, V. Heuveline, R. Mayo, E. S.
Quintana
Int. Workshop on Power Measurement and Profiling – PMP 2011, Orlando
(Miami, USA), July 2011

“Optimization of power consumption in the iterative solution of sparse linear
systems on graphics processors”
H. Anzt, V. Heuveline, M. Castillo, J. C. Fernández, R. Mayo, E. S. Quintana, F.
D. Igual
2nd Int. Conf. on Energy-Aware High Performance Computing – EnaHPC 2011,
Hamburg (Germany), Sept. 2011
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