EE-LSDS 2013
ENERGY EFFICIENCY IN LARGE SCALE DISTRIBUTED SYSTEMS
CONFERENCE

Runtime Scheduling of the LU factorization:
Performance and Energy

Pedro Alonso!, Manuel F. Dolz?, Francisco D. Igual3, Enrique S. Quintana-Orti2,
and Rafael Mayo?

rontcuicl JE YNLVERSITAT WOOROH R anss

DE VALENCIA 9 JAUME-1 3 IR MADRID

April 22-24, 2013, Vienna, Austria

Introduct

@ The power wall is a major hurdle that the scientific community will
need to tackle in order to build the Exascale systems.

@ In the last years, there exists a trend towards heterogeneous designs
that combines hardware accelerators (GPUs) or DSPs.

@ Programming a hybrid platform consisting of one to several multicore
processors and multiple GPUs is still a considerable challenge.

@ A number of runtime schedulers have been proposed in recent years to
address the increase of hardware concurrency and, in some cases, the
heterogeneity of recent architectures:

¢ OmpSs and StarPU (task-level parallelism).
e For DLA: SMPSs, StarPU, Quark, and SuperMatrix.

Pedro Al et al. Runtime Scheduling of the LU factorization: Performance

Introducti

SuperMatrix:

@ Specifically designed from its inception for the execution of DLA
operations.

@ Allows the execution of the full functionality of the 1ibflame DLA
library on a variety of parallel platforms:

o multicore desktop servers,
@ hybrid systems equipped with CPU-GPU, and
o small-scale clusters.

@ SuperMatrix runtime uses one CPU thread per GPU responsible of
scheduling ready tasks for execution in the attached accelerator. This
control thread runs in one CPU core, and no provision was made to
exploit additional CPU cores in case they outnumbered the GPUs.

Pedro Al et al. Runtime Scheduling of the LU factorization: Performance

Introduct

Contributions of this work:

@ In the new runtime scheduler we accommodate one thread per CPU
core in the system. Among these, there is one control thread per GPU,
but now there is also one worker thread for each one of the remaining
CPU cores. Therefore, in the new runtime scheduler we can leverage
any combination of hardware CPU-GPU concurrency in the platform
to increase performance.

@ We introduce priorities in the runtime to advance the computation of
tasks that lie on the critical path of the algorithm. As our experiments
will illustrate, the outcome is a significant reduction of idle time,
especially for hybrid CPU-GPU platforms, and faster execution.

@ We integrate two energy-aware techniques into SuperMatrix.

@ Finally, we analyze the practical impact of the performance
enhancements and energy-saving strategies using the LU factorization
with partial pivoting.

Pedro Alonso et al. Runtime Scheduling of the LU factorization: Performance

Outline

@ superMatrix Data-Flow Parallel Runtime for DLA
@ Principles of data-flow execution
@ Details on SuperMatrix

9 Environment setup

e Improving SuperMatrix performance
@ Performance analysis of the original SuperMatrix
@ Tuning the scheduler
@ Leveraging full hardware concurrency
@ Advancing critical tasks

@ Energy-Aware Extensions to SuperMatrix
@ Energy-aware runtime

© Conclusions

Pedro Alonso et al. Runtime Scheduling of the LU factorization: Performance

SuperMatrix Data-Flow Parallel Runtime for DLA

Principles of data-flow execution
Details on SuperMatrix

Algorithm: [A]:= LUBLK(A)
Arr | Arr)
AL | ABr
where Arp is0x 0
while n(Arp) < n(A) do
Determine block size b
Repartition

Partition A — (

A A A
Ars | Arn 00 01 02
YT T — Ao | A1r | A2
) Az | A21 | A2z

where A1 isbxb

% Factorize current panel

()] = v (52)

% Update trailing submatrix
A12 = TRSM(All, A12)
AQQ = GEMM(AQl, A12, AQQ)

Continue with

Ago | Ao1 | Aoz
(j:TL II:TR) — Ao | A1n | A1z
BL BR Azp | A21 | A2z

endwhile

Runtime Scheduling of the LU factorization: Performance

SuperMatrix Data-Flow Parallel Runtime for DLA

Principles of data-flow execution
Details on SuperMatrix

TDG for the LU factorization with partial pivoting of a matrix A consisting
of s x s =4 x 4 blocks. Red arrows identify the critical path of the

algorithm.

> Alonso et al. Runtime Scheduling of the LU factorization: Performance

SuperMatrix Data-Flow Parallel Runtime for DLA

Principles of data-flow execution
Details on SuperMatrix

@ Analysis stage:

¢ The dependence analysis is performed by a single thread.

¢ This thread inspects the code, inserting tasks as they are
encountered into a data structure: work queue.

o The root task is inserted directly into the ready queue.

@ The time for this stage is negligible.

@ The working process:

(2

A collection of worker threads poll the ready queue for new work.
A thread executes the corresponding computation.

This thread checks which dependencies have been fulfilled, moving
those tasks with all dependencies satisfied to the ready queue.
The overhead introduced by the operation of the runtime is also
negligible.

<

<

<

Pedro Alonso et al. Runtime Scheduling of the LU factorization: Performance

SuperMatrix Data-Flow Parallel Runtime for DLA

Principles of data-flow execution
Details on SuperMatrix

The original version of SuperMatrix employs one control thread per GPU.
These threads run on a (CPU) core of the host, and are in charge of

© monitoring and updating the dependence queues;

@ guiding the associated accelerator by carrying out the necessary data
transfers and dispatching tasks for execution there; and

@ executing computational work that is not suited to the GPU.
Software cache coherence:

@ SuperMatrix considers GPU memories as full-associative caches and
applies cache coherence policies (LRU, write-invalidate and
write-update) between the main memory and the GPU memory.

@ These techniques yield a significant reduction of the volume of
communications between CPUs and GPUs

@ This cache-memory coherence protocol in software has been proved to
be efficient enough compared with with compute-intensive tasks which
perform O(b®) arithmetic floating-point operations.

Pedro Alonso et al. Runtime Scheduling of the LU factorization: Performance

Environm

©

Hardware (TSL):
¢ A server equipped with two Intel Xeon E5440 processors (4 cores
per socket) at 2.83 GHz and 16 Gbytes of RAM, connected to
¢ 4 “Fermi” GPUs NVIDIA Tesla S2050.
Software

¢ Intel MKL 10.0.1 for BLAS and LAPACK libraries, and
o the SuperMatrix runtime in libflame release 5.0-r6719.

©

The codes for the LU factorization were those from 1libflame.

Energy measurement device: APC 8653 PDU (Power Distribution
Unit) which samples power at 1 Hz.

©

[

@ A daemon application ran on a separate tracing server, collecting
power samples from the PDU (pmlib).

Pedro Alor al. Runtime Scheduling of the LU factorization: Performance

Performance analysis of the original SuperMatrix
Tuning the scheduler

Leveraging full hardware concurrency
Advancing critical tasks

Improving SuperMatrix performance

The original SuperMatrix scheduler supported two different basic
configuration modes:

@ Multicore mode: One worker thread is bound to each CPU core,
executing tasks on it by invoking optimized (sequential)
BLAS/LAPACK kernels.

@ MultiGPU mode: The scheduler performs the execution of tasks on
platforms equipped with multiple hardware accelerators (GPUs).

© One control thread running on a CPU core is attached during the
complete parallel execution to each GPU.

© Tasks are executed on the GPU using a specific implementation of
BLAS for these devices, concretely, CUBLAS for NVIDIA GPUs.

@ The CPU threads are in charge of performing the necessary data
transfers between memory spaces prior to any task execution.

@ In case a task is not appropriate for the GPU, the computation
can be carried out in the associated CPU core.

Pedro Alonso et al. Runtime Scheduling of the LU factorization: Performance

Performance analysis of the original SuperMatrix
Tuning the scheduler

Leveraging full hardware concurrency
Advancing critical tasks

Improving SuperMatri

LU with partial pivoting on TSL

20 " 8lntel CPUs —&— |
4NVIDIA GPUs
150
9
9 100
L
0}
/9————/9-_9—___{
Lo
0
0 5000 10000 15000 20000 25000 30000
Matrix size

Performance of the LU factorization with partial pivoting on TSL, using 8
CPU cores (multicore mode) and 4 GPUs (multiGPU mode)

Runtime Scheduling of the LU factorization: Performance

Performance analysis of the original SuperMatrix
Tuning the scheduler

Leveraging full hardware concurrency
Advancing critical tasks

Improving SuperMatrix performance

In our extension of the SuperMatrix runtime for hybrid CPU-GPU
architectures, decisions taken at runtime can address performance, but also
energy efficiency:

@ The GFLOPS analysis in terms of the problem size determines an
optimal mode for each problem size — the runtime system could
modify, at execution time, the number of each type of computational
resources (CPU or GPU) that are devoted to the actual task
computations.

©Q For medium-size matrices the attained performance is similar for two
or more combinations (modes) of the number of CPUs/GPUs — the
question thus becomes which mode is more efficient from the point of
view of energy consumption.

> Alonso et al. Runtime Scheduling of the LU factorization: Performance

Performance analysis of the original SuperMatrix
Tuning the scheduler

Leveraging full hardware concurrency
Advancing critical tasks

Improving SuperMatrix performance

In the original SuperMatrix implementation, in the multiGPU mode

@ a few types of tasks could be executed on the CPU cores — the
corresponding GPUs remained stalled, waiting for the completion of
the task.

@ furthermore, only a number of cores = number of GPUs perform
actual computational work.

An improvement to this original execution model
@ considers the GPUs and all the CPU cores as potential workers.

@ In this case, each task type is bound to two different kernel instances,
one for the GPU and one for the CPU.

@ Depending on the type of thread a task is mapped to, the
corresponding kernel instance is invoked.

@ Data transfers are handled transparently by the runtime, depending on
the type of worker thread and the location of the necessary data when
the task is dispatched for execution.

Pedro Alonso et al. Runtime Scheduling of the LU factorization: Performance

Performance analysis of the original SuperMatrix
Tuning the scheduler

Leveraging full hardware concurrency
Advancing critical tasks

Improving SuperMatrix performance

LU with

LU with partial pivoting on TSL (Small matrices)

4 '8 CPUs - 0 GPUs —&—
7CPUs-1GPUs —o—
35 6CPUs-2GPUs —»—
5CPUs- 3GPUs —=—
i AHAGs T !
S- S
. W
[
§ 20 a/ /B/ ?// 4
L
5 //
15 ,a/
10

=
i

/E’
/

Z

0 | |

400 600 800 1000 1200 1400 1600 1800 2000
Matrix size

Runtime Scheduling of the LU factorization: Performance

Performance analysis of the original SuperMatrix
Tuning the scheduler

Leveraging full hardware concurrency
Advancing critical tasks

Improving SuperMatrix performance

LU with

LU with partial pivoting on TSL (Medium-size matrices)

100 8CPUs- 0GPUs —&—
7CPUs-1GPUs —o—
6 CPUs- 2 GPUs —*— X
80 - 5CPUs-3GPUs —=— X
4 CPUs-4GPUs —*— - —
0CPUs- 4 GPUs //ﬁ/
e &0 - = a—
9 / P
g =
40
20

3000 4000 5000 6000 7000 8000 9000 10000
Matrix size

Runtime Scheduling of the LU factorization: Performance

Performance analysis of the original SuperMatrix
Tuning the scheduler

Leveraging full hardware concurrency
Advancing critical tasks

Improving SuperMatrix performance

LU with

LU with partial pivoting on TSL (Large matrices)

20 8 CPUs- 0 GPUs —&—

7CPUs-1GPUs —o—
6 CPUs- 2 GPUs —*—
5CPUs-3GPUs —=—
4 CPUs- 4 GPUs —=—

150 ™ gCpUs- 4 GPUS %2

g.) /le’/‘,/’e/’(
S 100
L
© /Z
50
0
15000 20000 25000 30000

Matrix size

Runtime Scheduling of the LU factorization: Performance

Performance analysis of the original SuperMatrix
Tuning the scheduler

Leveraging full hardware concurrency
Advancing critical tasks

Improving SuperMatrix performance

oW

miveact o| NN AR M IR AN 1 /N
Thread 1 W O A I [M W
Thread 2 1111 AN I 1T L] i Ll |
Thread 3 T LI A O I] mn m |

[ECT

1 243
oy

oveac o NN L[L1 DI (1D W W W
Thread 1 L TN 1 my mEim n o
Thread 2 1] D I {1 1M]] (] | [
Thread 3 (D Hinmm LU0 T i |

B Gemm PRI [GeMM B CPUSGRU 1 ot
B TRSM PRIO . TRSM 3 cpu-=cru

Traces of the execution of the LU factorization with partial pivoting of a matrix of
dimension n=10,240, with b=1,024 using 4 GPUs of TSL, without priority tasks (top)
and with priority tasks (bottom). Selected execution points: 1: End of LU(0); 2: End
of UPDATE(O, 1); 3: End of UPDATE(O, s); 4: Start of LU(1).

Pedro Alonso et al. Runtime Scheduling of the LU factorization: Performance

Performance analysis of the original SuperMatrix
Tuning the scheduler

Leveraging full hardware concurrency
Advancing critical tasks

Improving SuperMatrix performance

Tasks in the critical path receive a special treatment in the enhanced
version of the SuperMatrix scheduler. Specifically,

@ critical (or priority) tasks are executed as soon as possible to avoid
unnecessary stalls; and

© they are mapped to the fastest computational resource (CPU or GPU)
available.

The scheduler has been modified to introduce an additional priority queue:

@ Ready tasks are removed from the work queue. If the task is critical, it
is inserted in the thread’s priority queue; otherwise, it is moved to a
non-priority queue shared by all threads.

© When a worker thread is idle, it polls the queues for ready tasks.

@ multiGPU mode: For threads binded to a GPU, they first check their
priority queues; if no priority task is available, the shared non-priority
queue is polled for a new task. If no GPU is attached, only the non-priority
queue is polled.

@ multicore mode: The priority queue is always checked before the
non-priority one.

> Alonso et al. Runtime Scheduling of the LU factorization: Performance

Performance analysis of the original SuperMatrix
Tuning the scheduler

Leveraging full hardware concurrency
Advancing critical tasks

Improving SuperMatrix performance

oW

miveact o| NN AR M IR AN 1 /N
Thread 1 W O A I [M W
Thread 2 1111 AN I 1T L] i Ll |
Thread 3 T LI A O I] mn m |

[ECT

1 243
oy

oveac o NN L[L1 DI (1D W W W
Thread 1 L TN 1 my mEim n o
Thread 2 1] D I {1 1M]] (] | [
Thread 3 (D Hinmm LU0 T i |

B Gemm PRI [GeMM B CPUSGRU 1 ot
B TRSM PRIO . TRSM 3 cpu-=cru

Traces of the execution of the LU factorization with partial pivoting of a matrix of
dimension n=10,240, with b=1,024 using 4 GPUs of TSL, without priority tasks (top)
and with priority tasks (bottom). Selected execution points: 1: End of LU(0); 2: End
of UPDATE(O, 1); 3: End of UPDATE(O, s); 4: Start of LU(1).

Pedro Alonso et al. Runtime Scheduling of the LU factorization: Performance

Performance analysis of the original SuperMatrix
Tuning the scheduler

Leveraging full hardware concurrency
Advancing critical tasks

Improving SuperMatrix performan

LU with partial pivoting on TSL

250 "8 CPUs - Without prior‘ity —a—]
8 CPUs - With priority —e—
4 GPUs - Without priority
4 GPUs - With priority
200 .
¢ 150
(o]
Pl
[
[U]
100
Q/e/reﬁ%?/—a————a’—_fg—_
50 jﬂa,er”a 8
0
0 5000 10000 15000 20000 25000 30000
Matrix size

Impact of the use of priority tasks on the performance of the LU factorization on TSL,
using 8 CPU cores (multicore mode) and 4 GPUs (multiGPU mode).

Runtime Scheduling of the LU factorization: Performance

Energy-aware runtime

Following the former trace:

@ Tasks of type LU are executed by the CPU cores, while the remaining
two types of tasks are run on the GPUs.

@ Idle time corresponds to periods when both the CPU cores and the
GPUs perform no useful work (due to dependencies). These periods
occupy a significant fraction of the execution.

@ Additionally, note that when a GPU is working, the corresponding
CPU core remains inoperative, waiting for the completion of the job.

@ The question is how to leverage these inactive periods to reduce energy
consumption.

Options to leverage idle time to save energy:

@ DVFS (Dynamic Voltage and Frequency Scaling): our early
experiments revealed that the gains attained by reducing the CPU
frequency during the execution of compute-intensive DLA operations
are small.

@ Use “blocking” instead “polling”.

Pedro Alonso et al. Runtime Scheduling of the LU factorization: Performance

Energy-aware runtime

Aware Extensions to SuperMatrix

Power for different thread activities

T T T T T
|) Intel MKL dgemm, 4 cores i
460 Polling, 4 cores
440 |) Blocking, 4 cores i
Intel MKL dgemm, 1 core
40 |) Polling, 1 core i
. Blocking, 1 core =:=:=--
é 400 Foo— =
<
£ 30t :
o)
g 360 .
~
340 .
320 F : .
O N
280 | --------- e I- | T
0 10 20 30 40 50 60
Time (s)

Power consumption of different actions performed by threads.

Pedro Alonsc 5 Runtime Scheduling of the LU factorization: Performance

Energy-aware runtime
Energy-Aware Extensions to SuperMatrix

Techniques

@ Avoid polling when there are no ready tasks (EA1): we introduced
POSIX semaphores into the runtime to control the activity of “idle”
threads.

¢ A CPU thread that polls the ready queue for a new task finds it
empty blocks itself (sem_wait()).

¢ An active CPU thread that completed its work and updated the
dependencies, and in case this implies moving tasks from the
work queue to the ready queue, this thread will wake up waiting
threads (sem post()).

@ Avoid polling when waiting for the GPU (EA2): A CPU core
continuously dispatches tasks to its binded GPU. If the GPU is busy
running a task, the thread enters a busy-wait until completion of the
previous task.

¢ By means of setting the parameter cudaDeviceBlockingSync
invoking routine cudaSetDeviceFlags the CPU thread blocks the
CPU thread on a synchronization primitive.

o After activation, all synchronizations carried out using
cudaThreadSynchronize will suspend the thread execution.

Pedro Al et al. Runtime Scheduling of the LU factorization: Performance

Energy-aware runtime

ions to SuperMatrix

=
. g s . T
SuperMatrix = SuperMatrix with EAL -
50000 | Supel Matrix with EAT -3« £ SuperMatrix with EA2 -
S SuperMatrix with EA2 2 LI F SuperMatrix with EAI+EA2 — 21— 1
N SuperMatrix with EAI+EA2 H
& 40000 S 105
£ S L
=)
g 5
Z 30000 5 1
8 =
= E 095
220000 = -
2 I
5 g 09
10000 &
: : S 085 : :
16384 20480 24576 30720 °© 16384 20480 24576 30720
Matrix size Matrix size
40000 : : 5 115) .
SuperMatrix = SuperMatrix with EAl -
~ 35000 F SuperMatrix with EAL ---s-- £ SuperMatrix with EA2
s 7 SuperMatrix with EA2 2 LI F SuperMatrix with EAI+EA2 1
g 30000 - SuperMatrix with EAI+EA2 S
£ S 105
=)
£ 25000 5
g g | -
z 5
g 20000 3
B S 095
j:f 15000 5
E 10000 s é 09
5000 : : s 085 : :
16384 20480 24576 30720 16384 20480 24576 30720
Matrix size Matrix size

Impact on energy of the energy-aware techniques of the LU factorization with partial

pivoting without and with priority tasks (top and bottom, respectively).

Runtime Scheduling of the LU factorization: Performance

Energy-aware runtime

ions to SuperMatrix

115 115
SuperMatrix with EAL SuperMatrix with EAL
L SuperMatrix with EA2 i L SuperMatrix with EA2 - i
L1 SuperMatrix with EAT+EA2 L1 SuperMatrix with EAT+EA2
o o
£ 105 £ 105
g g "
£ £
095 095
® ®
0.9 09
0.85 : . 0.85 :
16384 20480 24576 30720 16384 20480 24576 30720
Matrix size Matrix size

Impact on execution time of the energy-aware techniques of the LU factorization with

partial pivoting without and with priority tasks (left and right, respectively).

Runtime Scheduling of the LU factorization: Performance

Conclusio

In this paper we have introduced significant enhancements in the
SuperMatrix runtime scheduler: the quest for high performance and the
reduction of energy utilization.

@ Performance:

o Better exploitation of the hardware resources available in current
CPU/GPU platforms.

¢ Introduction and management of priority tasks to reduce in idle
(20% of speedup).

@ Energy: We have illustrated two different techniques that leverage idle
times. This approach yields fair power savings for a minimal impact
on the execution time.

These techniques are integrated into the runtime scheduler, and are
transparent from the point of view of the developer.

Pedro Alonso et al. Runtime Scheduling of the LU factorization: Performance

Thanks for your attention!

Questions?

Pedro Alo et al. Runtime Scheduling of the LU factorization: Performance

	SuperMatrix Data-Flow Parallel Runtime for DLA
	Principles of data-flow execution
	Details on SuperMatrix

	Environment setup
	Improving SuperMatrix performance
	Performance analysis of the original SuperMatrix
	Tuning the scheduler
	Leveraging full hardware concurrency
	Advancing critical tasks

	Energy-Aware Extensions to SuperMatrix
	Energy-aware runtime

	Conclusions

