
Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Use of GPUs in Dense Linear Algebra

Enrique S. Quintana-Ort́ı

Universitat Jaume I
Spain

April, 2008

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Joint work with:

Sergio Barrachina Ernie Chan
Maribel Castillo Robert van de Geijn
Francisco D. Igual Field G. Van Zee
Rafael Mayo
Gregorio Quintana-Ort́ı
Rafael Rubio

Universidad Jaime I (Spain) The University of Texas at Austin

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Motivation

The power and versatility of modern GPU have transformed them
into the first widely extended HPC platform

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Outline

1 Introduction

2 Evaluation and Tuning of Level 3 (CU)BLAS

3 Design and Implementation of LAPACK: linear systems

4 Multiple GPUs

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Introduction

Graphics processors (GPUs) have emerged as an interesting
hardware accelerator for “general-purpose” computations
(GPGPU):

1 High performance
2 Low cost

→
Applied to physical simulations, real-time image processing,
linear algebra, signal processing,. . .

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

CUDA hardware

A CUDA-enabled device is seen as a coprocessor to the CPU,
capable of executing a very high number of threads in parallel

Example: nVIDIA G80 can be seen as a set of SIMD
Multiprocessors with On-Chip Shared Memory

Up to 128 Streaming

Processors (SP), grouped in
clusters

SP are SIMD processors

Small and fast Shared Memory
shared per SP cluster

Local 32-bit registers per
processor

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

CUDA software

The CUDA API provides a simple path for writing C programs
for execution on the GPU consisting of

A minimal set of extensions to the C language
A runtime library of routines for controlling the transfers
between video and main memory, execution configuration, the
execution of device-specific functions, handling multiple GPUs
from the host,. . .

CUDA libraries

On top of CUDA, nVIDIA provides two optimized libraries:
CUFFT and CUBLAS

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

CUBLAS. Example

i n t main (vo i d){
. . .
f l o a t∗ h ve c to r , ∗ d v e c t o r ;

h v e c t o r = (f l o a t ∗) ma l l oc (M∗ s i z e o f (f l o a t)) ;

. . . // I n i t i a l i z e v e c t o r o f M f l o a t s
c u b l a sA l l o c (M, s i z e o f (f l o a t) ,

(vo i d∗∗) &d v e c t o r) ;

c ub l a s S e tVe c t o r (M, s i z e o f (f l o a t) , h ve c to r ,
d ve c to r , 1) ;

c ub l a s S s c a l (M, ALPHA, d ve c to r , 1) ;
c ub l a sGe tVe c to r (M, s i z e o f (f l o a t) , d ve c to r ,

h ve c to r , 1) ;

c ub l a sF r e e (d v e c t o r) ;
. . .

}

A typical CUDA (and
CUBLAS) program has 3
phases:

1 Allocation and transfer of
data to GPU

2 Execution of the kernel
(or BLAS routine)

3 Transfer of the results
back to main memory

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Experimental setup

The nVIDIA 8800 Ultra is a CUDA architecture
CPU GPU

Processor Intel Core 2 Duo nvidia 8800 Ultra
Codename Crusoe E6320 G80
Clock frequency 1.86 GHz 575 MHz
Memory speed 2 × 333 MHz 2 × 900 MHz
Bus width 64 bits 384 bits
Max. bandwidth 5.3 GB/s 86.4 GB/s
Memory 1024 MB DDR2 768 MB GDDR3
Bus PCI Express x16 (4 GB/s)

Use of MKL on the CPU, and CUDA and CUBLAS 1.0 on the GPU

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Evaluation and tuning of Level 3 (CU)BLAS

GEMM

C := β · C + α · op(A) · op(B)

SYRK

C := β · C + α · A · AT
or

C := β · C + α · AT · A

where op(X) = X or XT

Others

Similar results observed for TRSM, and are to be expected for
TRMM and SYMM

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

GEMM evaluation. Experimental results

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension (m=n=k)

SGEMM

A*B

AT*B

A*BT

AT*BT

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

GEMM evaluation. Main remarks

Main remarks

Peak performance is ∼116 Gflops for GEMM

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

GEMM evaluation. Main remarks

Main remarks

Peak performance is ∼116 Gflops for GEMM

Results attained for big matrices are much better than those
for small-medium sized matrices

⇓
Stream-oriented architecture

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

GEMM evaluation. Main remarks

Main remarks

Peak performance is ∼116 Gflops for GEMM

Results attained for big matrices are much better than those
for small-medium sized matrices

⇓
Stream-oriented architecture

The peak observed for m = 4000 is also observed for all
dimensions multiple of 32

Proposal: apply padding!

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

GEMM padding. Experimental results

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000

G
F

LO
P

S

Matrix dimension (m=n=k)

SGEMM

W/out padding
With padding

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

SYRK evaluation. Experimental results

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension (m=k)

SYRK - Detailed performance evaluation

A^T*A - Upper
A*A^T - Upper
A^T*A - Lower
A*A^T - Lower

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

SYRK evaluation. Main remarks

Main remarks

Peak performance is ∼40 Gflops for SYRK ⇒ Suboptimal
implementation

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

SYRK evaluation. Main remarks

Main remarks

Peak performance is ∼40 Gflops for SYRK ⇒ Suboptimal
implementation

As for GEMM, results attained for big matrices are better

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

SYRK evaluation. Main remarks

Main remarks

Peak performance is ∼40 Gflops for SYRK ⇒ Suboptimal
implementation

As for GEMM, results attained for big matrices are better

Proposal: build SYRK on top of GEMM and use padding

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

SYRK tuning

Partition the SYRK operands:

+:= *

C

C 00

10C 11C

2120 22CC 22C

 00C

10C

20C 21C

11C

0A

1A

2A

T
0A 1AT

2AT

The second block of columns of C is given by:

C11 := β · C11 + α · A1 · AT
1

C21 := β · C21 + α · A2 · AT
1

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

SYRK tuning. Experimental results

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension (m=k)

SSYRK

CUBLAS
Blocked w/out padding
Blocked with padding

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Partitioning for larger matrices

Transfer times GPU!CPU are an important bottleneck

Our blocked version of GEMM allows to overlap:

The partial multiplication Ap and Bp and
The transference of the next pair of blocks Ap+1 and Bp+1,
being Ap and Bp blocks of columns of A and B, respectively.

Nor CUDA 1.0 neither G80 allow overlapping of
communication and calculation (supported by more recent
systems!)

An orthogonal benefit: enables computation with larger
matrices

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Hybrid computation

While GPU is performing a calculation, CPU can also be
executing part of the computation.

We implement a hybrid GEMM implementation following the
decomposition:

CPU GPU CPU

A

M

N’ N’’

+= *

C1

GPU

C2 B1 B2

Values for N ′ and N ′′ must be selected carefully to balance
the computation load.

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Hybrid computation. Experimental results

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension (m=n=k)

SGEMM

Hybrid SGEMM with padding
CUBLAS with padding

CUBLAS w/out padding

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Design and implementation of LAPACK: linear systems

Cholesky factorization

A = LLT (or A = UTU)

with L lower triangular (or U upper triangular)

Others

Similar results obtained for the LU factorization with partial
pivoting, and are to be expected for the QR factorization (linear
least-squares problems)

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Cholesky factorization. Blocked variants

Algorithm: A := Chol blk(A)

Partition . . .

where . . .

while m(ATL) < m(A) do

Determine block size b

Repartition
„

ATL ATR

ABL ABR

«

→

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

where A11 is b × b

Variant 1:
A11 := Chol unb(A11)

A21 := A21tril (A11)
−T

A22 := A22 − A21A
T

21

Variant 2:

A10 := A10tril (A00)
−T

A11 := A11 − A10A
T

10

A11 := Chol unb(A11)

Variant 3:
A11 := A11 − A10A

T

10
A11 := Chol unb(A11)
A21 := A21 − A20A

T

10

A21 := A21tril (A11)
−T

Continue with

. . .

endwhile

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Cholesky factorization. Experimental results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension

Cholesky factorization. Blocked variants

CPU Variant 1
CPU Variant 2
CPU Variant 3
GPU Variant 1
GPU Variant 2
GPU Variant 3

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Cholesky padding. Experimental results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension

Cholesky factorization. Blocked variants with padding

GPU Variant 1 + padding
GPU Variant 2 + padding
GPU Variant 3 + padding
GPU Variant 1
GPU Variant 2
GPU Variant 3

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Cholesky hybrid and recursive. Experimental results

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

G
F

LO
P

S

Matrix dimension

Cholesky factorization. Recursive and hybrid variants

GPU Variant 1
GPU Variant 1. Hybrid
GPU Variant 1. Recursive+Hybrid

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Iterative refinement for extended precision

Compute the Cholesky factorization A = LLT and solve
(LLT)x = b in the GPU

→ 32 bits of accuracy!

i ← 1
repeat

r (i) ← b − A · x(i)

r
(i)
(32) ← r (i)

z
(i)
(32) ← L−T

(32)(L
−1
(32)r

(i)
(32))

z (i) ← z
(i)
(32)

x(i+1) ← x(i) + z (i)

i ← i + 1

until ‖r (i)‖ <
√

ε‖x(i)‖
Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Iterative refinement. Experimental results

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000 4000 5000

T
im

e
(s

)

Problem size

Solution of a linear system - Cholesky

LAPACK - Double precision
Variant 1 - Mixed precision
Variant 1 - Single precision

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

What if multiple GPUs are available?

Already here:

Multiple ClearSpeed boards

Multiple NVIDIA cards

nVIDIA Tesla series

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

What if multiple GPUs are available?

Already here:

Multiple ClearSpeed boards

Multiple NVIDIA cards

nVIDIA Tesla series

How are we going to program these?

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Experimental setup

CPU GPU

Processor 16 x Intel Itanium2 nvidia Tesla s870 (4 G80)
Clock frequency 1.5 GHz 575 MHz

Use of MKL on the Itanium vs. CUDA and CUBLAS 1.1 on the
Tesla

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

SuperMatrix for multithreaded architectures

Traditional (and pipelined) parallelizations are limited by the
control dependencies dictated by the code

The parallelism should be limited only by the data
dependencies between operations!

In dense linear algebra, imitate a superscalar processor:
dynamic detection of data dependencies

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

SuperMatrix for multithreaded architectures

int FLA_Chol_blk(FLA_Obj A)

{

/* ... FLA_Part_2x2(); ... */

while (FLA_Obj_width(ATL) < FLA_Obj_width(A)){

/* FLA_Repart_2x2_to_3x3(); ... */

/*---*/

FLA_Chol(A11); /* Chol(A11) */

FLA_Trsm_rltn(FLA_ONE, A11,

A21); /* A21 := A21 * TRIL(A11)^-T */

FLA_Syrk_ln(FLA_MINUS_ONE, A21,

FLA_ONE, A22); /* A22 := A22 - A21 * A21^T */

/*---*/

/* FLA_Cont_with_3x3_to_2x2(); ... */

}

}

The FLAME runtime system “pre-executes” the code:

Whenever a routine is encountered, a pending task is
annotated in a global task queue

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

SuperMatrix for multithreaded architectures





Ā00 Ā01 Ā02

Ā10 Ā11 Ā12

Ā20 Ā21 Ā22





Runtime
→

1 Ā00 := Chol
`

Ā00

´

2 Ā10 := Ā10tril
`

Ā00

´−T

3 Ā20 := Ā20tril
`

Ā00

´−T

4 Ā11 := Ā11 − Ā10Ā01

5 . . .

SuperMatrix

Once all tasks are annotated, the real execution begins!

Tasks with all input operands available are runnable; other
tasks must wait in the global queue

Upon termination of a task, the corresponding thread updates
the list of pending tasks

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

SuperMatrix for multithreaded architectures

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

Cholesky factorization on 16 Intel Itanium 2@1.5GHz

AB
MKL
LAPACK

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Porting SuperMatrix to multiple GPUs

Run-time system (scheduling), storage, and code are
independent

No significative modification to the FLAME codes: Interfacing
to CUBLAS

A software effort of two hours!

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Porting SuperMatrix. Experimental results

 0

 20

 40

 60

 80

 100

 120

 140

 0 2048 4096 6144

G
F

LO
P

S

Matrix size

Cholesky factorization on 4 GPU of NVIDIA S870

AB + no 2d
AB + 2d

AB + 2d + block cache
AB + 2d + block cache + page-locked

Use of GPUs in Dense Linear Algebra

Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Hope you enjoyed

Thanks!

Use of GPUs in Dense Linear Algebra

	Introduction
	Evaluation and Tuning of Level 3 (CU)BLAS
	Design and Implementation of LAPACK: linear systems
	Multiple GPUs

