
Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Use of GPUs in Dense Linear Algebra

Enrique S. Quintana-Ort́ı

Universitat Jaume I
Spain

April, 2008

Use of GPUs in Dense Linear Algebra



Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Joint work with:

Sergio Barrachina Ernie Chan
Maribel Castillo Robert van de Geijn
Francisco D. Igual Field G. Van Zee
Rafael Mayo
Gregorio Quintana-Ort́ı
Rafael Rubio

Universidad Jaime I (Spain) The University of Texas at Austin

Use of GPUs in Dense Linear Algebra



Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Motivation

The power and versatility of modern GPU have transformed them
into the first widely extended HPC platform
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Introduction

Graphics processors (GPUs) have emerged as an interesting
hardware accelerator for “general-purpose” computations
(GPGPU):

1 High performance
2 Low cost

→
Applied to physical simulations, real-time image processing,
linear algebra, signal processing,. . .
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CUDA hardware

A CUDA-enabled device is seen as a coprocessor to the CPU,
capable of executing a very high number of threads in parallel

Example: nVIDIA G80 can be seen as a set of SIMD
Multiprocessors with On-Chip Shared Memory

Up to 128 Streaming

Processors (SP), grouped in
clusters

SP are SIMD processors

Small and fast Shared Memory
shared per SP cluster

Local 32-bit registers per
processor
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CUDA software

The CUDA API provides a simple path for writing C programs
for execution on the GPU consisting of

A minimal set of extensions to the C language
A runtime library of routines for controlling the transfers
between video and main memory, execution configuration, the
execution of device-specific functions, handling multiple GPUs
from the host,. . .

CUDA libraries

On top of CUDA, nVIDIA provides two optimized libraries:
CUFFT and CUBLAS
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CUBLAS. Example

i n t main ( vo i d ){
. . .
f l o a t∗ h ve c to r , ∗ d v e c t o r ;

h v e c t o r = ( f l o a t ∗) ma l l oc (M∗ s i z e o f ( f l o a t ) ) ;

. . . // I n i t i a l i z e v e c t o r o f M f l o a t s
c u b l a sA l l o c (M, s i z e o f ( f l o a t ) ,

( vo i d∗∗) &d v e c t o r ) ;

c ub l a s S e tVe c t o r (M, s i z e o f ( f l o a t ) , h ve c to r ,
d ve c to r , 1 ) ;

c ub l a s S s c a l (M, ALPHA, d ve c to r , 1 ) ;
c ub l a sGe tVe c to r (M, s i z e o f ( f l o a t ) , d ve c to r ,

h ve c to r , 1 ) ;

c ub l a sF r e e ( d v e c t o r ) ;
. . .

}

A typical CUDA (and
CUBLAS) program has 3
phases:

1 Allocation and transfer of
data to GPU

2 Execution of the kernel
(or BLAS routine)

3 Transfer of the results
back to main memory
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Experimental setup

The nVIDIA 8800 Ultra is a CUDA architecture
CPU GPU

Processor Intel Core 2 Duo nvidia 8800 Ultra
Codename Crusoe E6320 G80
Clock frequency 1.86 GHz 575 MHz
Memory speed 2 × 333 MHz 2 × 900 MHz
Bus width 64 bits 384 bits
Max. bandwidth 5.3 GB/s 86.4 GB/s
Memory 1024 MB DDR2 768 MB GDDR3
Bus PCI Express x16 (4 GB/s)

Use of MKL on the CPU, and CUDA and CUBLAS 1.0 on the GPU
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Evaluation and tuning of Level 3 (CU)BLAS

GEMM

C := β · C + α · op(A) · op(B)

SYRK

C := β · C + α · A · AT
or

C := β · C + α · AT · A

where op(X ) = X or XT

Others

Similar results observed for TRSM, and are to be expected for
TRMM and SYMM
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GEMM evaluation. Experimental results
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GEMM evaluation. Main remarks

Main remarks

Peak performance is ∼116 Gflops for GEMM
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GEMM evaluation. Main remarks

Main remarks

Peak performance is ∼116 Gflops for GEMM

Results attained for big matrices are much better than those
for small-medium sized matrices

⇓
Stream-oriented architecture
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GEMM evaluation. Main remarks

Main remarks

Peak performance is ∼116 Gflops for GEMM

Results attained for big matrices are much better than those
for small-medium sized matrices

⇓
Stream-oriented architecture

The peak observed for m = 4000 is also observed for all
dimensions multiple of 32

Proposal: apply padding!
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GEMM padding. Experimental results
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SYRK evaluation. Experimental results
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SYRK evaluation. Main remarks

Main remarks

Peak performance is ∼40 Gflops for SYRK ⇒ Suboptimal
implementation

Use of GPUs in Dense Linear Algebra



Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

SYRK evaluation. Main remarks

Main remarks

Peak performance is ∼40 Gflops for SYRK ⇒ Suboptimal
implementation

As for GEMM, results attained for big matrices are better
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SYRK evaluation. Main remarks

Main remarks

Peak performance is ∼40 Gflops for SYRK ⇒ Suboptimal
implementation

As for GEMM, results attained for big matrices are better

Proposal: build SYRK on top of GEMM and use padding
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SYRK tuning

Partition the SYRK operands:

+:= *

C

C 00

10C 11C

2120 22CC 22C

 00C

10C

20C 21C

11C

0A

1A

2A

T
0A 1AT

2AT

The second block of columns of C is given by:

C11 := β · C11 + α · A1 · AT
1

C21 := β · C21 + α · A2 · AT
1

Use of GPUs in Dense Linear Algebra
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SYRK tuning. Experimental results
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Partitioning for larger matrices

Transfer times GPU!CPU are an important bottleneck

Our blocked version of GEMM allows to overlap:

The partial multiplication Ap and Bp and
The transference of the next pair of blocks Ap+1 and Bp+1,
being Ap and Bp blocks of columns of A and B, respectively.

Nor CUDA 1.0 neither G80 allow overlapping of
communication and calculation (supported by more recent
systems!)

An orthogonal benefit: enables computation with larger
matrices

Use of GPUs in Dense Linear Algebra
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Hybrid computation

While GPU is performing a calculation, CPU can also be
executing part of the computation.

We implement a hybrid GEMM implementation following the
decomposition:

CPU GPU CPU

A

M

N’ N’’

+= *

C1

GPU

C2 B1 B2

Values for N ′ and N ′′ must be selected carefully to balance
the computation load.

Use of GPUs in Dense Linear Algebra
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Hybrid computation. Experimental results
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Design and implementation of LAPACK: linear systems

Cholesky factorization

A = LLT (or A = UTU)

with L lower triangular (or U upper triangular)

Others

Similar results obtained for the LU factorization with partial
pivoting, and are to be expected for the QR factorization (linear
least-squares problems)

Use of GPUs in Dense Linear Algebra
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Cholesky factorization. Blocked variants

Algorithm: A := Chol blk(A)

Partition . . .

where . . .

while m(ATL) < m(A) do

Determine block size b

Repartition
„

ATL ATR

ABL ABR

«

→

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

where A11 is b × b

Variant 1:
A11 := Chol unb(A11)

A21 := A21tril (A11)
−T

A22 := A22 − A21A
T

21

Variant 2:

A10 := A10tril (A00)
−T

A11 := A11 − A10A
T

10

A11 := Chol unb(A11)

Variant 3:
A11 := A11 − A10A

T

10
A11 := Chol unb(A11)
A21 := A21 − A20A

T

10

A21 := A21tril (A11)
−T

Continue with

. . .

endwhile

Use of GPUs in Dense Linear Algebra
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Cholesky factorization. Experimental results
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Cholesky padding. Experimental results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  1000  2000  3000  4000  5000

G
F

LO
P

S

Matrix dimension

Cholesky factorization. Blocked variants with padding

GPU Variant 1 + padding
GPU Variant 2 + padding
GPU Variant 3 + padding
GPU Variant 1
GPU Variant 2
GPU Variant 3

Use of GPUs in Dense Linear Algebra



Introduction
Evaluation and Tuning of Level 3 (CU)BLAS

Design and Implementation of LAPACK: linear systems
Multiple GPUs

Cholesky hybrid and recursive. Experimental results
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Iterative refinement for extended precision

Compute the Cholesky factorization A = LLT and solve
(LLT )x = b in the GPU

→ 32 bits of accuracy!

i ← 1
repeat

r (i) ← b − A · x(i)

r
(i)
(32) ← r (i)

z
(i)
(32) ← L−T

(32)(L
−1
(32)r

(i)
(32))

z (i) ← z
(i)
(32)

x(i+1) ← x(i) + z (i)

i ← i + 1

until ‖r (i)‖ <
√

ε‖x(i)‖
Use of GPUs in Dense Linear Algebra
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Iterative refinement. Experimental results
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What if multiple GPUs are available?

Already here:

Multiple ClearSpeed boards

Multiple NVIDIA cards

nVIDIA Tesla series

Use of GPUs in Dense Linear Algebra
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What if multiple GPUs are available?

Already here:

Multiple ClearSpeed boards

Multiple NVIDIA cards

nVIDIA Tesla series

How are we going to program these?

Use of GPUs in Dense Linear Algebra
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Experimental setup

CPU GPU

Processor 16 x Intel Itanium2 nvidia Tesla s870 (4 G80)
Clock frequency 1.5 GHz 575 MHz

Use of MKL on the Itanium vs. CUDA and CUBLAS 1.1 on the
Tesla

Use of GPUs in Dense Linear Algebra
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SuperMatrix for multithreaded architectures

Traditional (and pipelined) parallelizations are limited by the
control dependencies dictated by the code

The parallelism should be limited only by the data
dependencies between operations!

In dense linear algebra, imitate a superscalar processor:
dynamic detection of data dependencies

Use of GPUs in Dense Linear Algebra
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SuperMatrix for multithreaded architectures

int FLA_Chol_blk( FLA_Obj A )

{

/* ... FLA_Part_2x2( ); ... */

while ( FLA_Obj_width( ATL ) < FLA_Obj_width( A ) ){

/* FLA_Repart_2x2_to_3x3( ); ... */

/*---------------------------------------------------------------*/

FLA_Chol( A11 ); /* Chol( A11 ) */

FLA_Trsm_rltn( FLA_ONE, A11,

A21 ); /* A21 := A21 * TRIL(A11)^-T */

FLA_Syrk_ln( FLA_MINUS_ONE, A21,

FLA_ONE, A22 ); /* A22 := A22 - A21 * A21^T */

/*---------------------------------------------------------------*/

/* FLA_Cont_with_3x3_to_2x2( ); ... */

}

}

The FLAME runtime system “pre-executes” the code:

Whenever a routine is encountered, a pending task is
annotated in a global task queue

Use of GPUs in Dense Linear Algebra
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SuperMatrix for multithreaded architectures





Ā00 Ā01 Ā02

Ā10 Ā11 Ā12

Ā20 Ā21 Ā22





Runtime
→

1 Ā00 := Chol
`

Ā00

´

2 Ā10 := Ā10tril
`

Ā00

´−T

3 Ā20 := Ā20tril
`

Ā00

´−T

4 Ā11 := Ā11 − Ā10Ā01

5 . . .

SuperMatrix

Once all tasks are annotated, the real execution begins!

Tasks with all input operands available are runnable; other
tasks must wait in the global queue

Upon termination of a task, the corresponding thread updates
the list of pending tasks

Use of GPUs in Dense Linear Algebra
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SuperMatrix for multithreaded architectures
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Porting SuperMatrix to multiple GPUs

Run-time system (scheduling), storage, and code are
independent

No significative modification to the FLAME codes: Interfacing
to CUBLAS

A software effort of two hours!
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Porting SuperMatrix. Experimental results
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Hope you enjoyed

Thanks!
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