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Introduction and motivation

Motivation

Solution of linear systems

Systems of linear equations,

Ax = b,

are ubiquitous in scientific and engineering apps.

“Large-scale” linear systems arise, e.g., in

– Molecular dynamics simulations,
– Fast acoustic scattering problems,
– Dielectric polarization of nanostructures,
– Magneto-hydrodynamics, etc.

In these apps., A is dense and x can easily have O(100, 000) entries!

The LINPACK benchmark (Top500) is a disguised linear system
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Introduction and motivation

Motivation

Matrix factorizations

The most efficient method to solve

Ax = b,

when A is dense, is to “transform” (factorize) the matrix into a simpler
form, and then solve the resulting linear systems

Depending on the structure of the matrix:

– Cholesky factorization for s.p.d. A→ UT U
– QR factorization for nonsquare A→ QR
– LU factorization for general A→ PT LU

Computing the factorization requires a cubic number of flops, but
solving the transformed linear systems is easy and cheap; e.g.,

1. A → UT U (Cholesky factorization)
2. UT y = b
3. Ux = y

Parallelizing Matrix Factorizations on Clusters using SMPSs 3 R. M. Badia et al.



Introduction and motivation

Motivation

Libraries for clusters

Message-passing

– ScaLAPACK: http://www.netlib.org/scalapack/
– PLAPACK: http://www.cs.utexas.edu/˜plapack/

Clusters of multi-core processors?

– One MPI process per node + multi-threaded BLAS
– One MPI process per core

Both are suboptimal!

Parallelizing Matrix Factorizations on Clusters using SMPSs 4 R. M. Badia et al.



Introduction and motivation

Motivation

Goal:

Exploit task-level parallelism of dense matrix factorizations with little
intrusion in existing legacy codes

ScaLAPACK routine for the Cholesky factorization

Other matrix factorizations/apps. parallelized as part of project text:
http://www.project-text.eu/

– Barcelona Supercomputer Center

– HLRS Stuttgart

– Jülich Supercomputer Center

– EPCC

– FORTH

– The University of Manchester

– Universitat Jaume I

– IBM Research Zurich

– Université de Pau
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Introduction and motivation

Outline
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Brief overview of Cholesky factorization

Right-Looking Blocked Cholesky Factorization

Definition

Factors A into the product A = UT U, where A is s.p.d. and U upper triangular

Single R-L step

1. Factorize diagonal block
A11 → UT

11U11

DONEDONE
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Brief overview of Cholesky factorization

Right-Looking Blocked Cholesky Factorization

Definition

Factors A into the product A = UT U, where A is s.p.d. and U upper triangular

Single R-L step

1. Factorize diagonal block
A11 → UT

11U11

2. Compute panel
U12 ← (UT

11)
−1A12

3. Update trailing submatrix
Ã22 ← A22 − UT

12U12

DONEDONE
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Message-passing Cholesky factorization in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK
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Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK
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MPI/SMPSs task-ification of ScaLAPACK/Cholesky
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MPI/SMPSs task-ification of ScaLAPACK/Cholesky

Taskification of computational kernels

The parallel/distributed symmetric rank-k update uses a larger
algorithmic blocking factor to increase level-3 BLAS granularity
Algorithmic and data distribution partitionings don’t need to be aligned
→ Blocking factors chosen independently (library vs. user)
If level-3 BLAS kernels are naively encapsulated into SMPSs tasks ...
→ Accessed data can partially overlap the accesses of others tasks
→ Base-address dependency test cannot handle this scenario as is
Solution: align algorithmic/data distribution partitionings
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MPI/SMPSs task-ification of ScaLAPACK/Cholesky

Taskification of computational kernels

Coarse-grain level-3 BLAS update off-diagonal blocks, load unbalance
→ Need for finer-grain parallelism via blocking techniques
Desirable that granularity of tasks could be determined independently of
the distribution blocking factor, but . . .

. . . transposition operations of a row panel (i.e., pack, unpack) are
blocked conformally/aligned with data distribution partitioning
Solution: granularity determined by the distribution blocking factor
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MPI/SMPSs task-ification of ScaLAPACK/Cholesky

Taskification of communication kernels

Recv. calls must be blocked conformally with computational kernels

Avoid decomposing a Recv. call into a set of receives
→ Preserve latency/bandwidth requirements of the original application

We instead decompose a Recv. call into:

Recv. Task: actually receives the message
Set of artificial/void/ghost? tasks: do nothing, used to create the data
dependency path among communication and computation kernels

W

Recv. 
Tsk

W W W W W W

Artificial Tasks

Message

RRRRRRR

Computional Tasks

Recv. Buffer

TARGET: WORKER THREADS TARGET: COMMUNICATION THREAD

Operand Directionality

Data dependency
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MPI/SMPSs task-ification of ScaLAPACK/Cholesky

Taskification of communication kernels

Send calls must be blocked conformally with computational kernels

Avoid decomposing a Send call into a set of sends
→ Preserve latency/bandwidth requirements of the original application

We instead decompose a Send call into:

Send Task: actually sends the message
Set of artificial/void/ghost? tasks: do nothing, used to create the data
dependency path among communication and computation kernels

R

 Send 
Tsk

R R R R R R

Artificial Tasks

Message
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TARGET: WORKER THREADS TARGET: COMMUNICATION THREAD

Send Buffer
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Performance evaluation
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Performance evaluation

Experimental framework (small scale)

Target platform:
peco.act.uji.es, small cluster at Universitat Jaume I
8 nodes, 2 Intel QuadCore E5520 per node (64 cores total)
Infiniband interconnect

Compilers and libraries:
Intel C and Fortran77 compilers v11.1
MPI/SMPSs rev13/svn/TRAC-TEXT
ScaLAPACK v1.8.0 + BLACS v1.1 (OpenMPI v1.4)
MKL 10.3 (single and multi-threaded BLAS)
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Performance evaluation

Profile guided optimization

We used Extrae and Paraver to extract execution traces
Analysis of critical path and idle times allowed us to detect
performance bottlenecks
BSC used trace information to add scheduling options to
SMPSs runtime
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Performance evaluation

Default scheduling options

Excessive idle time
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Performance evaluation

Local thread queues disabled
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Performance evaluation

Performance Effect
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Performance evaluation

Performance evaluation on 32 cores
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Performance evaluation

Performance evaluation on 64 cores
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Performance evaluation

Experimental framework (large scale)

Target platform:
JuRoPa at Juelich Supercomputing Center
2,028 nodes, 2 Intel Xeon X5570 per node
Infiniband interconnect

Compilers and libraries:
Intel C and Fortran77 compilers v11.1
MPI/SMPSs Minor changes from svn/TRAC-TEXT version
ScaLAPACK v1.8.0 + BLACS v1.1
MKL 10.3 (single and multi-threaded BLAS)
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Performance evaluation

Preliminary large scale report
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Conclusions

Conclusions

Current status:

ROutine for the Cholesky factorization in ScaLAPACK adapted to
levarate current MPI/SMPSs for clusters
→ Match algorithmic and distribution blocking factors
Superior performance compared with conventional parallel
solutions for clusters of multi-core processors

Ongoing tasks:

Fine tuning, optimization guided by detailed performance analysis
Clusters of hardware accelerators
Other matrix kernels
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