
Parallelizing Dense Matrix Factorizations on
Clusters of Multicore Processors using SMPSs

R. M. Badia1 J. Labarta1 V. Marjanovic1 A. F. Martín2

R. Mayo3 E. S. Quintana-Ortí3 R. Reyes3

1 Barcelona Supercomputing Center (BSC–CNS), Spain
{rosa.m.badia,jesus.labarta,vladimir.marjanovic}@bsc.es

2 CIMNE, Univ. Politècnica de Catalunya, Spain
amartin@cimne.upc.edu

3 DICC, Universitat Jaume I, Spain
{quintana,rreyes}@icc.uji.es

ParCo 2011, Ghent

vertiujilogoParallelizing Matrix Factorizations on Clusters using SMPSs 1 R. M. Badia et al.

Introduction and motivation

Motivation

Solution of linear systems

Systems of linear equations,

Ax = b,

are ubiquitous in scientific and engineering apps.

“Large-scale” linear systems arise, e.g., in

– Molecular dynamics simulations,
– Fast acoustic scattering problems,
– Dielectric polarization of nanostructures,
– Magneto-hydrodynamics, etc.

In these apps., A is dense and x can easily have O(100, 000) entries!

The LINPACK benchmark (Top500) is a disguised linear system

Parallelizing Matrix Factorizations on Clusters using SMPSs 2 R. M. Badia et al.

Introduction and motivation

Motivation

Matrix factorizations

The most efficient method to solve

Ax = b,

when A is dense, is to “transform” (factorize) the matrix into a simpler
form, and then solve the resulting linear systems

Depending on the structure of the matrix:

– Cholesky factorization for s.p.d. A→ UT U
– QR factorization for nonsquare A→ QR
– LU factorization for general A→ PT LU

Computing the factorization requires a cubic number of flops, but
solving the transformed linear systems is easy and cheap; e.g.,

1. A → UT U (Cholesky factorization)
2. UT y = b
3. Ux = y

Parallelizing Matrix Factorizations on Clusters using SMPSs 3 R. M. Badia et al.

Introduction and motivation

Motivation

Libraries for clusters

Message-passing

– ScaLAPACK: http://www.netlib.org/scalapack/
– PLAPACK: http://www.cs.utexas.edu/˜plapack/

Clusters of multi-core processors?

– One MPI process per node + multi-threaded BLAS
– One MPI process per core

Both are suboptimal!

Parallelizing Matrix Factorizations on Clusters using SMPSs 4 R. M. Badia et al.

Introduction and motivation

Motivation

Goal:

Exploit task-level parallelism of dense matrix factorizations with little
intrusion in existing legacy codes

ScaLAPACK routine for the Cholesky factorization

Other matrix factorizations/apps. parallelized as part of project text:
http://www.project-text.eu/

– Barcelona Supercomputer Center

– HLRS Stuttgart

– Jülich Supercomputer Center

– EPCC

– FORTH

– The University of Manchester

– Universitat Jaume I

– IBM Research Zurich

– Université de Pau

Parallelizing Matrix Factorizations on Clusters using SMPSs 5 R. M. Badia et al.

Introduction and motivation

Outline

1 Introduction and motivation

2 Brief overview of Cholesky factorization

3 Message-passing Cholesky factorization in ScaLAPACK

4 MPI/SMPSs task-ification of ScaLAPACK/Cholesky

5 Performance evaluation

6 Conclusions

Parallelizing Matrix Factorizations on Clusters using SMPSs 6 R. M. Badia et al.

Brief overview of Cholesky factorization

Right-Looking Blocked Cholesky Factorization

Definition

Factors A into the product A = UT U, where A is s.p.d. and U upper triangular

Single R-L step

1. Factorize diagonal block
A11 → UT

11U11

DONEDONE

Parallelizing Matrix Factorizations on Clusters using SMPSs 7 R. M. Badia et al.

Brief overview of Cholesky factorization

Right-Looking Blocked Cholesky Factorization

Definition

Factors A into the product A = UT U, where A is s.p.d. and U upper triangular

Single R-L step

1. Factorize diagonal block
A11 → UT

11U11

2. Compute panel
U12 ← (UT

11)
−1A12

DONEDONE

Parallelizing Matrix Factorizations on Clusters using SMPSs 7 R. M. Badia et al.

Brief overview of Cholesky factorization

Right-Looking Blocked Cholesky Factorization

Definition

Factors A into the product A = UT U, where A is s.p.d. and U upper triangular

Single R-L step

1. Factorize diagonal block
A11 → UT

11U11

2. Compute panel
U12 ← (UT

11)
−1A12

3. Update trailing submatrix
Ã22 ← A22 − UT

12U12

DONEDONE

Parallelizing Matrix Factorizations on Clusters using SMPSs 7 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Outline

1 Introduction and motivation

2 Brief overview of Cholesky factorization

3 Message-passing Cholesky factorization in ScaLAPACK

4 MPI/SMPSs task-ification of ScaLAPACK/Cholesky

5 Performance evaluation

6 Conclusions

Parallelizing Matrix Factorizations on Clusters using SMPSs 8 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

Global View

Local View

0 1 2

3 4 5

2D Block-Cyclic Data Distribution

0 1 2

3 4 5

Data Distribution

Blocking Factor

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

Global View

Local View

0 1 2

3 4 5

X

Processor 0 performs the Cholesky
factorization of the first diagonal

block

R W X

Read Write Read/Write

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

Global View

Local View

W

Cholesky factor broadcast rowwise
by processor 0

R W X

Read Write Read/Write

0 1 2

3 4 5

WR

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

Global View

Local View

XR

 First row panel computed by the
first row of processes

R W X

Read Write Read/Write

0 1 2

3 4 5

R XXR

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

Global View

Local View

W W

R R R

W

First row panel broadcast
columnwise by the first row of

processes

R W X

Read Write Read/Write

0 1

3 4 5

2

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

Global View

Local View

R R R R

0 1 2

3 4 5

W

W

W

W

4 3 4 5 3 4 5 3 4 5 3 4 5 35435 4

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

First row panel transposed by the
second row (source) and column

(target) of processes

R W X

Read Write Read/Write

A

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

Global View

Local View

R RR

0 1 2

3 4 5

W

W

W

B

4 3 4 5 3 4 5 3 4 5 3 4 5 35435 4

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

First row panel transposed by the
second row (source) and column

(target) of processes

R W X

Read Write Read/Write

R R R R

W

W

W

W

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

Global View

Local View

R R R

0 1 2

3 4 5

W

W

W

C

4 3 4 5 3 4 5 3 4 5 3 4 5 35435 4

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

First row panel transposed by the
second row (source) and column

(target) of processes

R W X

Read Write Read/Write

R R R R

W

W

W

W

W

W

W

R R R

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

Global View

Local View

R R R R RR R RR

0 1 2

3 4 5

W

W

W

W

W

W

W

W

W

E

D

F

First row panel transposed by the
second row (source) and column

(target) of processes

R W X

Read Write Read/Write

4 3 4 5 3 4 5 3 4 5 3 4 5 35435 4

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

Global View

Local View

0 1 2

3 4 5

W

W R

R W

W

Transpose of the first row panel
broadcast rowwise by the second

column of processes

R W X

Read Write Read/Write

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

R R R R RR R RRR

R

R

R

R

R

R

R

R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Global View

Local View

R R R

0 1 2

3 4 5

R

R R RR

X

XX

X

X

X

X

R RRR

X

X

X

X X

X

X

X

X

X X

X

XX

X

X X

X

X

X

X

XX

X

X

X

R R R R

X

X

X

X

X

X

X

X

X

R

R

X

X

X

X

R

R

Algorithmic blocking factor

A
lg

o
ri
th

m
ic

 b
lo

c
k
in

g
 f
a
c
to

r

X

X

X

X

Processes update their local
portion of the leading diagonal

block

R W X

Read Write Read/Write

Data Distribution

Blocking Factor

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

R

R

R R

R R

R

Global View

Local View

R

0 1 2

3 4 5

R

X

X X

R

X

R

R

X

X

Processes update their local
portion of the off-diagonal block

R W X

Read Write Read/Write

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

Message-passing Cholesky factorization in ScaLAPACK

Routine p_potrf in ScaLAPACK

R R R

R

R

R

R

R

R

R

R

R

R

Global View

Local View

R

0 1 2

3 4 5

R R

X X

X

R

X

X X

X

X

X

X

X

X

R R

X

X

R

R

XR XR R X

X

Processes update their local
portion of the trailing diagonal block

R W X

Read Write Read/Write

Parallelizing Matrix Factorizations on Clusters using SMPSs 9 R. M. Badia et al.

MPI/SMPSs task-ification of ScaLAPACK/Cholesky

Outline

1 Introduction and motivation

2 Brief overview of Cholesky factorization

3 Message-passing Cholesky factorization in ScaLAPACK

4 MPI/SMPSs task-ification of ScaLAPACK/Cholesky

5 Performance evaluation

6 Conclusions

Parallelizing Matrix Factorizations on Clusters using SMPSs 10 R. M. Badia et al.

MPI/SMPSs task-ification of ScaLAPACK/Cholesky

Taskification of computational kernels

The parallel/distributed symmetric rank-k update uses a larger
algorithmic blocking factor to increase level-3 BLAS granularity
Algorithmic and data distribution partitionings don’t need to be aligned
→ Blocking factors chosen independently (library vs. user)
If level-3 BLAS kernels are naively encapsulated into SMPSs tasks ...
→ Accessed data can partially overlap the accesses of others tasks
→ Base-address dependency test cannot handle this scenario as is
Solution: align algorithmic/data distribution partitionings

R
R
R
R
R
R

R RRR
X

X
X

X X

R

XX

X

R

X

X

RR

X
X X

R
R

R

R
R
R
R
R
R

R RRR
X

X
X
X X
X

X
RR

R
R

R

Align

X
X X
X

X

Parallelizing Matrix Factorizations on Clusters using SMPSs 11 R. M. Badia et al.

MPI/SMPSs task-ification of ScaLAPACK/Cholesky

Taskification of computational kernels

Coarse-grain level-3 BLAS update off-diagonal blocks, load unbalance
→ Need for finer-grain parallelism via blocking techniques
Desirable that granularity of tasks could be determined independently of
the distribution blocking factor, but . . .

. . . transposition operations of a row panel (i.e., pack, unpack) are
blocked conformally/aligned with data distribution partitioning
Solution: granularity determined by the distribution blocking factor

R R R R

W
W

W
W

W
W

W

W

W

W

R RR

Transposition

R

R X

GEMM

R

R X

Blocked GEMM

Blocking

R

X
XX

X
X
X
X
X X
X
X
X
X

R
R
R
R
R
R

Parallelizing Matrix Factorizations on Clusters using SMPSs 12 R. M. Badia et al.

MPI/SMPSs task-ification of ScaLAPACK/Cholesky

Taskification of communication kernels

Recv. calls must be blocked conformally with computational kernels

Avoid decomposing a Recv. call into a set of receives
→ Preserve latency/bandwidth requirements of the original application

We instead decompose a Recv. call into:

Recv. Task: actually receives the message
Set of artificial/void/ghost? tasks: do nothing, used to create the data
dependency path among communication and computation kernels

W

Recv.
Tsk

W W W W W W

Artificial Tasks

Message

RRRRRRR

Computional Tasks

Recv. Buffer

TARGET: WORKER THREADS TARGET: COMMUNICATION THREAD

Operand Directionality

Data dependency

Parallelizing Matrix Factorizations on Clusters using SMPSs 13 R. M. Badia et al.

MPI/SMPSs task-ification of ScaLAPACK/Cholesky

Taskification of communication kernels

Send calls must be blocked conformally with computational kernels

Avoid decomposing a Send call into a set of sends
→ Preserve latency/bandwidth requirements of the original application

We instead decompose a Send call into:

Send Task: actually sends the message
Set of artificial/void/ghost? tasks: do nothing, used to create the data
dependency path among communication and computation kernels

R

 Send
Tsk

R R R R R R

Artificial Tasks

Message

WWWWWWW

Computional Tasks

TARGET: WORKER THREADS TARGET: COMMUNICATION THREAD

Send Buffer

Operand Directionality

Data dependency

Parallelizing Matrix Factorizations on Clusters using SMPSs 14 R. M. Badia et al.

Performance evaluation

Outline

1 Introduction and motivation

2 Brief overview of Cholesky factorization

3 Message-passing Cholesky factorization in ScaLAPACK

4 MPI/SMPSs task-ification of ScaLAPACK/Cholesky

5 Performance evaluation

6 Conclusions

Parallelizing Matrix Factorizations on Clusters using SMPSs 15 R. M. Badia et al.

Performance evaluation

Experimental framework (small scale)

Target platform:
peco.act.uji.es, small cluster at Universitat Jaume I
8 nodes, 2 Intel QuadCore E5520 per node (64 cores total)
Infiniband interconnect

Compilers and libraries:
Intel C and Fortran77 compilers v11.1
MPI/SMPSs rev13/svn/TRAC-TEXT
ScaLAPACK v1.8.0 + BLACS v1.1 (OpenMPI v1.4)
MKL 10.3 (single and multi-threaded BLAS)

Parallelizing Matrix Factorizations on Clusters using SMPSs 16 R. M. Badia et al.

Performance evaluation

Profile guided optimization

We used Extrae and Paraver to extract execution traces
Analysis of critical path and idle times allowed us to detect
performance bottlenecks
BSC used trace information to add scheduling options to
SMPSs runtime

Parallelizing Matrix Factorizations on Clusters using SMPSs 17 R. M. Badia et al.

Performance evaluation

Default scheduling options

Excessive idle time

Parallelizing Matrix Factorizations on Clusters using SMPSs 18 R. M. Badia et al.

Performance evaluation

Local thread queues disabled

Parallelizing Matrix Factorizations on Clusters using SMPSs 19 R. M. Badia et al.

Performance evaluation

Performance Effect

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000 30000 35000

G
F

LO
P

S

Matrix size (n)

 Impact of memory scheduling options (2x2 mesh)

Default behavior
disable.local_queues=1

Parallelizing Matrix Factorizations on Clusters using SMPSs 20 R. M. Badia et al.

Performance evaluation

Performance Effect

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

G
F

LO
P

S

Matrix size (n)

 Impact of memory scheduling options (2x4 mesh)

Default behavior
disable.local_queues=1

Parallelizing Matrix Factorizations on Clusters using SMPSs 21 R. M. Badia et al.

Performance evaluation

Performance evaluation on 32 cores

Parallelizing Matrix Factorizations on Clusters using SMPSs 22 R. M. Badia et al.

Performance evaluation

Performance evaluation on 64 cores

Parallelizing Matrix Factorizations on Clusters using SMPSs 23 R. M. Badia et al.

Performance evaluation

Experimental framework (large scale)

Target platform:
JuRoPa at Juelich Supercomputing Center
2,028 nodes, 2 Intel Xeon X5570 per node
Infiniband interconnect

Compilers and libraries:
Intel C and Fortran77 compilers v11.1
MPI/SMPSs Minor changes from svn/TRAC-TEXT version
ScaLAPACK v1.8.0 + BLACS v1.1
MKL 10.3 (single and multi-threaded BLAS)

Parallelizing Matrix Factorizations on Clusters using SMPSs 24 R. M. Badia et al.

Performance evaluation

Preliminary large scale report

Parallelizing Matrix Factorizations on Clusters using SMPSs 25 R. M. Badia et al.

Conclusions

Outline

1 Introduction and motivation

2 Brief overview of Cholesky factorization

3 Message-passing Cholesky factorization in ScaLAPACK

4 MPI/SMPSs task-ification of ScaLAPACK/Cholesky

5 Performance evaluation

6 Conclusions

Parallelizing Matrix Factorizations on Clusters using SMPSs 26 R. M. Badia et al.

Conclusions

Conclusions

Current status:

ROutine for the Cholesky factorization in ScaLAPACK adapted to
levarate current MPI/SMPSs for clusters
→ Match algorithmic and distribution blocking factors
Superior performance compared with conventional parallel
solutions for clusters of multi-core processors

Ongoing tasks:

Fine tuning, optimization guided by detailed performance analysis
Clusters of hardware accelerators
Other matrix kernels

Parallelizing Matrix Factorizations on Clusters using SMPSs 27 R. M. Badia et al.

Conclusions

Parallelizing Dense Matrix Factorizations on
Clusters of Multicore Processors using SMPSs

R. M. Badia1 J. Labarta1 V. Marjanovic1 A. F. Martín2

R. Mayo3 E. S. Quintana-Ortí3 R. Reyes3

1 Barcelona Supercomputing Center (BSC–CNS), Spain
{rosa.m.badia,jesus.labarta,vladimir.marjanovic}@bsc.es

2 CIMNE, Univ. Politècnica de Catalunya, Spain
amartin@cimne.upc.edu

3 DICC, Universitat Jaume I, Spain
{quintana,rreyes}@icc.uji.es

ParCo 2011, Ghent

vertiujilogoParallelizing Matrix Factorizations on Clusters using SMPSs 28 R. M. Badia et al.

	Introduction and motivation
	Brief overview of Cholesky factorization
	Message-passing Cholesky factorization in ScaLAPACK
	MPI/SMPSs task-ification of ScaLAPACK/Cholesky
	Performance evaluation
	Conclusions

