Parallelizing Dense Matrix Factorizations on Clusters of Multicore Processors using SMPSs

R. M. Badia¹ J. Labarta¹ V. Marjanovic¹ A. F. Martín² R. Mayo³ E. S. Quintana-Ortí³ R. Reyes³

¹ Barcelona Supercomputing Center (BSC-CNS), Spain {rosa.m.badia, jesus.labarta, vladimir.marjanovic}@bsc.es

² CIMNE, Univ. Politècnica de Catalunya, Spain amartin@cimne.upc.edu

³ DICC, Universitat Jaume I, Spain {quintana, rreyes}@icc.uji.es

ParCo 2011, Ghent

Solution of linear systems

Systems of linear equations,

$$Ax = b$$
,

are ubiquitous in scientific and engineering apps.

- "Large-scale" linear systems arise, e.g., in
 - Molecular dynamics simulations,
 - Fast acoustic scattering problems,
 - Dielectric polarization of nanostructures,
 - Magneto-hydrodynamics, etc.

In these apps., A is dense and x can easily have O(100,000) entries!

The LINPACK benchmark (Top500) is a disguised linear system

Matrix factorizations

The most efficient method to solve

$$Ax = b$$

when A is dense, is to "transform" (factorize) the matrix into a simpler form, and then solve the resulting linear systems

- Depending on the structure of the matrix:
 - Cholesky factorization for s.p.d. $A \rightarrow U^T U$
 - QR factorization for nonsquare A → QR
 - LU factorization for general $A \rightarrow P^T LU$
- Computing the factorization requires a cubic number of flops, but solving the transformed linear systems is easy and cheap; e.g.,
 - 1. $A \rightarrow U^T U$ (Cholesky factorization) 2. $U^T y = b$ 3. Ux = y

Libraries for clusters

- Message-passing
 - ScaLAPACK: http://www.netlib.org/scalapack/
 - PLAPACK: http://www.cs.utexas.edu/~plapack/
- Clusters of multi-core processors?
 - One MPI process per node + multi-threaded BLAS
 - One MPI process per core

Both are suboptimal!

Goal:

- Exploit task-level parallelism of dense matrix factorizations with little intrusion in existing legacy codes
- ScaLAPACK routine for the Cholesky factorization
- Other matrix factorizations/apps. parallelized as part of project text:

- Barcelona Supercomputer Center
- HLRS Stuttgart
- Jülich Supercomputer Center
- EPCC
- FORTH
- The University of Manchester
- Universitat Jaume I
- IBM Research Zurich
- Université de Pau

Outline

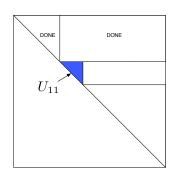
- 1 Introduction and motivation
- 2 Brief overview of Cholesky factorization
- Message-passing Cholesky factorization in ScaLAPACK
- MPI/SMPSs task-ification of ScaLAPACK/Cholesky
- Performance evaluation
- 6 Conclusions

Definition

Factors A into the product $A = U^T U$, where A is s.p.d. and U upper triangular

Single R-L step

1. Factorize diagonal block $A_{11} \rightarrow U_{11}^T U_{11}$

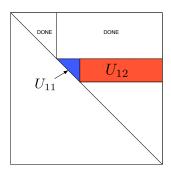


Definition

Factors A into the product $A = U^T U$, where A is s.p.d. and U upper triangular

Single R-L step

- 1. Factorize diagonal block $A_{11} \rightarrow U_{11}^T U_{11}$
- 2. Compute panel $U_{12} \leftarrow (U_{11}^T)^{-1}A_{12}$

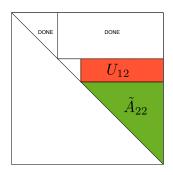


Definition

Factors A into the product $A = U^T U$, where A is s.p.d. and U upper triangular

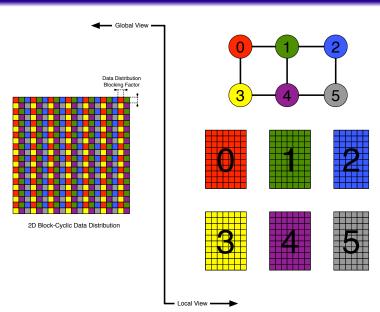
Single R-L step

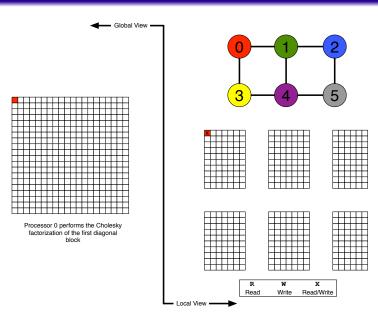
- 1. Factorize diagonal block $A_{11} \rightarrow U_{11}^T U_{11}$
- 2. Compute panel $U_{12} \leftarrow (U_{11}^T)^{-1} A_{12}$
- 3. Update trailing submatrix $\tilde{A}_{22} \leftarrow A_{22} U_{12}^T U_{12}$

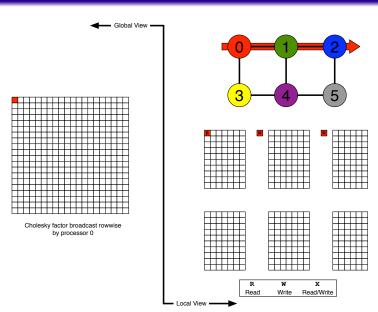


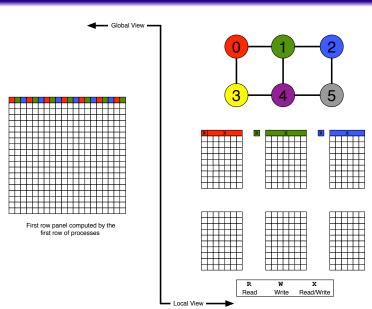
Outline

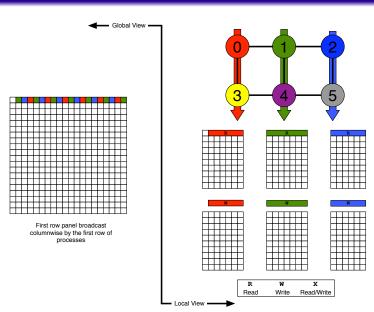
- 1 Introduction and motivation
- Brief overview of Cholesky factorization
- Message-passing Cholesky factorization in ScaLAPACK
- 4 MPI/SMPSs task-ification of ScaLAPACK/Cholesky
- Performance evaluation
- 6 Conclusions

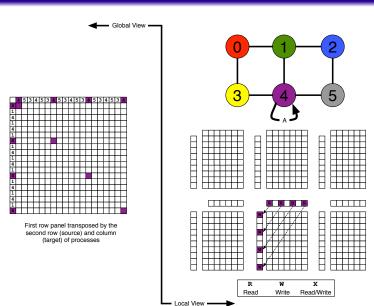


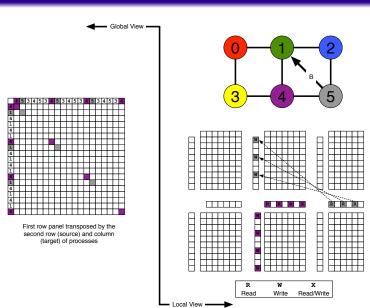


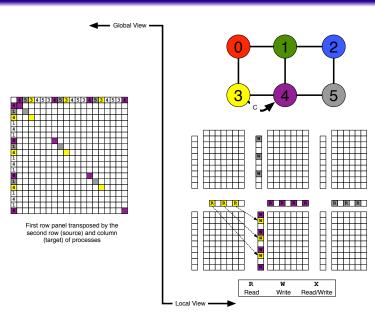


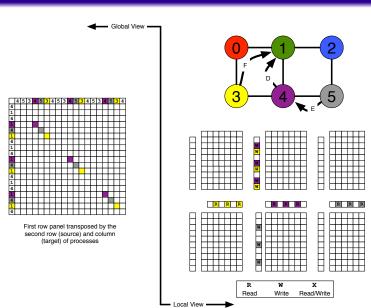


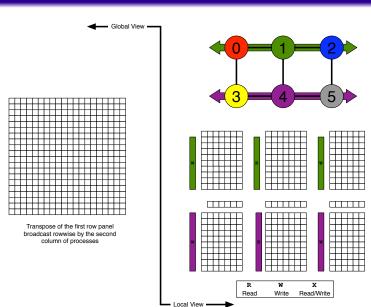


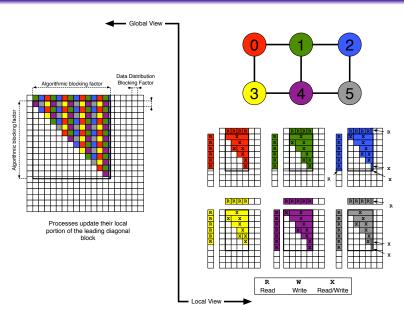


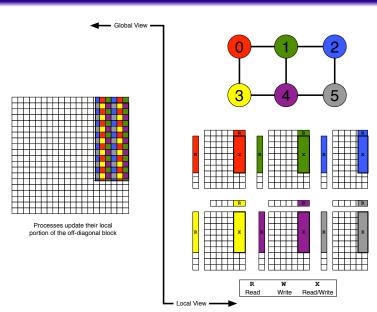


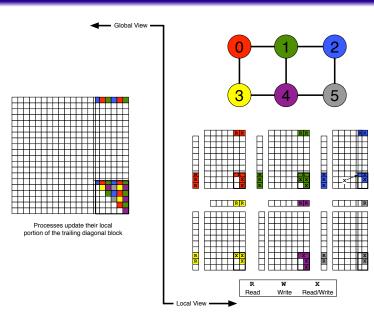










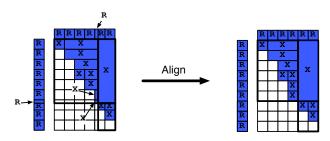


Outline

- Introduction and motivation
- 2 Brief overview of Cholesky factorization
- Message-passing Cholesky factorization in ScaLAPACK
- 4 MPI/SMPSs task-ification of ScaLAPACK/Cholesky
- Performance evaluation
- 6 Conclusions

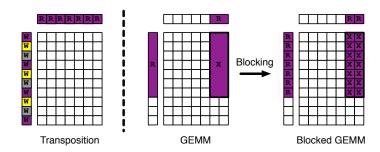
Taskification of computational kernels

- The parallel/distributed symmetric rank-k update uses a larger algorithmic blocking factor to increase level-3 BLAS granularity
- Algorithmic and data distribution partitionings don't need to be aligned
 → Blocking factors chosen independently (library vs. user)
- If level-3 BLAS kernels are naively encapsulated into SMPSs tasks ...
 - ightarrow Accessed data can partially overlap the accesses of others tasks
 - ightarrow Base-address dependency test cannot handle this scenario as is
- Solution: align algorithmic/data distribution partitionings



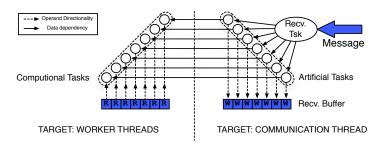
Taskification of computational kernels

- Coarse-grain level-3 BLAS update off-diagonal blocks, load unbalance
 → Need for finer-grain parallelism via blocking techniques
- Desirable that granularity of tasks could be determined independently of the distribution blocking factor, but . . .
- ... transposition operations of a row panel (i.e., pack, unpack) are blocked conformally/aligned with data distribution partitioning
- Solution: granularity determined by the distribution blocking factor



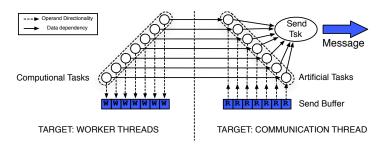
Taskification of communication kernels

- Recv. calls must be blocked conformally with computational kernels
- Avoid decomposing a Recv. call into a set of receives
 - → Preserve latency/bandwidth requirements of the original application
- We instead decompose a Recv. call into:
 - Recv. Task: actually receives the message
 - Set of artificial/void/ghost? tasks: do nothing, used to create the data dependency path among communication and computation kernels



Taskification of communication kernels

- Send calls must be blocked conformally with computational kernels
- Avoid decomposing a Send call into a set of sends
 - \rightarrow Preserve latency/bandwidth requirements of the original application
- We instead decompose a Send call into:
 - Send Task: actually sends the message
 - Set of artificial/void/ghost? tasks: do nothing, used to create the data dependency path among communication and computation kernels



Outline

- Introduction and motivation
- 2 Brief overview of Cholesky factorization
- Message-passing Cholesky factorization in ScaLAPACK
- 4 MPI/SMPSs task-ification of ScaLAPACK/Cholesky
- Performance evaluation
- 6 Conclusions

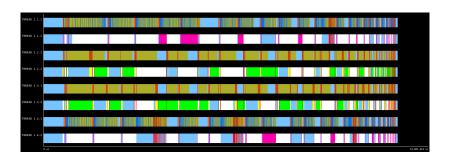
Experimental framework (small scale)

- Target platform:
 - peco.act.uji.es, small cluster at Universitat Jaume I
 - 8 nodes, 2 Intel QuadCore E5520 per node (64 cores total)
 - Infiniband interconnect
- Compilers and libraries:
 - Intel C and Fortran77 compilers v11.1
 - MPI/SMPSs rev13/svn/TRAC-TEXT
 - ScaLAPACK v1.8.0 + BLACS v1.1 (OpenMPI v1.4)
 - MKL 10.3 (single and multi-threaded BLAS)

Profile guided optimization

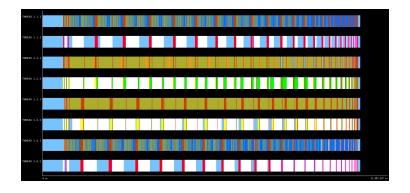
- We used Extrae and Paraver to extract execution traces
- Analysis of critical path and idle times allowed us to detect performance bottlenecks
- BSC used trace information to add scheduling options to SMPSs runtime

Default scheduling options

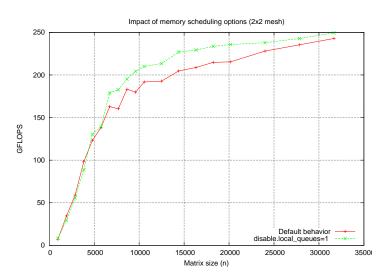


Excessive idle time

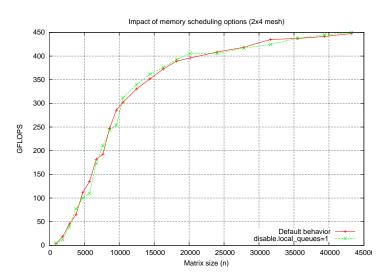
Local thread queues disabled



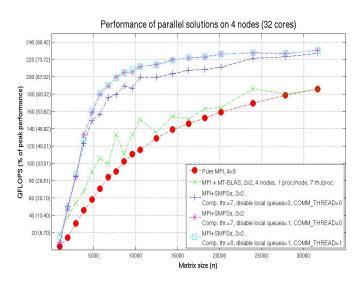
Performance Effect



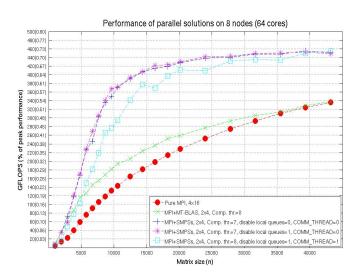
Performance Effect



Performance evaluation on 32 cores



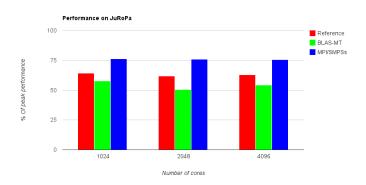
Performance evaluation on 64 cores



Experimental framework (large scale)

- Target platform:
 - JuRoPa at Juelich Supercomputing Center
 - 2,028 nodes, 2 Intel Xeon X5570 per node
 - Infiniband interconnect
- Compilers and libraries:
 - Intel C and Fortran77 compilers v11.1
 - MPI/SMPSs Minor changes from svn/TRAC-TEXT version
 - ScaLAPACK v1.8.0 + BLACS v1.1
 - MKL 10.3 (single and multi-threaded BLAS)

Preliminary large scale report



Outline

- Introduction and motivation
- 2 Brief overview of Cholesky factorization
- Message-passing Cholesky factorization in ScaLAPACK
- 4 MPI/SMPSs task-ification of ScaLAPACK/Cholesky
- Performance evaluation
- 6 Conclusions

Conclusions

Current status:

- ROutine for the Cholesky factorization in ScaLAPACK adapted to levarate current MPI/SMPSs for clusters
 - ightarrow Match algorithmic and distribution blocking factors
- Superior performance compared with conventional parallel solutions for clusters of multi-core processors
- Ongoing tasks:
 - Fine tuning, optimization guided by detailed performance analysis
 - Clusters of hardware accelerators
 - Other matrix kernels

Parallelizing Dense Matrix Factorizations on Clusters of Multicore Processors using SMPSs

```
R. M. Badia<sup>1</sup> J. Labarta<sup>1</sup> V. Marjanovic<sup>1</sup> A. F. Martín<sup>2</sup> R. Mayo<sup>3</sup> E. S. Quintana-Ortí<sup>3</sup> R. Reyes<sup>3</sup>
```

```
<sup>1</sup> Barcelona Supercomputing Center (BSC-CNS), Spain {rosa.m.badia, jesus.labarta, vladimir.marjanovic}@bsc.es
```

² CIMNE, Univ. Politècnica de Catalunya, Spain amartin@cimne.upc.edu

³ DICC, Universitat Jaume I, Spain {quintana, rreyes}@icc.uji.es

ParCo 2011, Ghent