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Dynamical Linear Systems

Linear time-invariant systems:
©(t) = Ax(t)+ Bu(t), t>0, x(0)=2a
y(t) = Cz(t) + Du(t), t>0,
e 1 state-space variables, i.e., n is the order of the system;
® 1 Inputs,
® p outputs,
o A is stable.

Corresponding TFM:
G(s)=C(sl, — A)'B+ D.

Large-scale for engineers means n ~ 100, 000 — 500, 000.
9
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Goal for Model Reduction

Find a reduced-order model
z(t) = Az(t)+ Bu(t), t>0, &(0)
g(t) = Ci(t) + Du(t), t>0,

of order » << n such that the output error

y—@:Gu—éu:(G—G)u

is “small”.
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Why?

Control design:
e Real-time control is only possible with controllers of low complexity.
e The more complex the controller is, the more fragile.

e Control and optimization of systems governed by PDEs is impossible for
large-scale systems arising from FE discretization.

—> a must!
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Why (Cont.)?

Simulation:

Repeated simulation for different force terms (input signals).
e VLSI chip design.
e Simulation of coupled PDE systems.

e Compact models for p-electro-mechanical systems (MEMS).

— reduces the simulation time!
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Example

p-mechanical Gyroscope  [THE IMEGO INSTITUTE (SWEDEN) -+
SAAB BOFORS DyNaMICS AB]

e Commercial rate
sensor with applications in inertial
navigation systems.

e Simulation problem: Improve the
design with respect to a number of
parameters.

e n = 17,361 states.

Can we obtain a reduced-order model with similar behavior?
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Outline

. Truncation methods for model reduction.

. Solution of Lyapunov equations.

1
2
3. Large problems: Parallelization.
4. Getting to the user.

5

. Conclusions.
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Outline

1. Truncation methods for model reduction.

e Krylov-based methods.

e SVD-based methods: Balanced Truncation.

2. Solution of Lyapunov equations.
3. Large problems: Parallelization.
4. Getting to the user.

5. Conclusions.
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Rationale of Truncation Methods

Let
(A,B,C,D,z") and G(s)=C(sl,— A)"'B+D.

Consider a state-space transformation defined by 7' € R"*" and

(A,B,C,D,2") = (TAT ', TB,CT ', D, Tz").

Then,

Y

(s) = C(sI, — A)'B+ D
CT-\(sI, — TAT"Y"'TB + D
C(sl, — A)™'B+D=G_G(s).
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Rationale of Truncation Methods (Cont.)

Given a state-space transformation 7" € R"*", partition

| 1 1
T—[Wl] and T\ = [T, W],

with 7; € R™" T, € R™™".

Truncation methods compute the reduced-order model:

(A, B,C,D) = (T,AT,,T,B,CT,, D).

Goal: Find 7T and T} and choose r such that ||y — y|| is “small”.
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Taxonomy

(Antoulas'02):
e Krylov-based approximation methods.

— Approach: Compute a low-dimensional subspace 1" that approximates
the trajectory of x(¢) and project the system into that subspace.

— Based on the Arnoldi iteration: composed of matrix-vector products.

— Exploit/preserve sparsity.

—> Applicable to large-scale (sparse) systems!
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Taxonomy (Cont.)

e SVD-based approximation methods.

— Preserve stability.
— Provide a global error bound on |G — G]|.

— Numerically efficient, but applicable to large-scale (sparse) systems?

Even for large systems the answer is yes! (provided we use parallel
computing).
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Balanced Truncation (Moore, 81)

One of many absolute error methods, which aim at

min |G — Gl
as A
ly = 9ll2 < |G = Gllcllull2
Here, || - || denotes the H,.-norm which is . ..too complex to define using
words ;-)

Other methods: Hankel norm approximation, singular perturbation
approximation, relative error methods, etc.
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Balanced Truncation (Cont. I)

Composed of the following three steps:

Step 1. Solve the coupled Lyapunov matrix equations

AW.+ WA + BBT =0,
AW, +W,A+CtC = 0,

for the observability and controllability Gramians, W, and W, resp.

Actually, we need the Cholesky factors .S and R such that
W.=S'S W,=R!'R.
S and R are densel
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Balanced Truncation (Cont. II)

Step 2. Compute the Hankel singular values (HSV) from

T T 2 Vi
SRT = UV —[Ule][ 22] [VQT ,

with U, V, and X partitioned at a certain order r.

The HSV in X = diag(oy, ..., 0,), measure how much a state is involved
in energy transfer from a given input to a certain output!
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Balanced Truncation (Cont. 1)

Step 3. In the square-root balance truncation (SRBT) method (Heath
et al, 87; Tombs, Postlethwaite'87):

T, = "*V/'R and T,=5"U3;"?
and (A, B,C, D) = (T,AT,, T;,B,CT,, D).

e Computable error bound: IG — Glloo <230, o%.

e Allows adaptive choice of r.
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BT: Summary (in MATLAB)

>> Wc = lyap(A,BxB’); S = chol(Wc);
>> Wo = lyap(A’,C’*C); R = chol(Wo);

>> 7, Step 2: Compute the HSV
>> [U,Sigma,V] = svd(S*R’);

>> 7, Step 3: Apply the SRBT method
>> Ul = U(:,1:r); V1 = V(:,1:r); Sigmal

>> T_1 = inv(Sigmal.~(1/2)) * V1’ * R;
> T_r =S’ x Ul * inv(Sigmal. (1/2));
>>

>> Ar = T_1 x A x T_r; Br = T_1 * B; Cr

>> 7, Step 1: Solve the coupled Lyapunov matrix equations

Sigma(l:r,1:r);

C x T_r;
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Balanced Truncation (Cont. V)

Given (A, B,C, D, 2") with A large, and m,p < n...

How do we solve the previous numerical problems?
1. Coupled Lyapunov equations.
2. SVD of matrix product.
3. Application of the SRBT formulae to obtain the reduced-order model.
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Outline

1. Truncation methods for model reduction: SVD-based approach.
2. Solution of Lyapunov equations.

e Traditional methods.

e Sign function methods.
e LR-ADI iteration.

3. Large problems: Parallelization.
4. Getting to the user.

5. Conclusions.
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Case Study |

CD player.

e Tracking the lens of a CD player.

e Design problem: design low-cost
controller that makes servo-system
faster and robust to shocks.

en = 120 states, m = 2 inputs,
p = 2 outputs.
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Traditional Methods (Bartels, Stewart, 72)

Consider the (real) Schur decomposition of A
A=U"AU,
where A is (quasi-)triangular and U is orthogonal. Then,
AW+ WA+ CTC =0 =

UATW, + W,A+ CTC = 0)UT =
UATUTUW,UT + UW,UTUAUT + UCTCOUT = 0 =

P _ ? ? _
AW, +W,A+CTC =0 —k+ ‘ I-

is a “reduced” form of this equation.
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Traditional Methods (Cont. I)

Method:
1. Obtain the Schur decomposition of A = UTAU.
2. Compute C = CUT.
3. Solve the reduced equation
wwrarerc—o = N -
by “back-substitution”.
4. Compute W, from W, = UTW,U.

A variation allows to obtain the Cholesky factor of 1, and from there that
of W, (Hammarling, 82).
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Experimental Results: CD Player

Model reduction using Bartels-Stewart method:

CD player

n 120

r 42

Ny 1
Time 0.68"
|G — Gl | 1.6e — 01

e Less than 1”1
e Allows construction of a cheaper controller!
o |G — Glo ~ 1.6e — 01

Isn't that bad?
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Experimental Results: CD Player

Remember: |G — G| is an absolute error!
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Traditional Methods: Properties

e Function 1yap in MATLAB®.

e Currently based on routines of the same functionality in SLICOT
(NICONET European Joint Project):
http://win.tue.nl/niconet.

e The (real) Schur form is computed via the QR algorithm.
e Deliver Cholesky factors of order n.
e Do not exploit sparsity of A.

e Difficult to parallelize.

— applicable up to O(107%).
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Case Study Il

Optimal cooling of steel profiles.

e Part of a manufacturing method for
steel profiles.

e Design problem: design control
that achieves moderate gradient
temperatures when cooling from

1,000° C to 500° C.

en = 5,171 states, m = 7 inputs,
p = 0 outputs.
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Sign Function Methods

Given a € R,
Lifa>0,

sign (a) = ¢ —1if a <0,
undefined otherwise.

For a matrix A € R"*", sign (A) is a function of the signs of its
eigenvalues.

Given

A 0 . —1I, 0
HZ[cTC _AT]7 Slgn(H):[2W0 [n]7

where TV, is the observability Gramian.

So, how do we compute the sign function?
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Sign Function Methods (Cont. 1)

For H = [CI;}C —ZT] the classical Newton iteration boils down to
1
A = §(Aj + Aj_l)/Q, Ay = A,
I _
Rj+1 — ﬁ[R]AJ—l]7 RO_Cv

which converges to R, the Cholesky factor of WV,

At each iteration R; is increased in p rows (p being the number of
outputs).
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Sign Function Methods (Cont. 1)

As in model reduction R (and S) is usually rank-deficient the cost of the
iteration and subsequent steps can be greatly reduced (Benner, Quintana,

98):
At the jth iteration, compute the rank-revealing QR (RRQR) factorization
1 R,
7l | -om
and then set

Rjy1 = (RI)'.

On convergence the iteration produces dense, full-rank Rwithl < n
columns, such that

RTR~RTR=W,,
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Implications on Steps 2 and 3

Replace the Cholesky factors by their (dense) low-rank approximations in
SRT ~ STR=UxVT.
as the product ST R is of order k x [, with k, | < n.

The computation of the projection matrices
T =3, VIRl T, =SU5; "

is also cheaper.
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Experimental Results

Cluster with 32 nodes x 2 Intel Pentium Xeon©2.4GHz, 1GB RAM,

e Y

connected with Myrinet switches, 2Gbps peak bandwidth.
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Experimental Results: Optimal cooling of steel profiles.

Parallel model reduction via sign function:

Profiles

n 5, 177

r 40

Ny 32
Time 38'33"
|G — Glo | 3.5¢ — 04

e Takes =~ 40’ to reduce Example 6 from order 5,177 to 40.
e Remember, the reduced-order model serves two purposes:

— It is frequently necessary for control design.

— Reduces simulation time.

e Reduce once, use it as many times as you want!
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Sign Function Methods: Properties

e More reliable if S and R are numerically singular.

e Reduced form is better conditioned.

e Also more efficient as usually rank (S), rank (R) < n. ..
e Ultimately, quadratic convergence.

e Highly parallel, as demonstrated in PLICMR (Benner, Quintana-Ortix2):
http://spine.act.uji.es/ plicnr.

e Do not exploit any sparsity: The inverse of a sparse matrix is, in general,
dense.

— applicable up to O(10%).
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Case Study Il

p~-thruster array  [IMTEK (UN1v. FREIBURG)/EU PROJECT p-PYROS]

e Co-integration of solid fuel with
silicon p-machined system.

e Used for “nano-satellites” and gas
generation.

e Design problem: reach the ignition
temperature within the fuel without
reaching the critical temperature at
the neighbour p-thrusters.

e n from 4,257 —79,177 states, p = 7
outputs.
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Case Study lll: p-thruster array

Large-scale problems in model reduction are usually sparse.

State matrix;

L
L 1 2 3

Fi
nz = 4352105 wia
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L R-ADI lteration (Penzl, 98; Li, White, 99-02; Antoulas et al, 00-03)

Consider
AW.+ W.A! = BB!.

The LR-ADI iteration is defined as:
Vo = (A+pl,) " 'B, Sy = /=2 Re(p1) Vh,
Vinn = V; = 0j(A+pjal))”'Vi, Sip = { j o %‘Vjﬂ} ;

where v; = \/Re(pj+1)/Re(pj).

Here, p = {p1,p2, ..., pi} are the “shifts".

After j iterations, we obtain a dense factor S e R™ ™) sych that

S;ST ~ STS =W,

VERSITAT
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Experimental Results: p-thruster array

Parallel model reduction via LR-ADI iteration:

(-thruster

n 79,841
r 60
Ny 16
Time 6'58"
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LR-ADI lteration: Properties

Properties of the LR-ADI iteration:
e As reliable as the sign function.
e Also as efficient as usually rank (S), rank (R) < n. ..
e At most, superlinear convergence.

e Parallelism dictated by the sparsity of A and the solver; see SpaRed:
(Badia, Benner, Quintana-Orti, Mayo):
http://spine.act.uji.es/ "plicmr/SpaRedW3/SpaRed.html.

e Exploit the sparsity of A.

— applicable up to O(10%), depending on the sparsity and solver.
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Outline

1. Truncation methods for model reduction: SVD-based approach.
2. Solution of Lyapunov equations.
3. Large problems: Parallelization.

e Use of parallel LA libraries.

4. Getting to the user.

5. Conclusions.
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Parallelization

Variety of LA operations:

Lyapunov SRBT
equations SVD method
. Slgp [ R—ADI COf}lPo Comp.
unction projectors model

i i ! i

Matrix inversion M-V product

Linear systems  Linear systems Matrix product ~ Matrix product  Matrix product
RRQR fact. Eigenvalues SVD

Matrix product  Linear systems

dense sparse/banded dense dense sparse/banded

ﬂ dense dense
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Parallelization (Cont.)

Use multiple parallel LA libraries:

Model

Reduction
Dense Banded
system system

GE SY NE GB SB NB US SS NS
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Outline

1. Truncation methods for model reduction: SVD-based approach.
2. Solution of Lyapunov equations.

3. Large problems: Parallelization.

4. Getting to the user.

5. Conclusions.
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Friendly Access (7)

Do you have a large-scale model to reduce and an appropriate cluster?

Steps:
1. Install BLAS, LAPACK, (and MPI?))
2. Install SuperLU, MUMPS, ScaLAPACK, PLAPACK,

3. Install our parallel model reduction codes,...
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Friendly Access (Cont.)

...O0r visit http://spine.act.uji.es/ plicmr
http://spine.act.uji.es/ "plicmr/SpaRedW3/SpaRedW3.html
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< SpaRedW3: A Web Service for Model Reduction of Very Large-Scale Systems - Netscape

o) ) <5, 6SM

4 @Q Q @ @ @ ‘Qhﬂpffspme.act.uji.esf~p\\cmrfcgi-binfspaRedJobSubfindex.php
(S | _

<l b SpaRedW3: A Web Service for Mode ] B
3
i SpaRedW*:
" Job Submission Form
1. User identifier 2, User password |
S'W @& Low Rank Square Root 4. Solver & Default
5. Order selection & Figed
method < Automatic
6. Number of states I 7. Number of inputs I
8. Number of outputs g'w
10. Tolerance 1 | 11. Tolerance 2 |
12. Number of processors ] 13. Compress tool Oiaeesl. DRY
14. Class of State Matrix @ Dense ¢ General Band | 15, (ass of Matrix ¢ Teal
¢ Symm. Band ¢ gpe;lres?l Entries & Complex
16. e-mail fyourmail@mail server
File for A Browse.. [|File for B Browse...
File for C Browse,. |File for D Browse..,
Submit Job
M & & @£ | Document: Done (0318 seca) [
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Concluding Remarks

e Krylov-based subspace methods are not enterily satisfactory.
e Existing serial libraries are not powerful enough:

MATLAB/SLICOT — O(10%).

e Parallel model reduction algorithms in PLICMR allow reduction of
systems with O(10%) states.

e Parallel SRBT algorithms in SpaRed allow reduction of sparse systems
with O(10°) states.

e Efficacy depends on parallelism of underlying parallel libraries and, in the
sparse case, in the sparsity pattern.

e Please, contact us if you have any large systems to reduce
— quintana@icc.uji.es.
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