PARALLEL MODEL REDUCTION OF LARGE DYNAMICAL SYSTEMS

Enrique S. Quintana-Ortí

Depto. de Ingeniería y Ciencia de Computadores Universidad Jaume I de Castellón (Spain) quintana@icc.uji.es

Joint work with: José M. Badía (UJI), Peter Benner (TU-Chemnitz), Rafael Mayo (UJI), and Gregorio Quintana-Ortí (UJI)

Austin'04 - September 2004

Dynamical Linear Systems

Linear time-invariant systems:

$$\dot{x}(t) = Ax(t) + Bu(t), \quad t > 0, \quad x(0) = x^0,$$

 $y(t) = Cx(t) + Du(t), \quad t \ge 0,$

- n state-space variables, i.e., n is the order of the system;
- \bullet *m* inputs,
- $\bullet \ p \ {\rm outputs}$,
- A is stable.

Corresponding TFM:

$$G(s) = C(sI_n - A)^{-1}B + D.$$

Large-scale for engineers means $n \approx 100,000 - 500,000$.

Goal for Model Reduction

Find a reduced-order model

$$\dot{\hat{x}}(t) = \hat{A}\hat{x}(t) + \hat{B}u(t), \quad t > 0, \quad \hat{x}(0) = \hat{x}^{0}, \hat{y}(t) = \hat{C}\hat{x}(t) + \hat{D}u(t), \quad t \ge 0,$$

of order $r \ll n$ such that the output error

$$y - \hat{y} = Gu - \hat{G}u = (G - \hat{G})u$$

is "small".

2

Why?

Control design:

- Real-time control is only possible with controllers of low complexity.
- The more complex the controller is, the more fragile.
- Control and optimization of systems governed by PDEs is impossible for large-scale systems arising from FE discretization.

 \implies a must!

Why (Cont.)?

Simulation:

Repeated simulation for different force terms (input signals).

- VLSI chip design.
- Simulation of coupled PDE systems.
- Compact models for μ -electro-mechanical systems (MEMS).

 \implies reduces the simulation time!

Example

 μ -mechanical Gyroscope [The Imego Institute (Sweden) + Saab Bofors Dynamics AB]

- Commercial rate sensor with applications in inertial navigation systems.
- Simulation problem: Improve the design with respect to a number of parameters.

• n = 17,361 states.

Can we obtain a reduced-order model with similar behavior?

<u>Outline</u>

- 1. Truncation methods for model reduction.
- 2. Solution of Lyapunov equations.
- 3. Large problems: Parallelization.
- 4. Getting to the user.
- 5. Conclusions.

Outline

- 1. Truncation methods for model reduction.
 - Krylov-based methods.
 - SVD-based methods: Balanced Truncation.
- 2. Solution of Lyapunov equations.
- 3. Large problems: Parallelization.
- 4. Getting to the user.
- 5. Conclusions.

Rationale of Truncation Methods

Let

$$(A,B,C,D,x^0) \quad \text{and} \quad G(s)=C(sI_n-A)^{-1}B+D.$$

Consider a state-space transformation defined by $T \in \mathbb{R}^{n \times n}$ and $(\bar{A}, \bar{B}, \bar{C}, D, z^0) = (TAT^{-1}, TB, CT^{-1}, D, Tx^0).$

Then,

$$\bar{G}(s) = \bar{C}(sI_n - \bar{A})^{-1}\bar{B} + D
= CT^{-1}(sI_n - TAT^{-1})^{-1}TB + D
= C(sI_n - A)^{-1}B + D = G(s).$$

Rationale of Truncation Methods (Cont.)

Given a state-space transformation $T \in \mathbb{R}^{n \times n}$, partition

$$T = \begin{bmatrix} T_l \\ W_l \end{bmatrix}$$
 and $T^{-1} = [T_r, W_r],$

with $T_l \in \mathbb{R}^{r imes n}$, $T_r \in \mathbb{R}^{n imes r}$.

Truncation methods compute the reduced-order model:

 $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) = (T_l A T_r, T_l B, C T_r, D).$

Goal: Find T_l and T_r and choose r such that $||y - \hat{y}||$ is "small".

Taxonomy

(Antoulas'02):

- Krylov-based approximation methods.
 - Approach: Compute a low-dimensional subspace T that approximates the trajectory of x(t) and project the system into that subspace.
 - Based on the Arnoldi iteration: composed of matrix-vector products.
 - Exploit/preserve sparsity.

 \implies Applicable to large-scale (sparse) systems!

Taxonomy (Cont.)

- SVD-based approximation methods.
 - Preserve stability.
 - Provide a global error bound on $||G \hat{G}||$.
 - Numerically efficient, but applicable to large-scale (sparse) systems?

Even for large systems the answer is yes! (provided we use parallel computing).

Balanced Truncation (Moore, 81)

One of many absolute error methods, which aim at

$$\min \|G - \hat{G}\|_{\infty}$$

as

$$||y - \hat{y}||_2 \le ||G - \hat{G}||_{\infty} ||u||_2.$$

Here, $\|\cdot\|_\infty$ denotes the $\mathcal{H}_\infty\text{-norm}$ which is \dots too complex to define using words ;-)

Other methods: Hankel norm approximation, singular perturbation approximation, relative error methods, etc.

12

Balanced Truncation (Cont. I)

Composed of the following three steps:

 ${\operatorname{Step}}$ 1. Solve the *coupled* Lyapunov matrix equations

$$AW_c + W_c A^T + BB^T = 0,$$

$$A^T W_o + W_o A + C^T C = 0,$$

for the observability and controllability Gramians, W_c and W_o resp.

Actually, we need the Cholesky factors ${\cal S}$ and ${\cal R}$ such that

$$W_c = S^T S, \quad W_o = R^T R.$$

 $\boldsymbol{S} \text{ and } \boldsymbol{R} \text{ are dense!}$

Balanced Truncation (Cont. II)

Step 2. Compute the Hankel singular values (HSV) from

$$SR^{T} = U\Sigma V^{T} = \begin{bmatrix} U_{1} & U_{2} \end{bmatrix} \begin{bmatrix} \Sigma_{1} \\ \Sigma_{2} \end{bmatrix} \begin{bmatrix} V_{1}^{T} \\ V_{2}^{T} \end{bmatrix},$$

with U, V, and Σ partitioned at a certain order r.

The HSV in $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$, measure how much a state is involved in energy transfer from a given input to a certain output!

Balanced Truncation (Cont. III)

Step 3. In the square-root balance truncation (SRBT) method (Heath et al, 87; Tombs, Postlethwaite'87):

 $T_l = \Sigma_1^{-1/2} V_1^T R$ and $T_r = S^T U_1 \Sigma_1^{-1/2}$,

and $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) = (T_l A T_r, T_l B, C T_r, D).$

• Computable error bound:

$$\|G - \hat{G}\|_{\infty} \le 2\sum_{k=r+1}^{n} \sigma_k.$$

• Allows adaptive choice of r.

BT: Summary (in MATLAB)

```
>> % Step 1: Solve the coupled Lyapunov matrix equations
>> Wc = lyap(A, B*B'); S = chol(Wc);
>> Wo = lyap(A',C'*C); R = chol(Wo);
>>
>> % Step 2: Compute the HSV
>> [U,Sigma,V] = svd(S*R');
>>
>> % Step 3: Apply the SRBT method
>> U1 = U(:,1:r); V1 = V(:,1:r); Sigma1 = Sigma(1:r,1:r);
>>
>> T_l = inv(Sigma1.^(1/2)) * V1' * R;
>> T_r = S' * U1 * inv(Sigma1.^(1/2));
>>
>> Ar = T_1 * A * T_r; Br = T_1 * B; Cr = C * T_r;
```


Balanced Truncation (Cont. IV)

Given (A,B,C,D,x^0) with A large, and $m,p\ll n\ldots$

How do we solve the previous numerical problems?

- 1. Coupled Lyapunov equations.
- 2. SVD of matrix product.
- 3. Application of the SRBT formulae to obtain the reduced-order model.

Outline

- 1. Truncation methods for model reduction: SVD-based approach.
- 2. Solution of Lyapunov equations.
 - Traditional methods.
 - Sign function methods.
 - LR-ADI iteration.
- 3. Large problems: Parallelization.
- 4. Getting to the user.
- 5. Conclusions.

Case Study I

CD player.

- Tracking the lens of a CD player.
- Design problem: design low-cost controller that makes servo-system faster and robust to shocks.
- n = 120 states, m = 2 inputs, p = 2 outputs.

Austin - Sept. 2004 Parallel Model Reduction of Large Dynamical Linear Systems <u>Traditional Methods</u> (Bartels, Stewart, 72) Consider the (real) Schur decomposition of A $A = U^T \check{A} U.$ where A is (quasi-)triangular and U is orthogonal. Then, $A^T W_0 + W_0 A + C^T C = 0 \Longrightarrow$ $U(A^T W_o + W_o A + C^T C = 0)U^T \Longrightarrow$ $UA^{T}U^{T}UW_{o}U^{T} + UW_{o}U^{T}UAU^{T} + UC^{T}CU^{T} = 0 \Longrightarrow$ $\check{A}^T \check{W}_o + \check{W}_o \check{A} + \check{C}^T \check{C} = 0 \quad \equiv \qquad ? \quad +$ = is a "reduced" form of this equation. 20

Austin - Sept. 2004

=

Traditional Methods (Cont. I)

Method:

- 1. Obtain the Schur decomposition of $A = U^T \check{A} U$.
- 2. Compute $\check{C} = CU^T$.
- 3. Solve the reduced equation

 $\check{A}^T \check{W}_o + \check{W}_o \check{A} + \check{C}^T \check{C} = 0$ by "back-substitution".

4. Compute W_o from $W_o = U^T \check{W}_o U$.

A variation allows to obtain the Cholesky factor of \check{W}_o and from there that of W_o (Hammarling, 82).

 \equiv

+

Experimental Results: CD Player

Model reduction using Bartels-Stewart method:

	CD player
n	120
r	42
n_p	1
Time	0.68"
$\ G - \hat{G}\ _{\infty}$	1.6e - 01

- Less than 1''!
- Allows construction of a cheaper controller!

•
$$\|G - \hat{G}\|_{\infty} \approx 1.6e - 01$$

Isn't that bad?

Experimental Results: CD Player

Traditional Methods: Properties

- \bullet Function lyap in MATLAB R .
- Currently based on routines of the same functionality in SLICOT (NICONET European Joint Project): http://win.tue.nl/niconet.
- The (real) Schur form is computed via the QR algorithm.
- Deliver Cholesky factors of order n.
- Do not exploit sparsity of A.
- Difficult to parallelize.

 \implies applicable up to $\mathcal{O}(10^3)$.

Austin - Sept. 2004

Case Study II

Optimal cooling of steel profiles.

- Part of a manufacturing method for steel profiles.
- Design problem: design control that achieves moderate gradient temperatures when cooling from $1,000^{\circ}$ C to 500° C.
- n = 5,171 states, m = 7 inputs, p = 6 outputs.

Sign Function Methods

Given $\alpha \in \mathbb{R}$,

$$\operatorname{sign}(\alpha) = \begin{cases} 1 \text{ if } \alpha > 0, \\ -1 \text{ if } \alpha < 0, \\ \text{undefined otherwise.} \end{cases}$$

For a matrix $A \in \mathbb{R}^{n \times n}$, sign (A) is a function of the signs of its eigenvalues.

Given

$$H = \begin{bmatrix} A & 0\\ C^T C & -A^T \end{bmatrix}, \quad \text{sign}(H) = \begin{bmatrix} -I_n & 0\\ 2W_o & I_n \end{bmatrix},$$

where W_o is the observability Gramian.

So, how do we compute the sign function?

Sign Function Methods (Cont. I)

For $H = \begin{bmatrix} A & 0 \\ C^T C & -A^T \end{bmatrix}$ the classical Newton iteration boils down to $A_{j+1} = \frac{1}{2}(A_j + A_j^{-1})/2, \quad A_0 = A,$ $R_{j+1} = \frac{1}{\sqrt{2}} \begin{bmatrix} R_j \\ R_j A_i^{-1} \end{bmatrix}, \quad R_0 = C,$

which converges to R, the Cholesky factor of W_o .

At each iteration R_j is increased in p rows (p being the number of outputs).

Sign Function Methods (Cont. II)

As in model reduction R (and S) is usually rank-deficient the cost of the iteration and subsequent steps can be greatly reduced (Benner, Quintana, 98):

At the jth iteration, compute the rank-revealing QR (RRQR) factorization

$$\frac{1}{\sqrt{2}} \begin{bmatrix} R_j \\ R_j A_j^{-1} \end{bmatrix} = \bar{Q}\bar{R}\Pi$$

and then set

$$R_{j+1} = (\bar{R}\Pi)^T.$$

On convergence the iteration produces dense, full-rank \hat{R} with $l \ll n$ columns, such that

$$\hat{R}^T \hat{R} \approx R^T R = W_o.$$

28

Implications on Steps 2 and 3

Replace the Cholesky factors by their (dense) low-rank approximations in

$$SR^T \approx \hat{S}^T \hat{R} = U \Sigma V^T.$$

as the product $\hat{S}^T \hat{R}$ is of order $k \times l$, with k, $l \ll n$.

The computation of the projection matrices

$$T_l = \Sigma_1^{-1/2} V_1^T \hat{R}_k^T, \quad T_r = \hat{S}_k U_1 \Sigma_1^{-1/2},$$

is also cheaper.

Experimental Results

Cluster with 32 nodes \times 2 Intel Pentium Xeon@2.4GHz, 1GB RAM, connected with Myrinet switches, 2Gbps peak bandwidth.

Experimental Results: Optimal cooling of steel profiles.

Parallel model reduction via sign function:

	Profiles
n	5,177
r	40
n_p	32
Time	38'33"
$\ G - \hat{G}\ _{\infty}$	3.5e - 04

- \bullet Takes \approx 40' to reduce Example 6 from order 5,177 to 40.
- Remember, the reduced-order model serves two purposes:
 - It is frequently necessary for control design.
 - Reduces simulation time.
- Reduce once, use it as many times as you want!

Sign Function Methods: Properties

- \bullet More reliable if S and R are numerically singular.
- Reduced form is better conditioned.
- Also more efficient as usually $\operatorname{rank}(S)$, $\operatorname{rank}(R) \ll n \dots$
- Ultimately, quadratic convergence.
- Highly parallel, as demonstrated in PLiCMR (Benner, Quintana-Ortí×2): http://spine.act.uji.es/~plicmr.
- Do not exploit any sparsity: The inverse of a sparse matrix is, in general, dense.

 \implies applicable up to $\mathcal{O}(10^4)$.

Case Study III

 μ -thruster array [IMTEK (UNIV. FREIBURG)/EU PROJECT μ -PYROS]

- Co-integration of solid fuel with silicon μ -machined system.
- Used for "nano-satellites" and gas generation.
- Design problem: reach the ignition temperature within the fuel without reaching the critical temperature at the neighbour μ -thrusters.
- n from 4,257-79,177 states, p=7 outputs.

Case Study III: μ -thruster array

Large-scale problems in model reduction are usually sparse.

State matrix:

LR-ADI Iteration (Penzl, 98; Li, White, 99-02; Antoulas et al, 00-03) Consider

$$AW_c + W_c A^T = BB^T.$$

The LR-ADI iteration is defined as:

$$V_{0} = (A + p_{1}I_{n})^{-1}B, \qquad \hat{S}_{0} = \sqrt{-2 \operatorname{Re}(p_{1})} V_{0}, \qquad (1)$$

$$V_{j+1} = V_{j} - \delta_{j}(A + p_{j+1}I_{n})^{-1}V_{j}, \qquad \hat{S}_{j+1} = \begin{bmatrix} \hat{S}_{j} \ , \ \gamma_{j}V_{j+1} \end{bmatrix}, \qquad (1)$$
where $\gamma_{j} = \sqrt{\operatorname{Re}(p_{j+1})/\operatorname{Re}(p_{j})}.$
Here, $p = \{p_{1}, p_{2}, \dots, p_{l}\}$ are the "shifts".
After j iterations, we obtain a dense factor $\hat{S}_{j} \in \mathbb{R}^{n \times (j \cdot m)}$ such that
$$\hat{S}_{j}\hat{S}_{j}^{T} \approx S^{T}S = W_{c}.$$

35

Experimental Results: μ -thruster array

Parallel model reduction via LR-ADI iteration:

	μ -thruster
n	79,841
r	60
n_p	16
Time	6'58''

LR-ADI Iteration: Properties

Properties of the LR-ADI iteration:

- As reliable as the sign function.
- Also as efficient as usually $\operatorname{rank}(S)$, $\operatorname{rank}(R) \ll n$...
- At most, superlinear convergence.
- Parallelism dictated by the sparsity of A and the solver; see SpaRed: (Badía, Benner, Quintana-Ortí, Mayo): http://spine.act.uji.es/~plicmr/SpaRedW3/SpaRed.html.
- Exploit the sparsity of A.

 \implies applicable up to $\mathcal{O}(10^6)$, depending on the sparsity and solver.

Outline

- 1. Truncation methods for model reduction: SVD-based approach.
- 2. Solution of Lyapunov equations.
- 3. Large problems: Parallelization.
 - Use of parallel LA libraries.
- 4. Getting to the user.
- 5. Conclusions.

Parallelization

Variety of LA operations:

Outline

- 1. Truncation methods for model reduction: SVD-based approach.
- 2. Solution of Lyapunov equations.
- 3. Large problems: Parallelization.
- 4. Getting to the user.
- 5. Conclusions.

Friendly Access (?)

Do you have a large-scale model to reduce and an appropriate cluster?

Steps:

- 1. Install BLAS, LAPACK, (and MPI?,)
- 2. Install SuperLU, MUMPS, ScaLAPACK, PLAPACK,

3. Install our parallel model reduction codes,...

Friendly Access (Cont.)

... or visit http://spine.act.uji.es/~plicmr

http://spine.act.uji.es/~plicmr/SpaRedW3/SpaRedW3.html

	Spa Job Subr	RedW ³ : nission Form		
1. User identifier		2. User password		_
3. Model reduction method • Low Rank Sq	uare Root	4. Solver	Default	
5. Order selection • Fixed			0.00.000.0000	
6 Number of states		7 Number of innuts		
8 Number of outputs		9. Order of reduced		
10 Tolomnos 1		system		
10. Toterance 1		13. Compress tool	Not compressed	C 82
14 Class of State Metric C Dongo	C Conorol Bond		C compress	Czi
C Symm. Band (General	15. <u>Class of Matrix</u> Entries	 Real Complex 	
16. <u>e-mail</u> yourmail@mail.server	oparse		5.15 WEARD - 25594	
File for A	Browse	File for B		Browse.
File for C	Browse	File for D		Browse.
File for C	Browse	File for D		Brows

Concluding Remarks

- Krylov-based subspace methods are not enterily satisfactory.
- Existing serial libraries are not powerful enough: MATLAB/SLICOT $\rightarrow \mathcal{O}(10^3)$.
- \bullet Parallel model reduction algorithms in PLiCMR allow reduction of systems with ${\cal O}(10^4)$ states.
- \bullet Parallel SRBT algorithms in SpaRed allow reduction of sparse systems with ${\cal O}(10^6)$ states.
- Efficacy depends on parallelism of underlying parallel libraries and, in the sparse case, in the sparsity pattern.
- Please, contact us if you have any large systems to reduce \rightarrow quintana@icc.uji.es.

