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Dynamical Linear Systems

Linear time-invariant systems:

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) + Du(t), t ≥ 0,

• n state-space variables, i.e., n is the order of the system;

• m inputs,

• p outputs,

• A is stable.

Corresponding TFM:

G(s) = C(sIn − A)−1B + D.

Large-scale for engineers means n ≈ 100, 000− 500, 000.
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Goal for Model Reduction

Find a reduced-order model

˙̂x(t) = Âx̂(t) + B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,

of order r � n such that the output error

y − ŷ = Gu− Ĝu = (G− Ĝ)u

is “small”.
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Why?

Control design:

• Real-time control is only possible with controllers of low complexity.

• The more complex the controller is, the more fragile.

• Control and optimization of systems governed by PDEs is impossible for
large-scale systems arising from FE discretization.

=⇒ a must!
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Why (Cont.)?

Simulation:

Repeated simulation for different force terms (input signals).

• VLSI chip design.

• Simulation of coupled PDE systems.

• Compact models for µ-electro-mechanical systems (MEMS).

=⇒ reduces the simulation time!
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Example

µ-mechanical Gyroscope [The Imego Institute (Sweden) +

Saab Bofors Dynamics AB]

• Commercial rate
sensor with applications in inertial
navigation systems.

• Simulation problem: Improve the
design with respect to a number of
parameters.

• n = 17, 361 states.

Can we obtain a reduced-order model with similar behavior?
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Outline

1. Truncation methods for model reduction.

2. Solution of Lyapunov equations.

3. Large problems: Parallelization.

4. Getting to the user.

5. Conclusions.
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Outline

1. Truncation methods for model reduction.

•Krylov-based methods.

• SVD-based methods: Balanced Truncation.

2. Solution of Lyapunov equations.

3. Large problems: Parallelization.

4. Getting to the user.

5. Conclusions.
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Rationale of Truncation Methods

Let
(A, B, C,D, x0) and G(s) = C(sIn − A)−1B + D.

Consider a state-space transformation defined by T ∈ Rn×n and

(Ā, B̄, C̄, D, z0) = (TAT−1, TB,CT−1, D, Tx0).

Then,
Ḡ(s) = C̄(sIn − Ā)−1B̄ + D

= CT−1(sIn − TAT−1)−1TB + D
= C(sIn − A)−1B + D = G(s).
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Rationale of Truncation Methods (Cont.)

Given a state-space transformation T ∈ Rn×n, partition

T =

[
Tl

Wl

]
and T−1 = [Tr, Wr] ,

with Tl ∈ Rr×n, Tr ∈ Rn×r.

Truncation methods compute the reduced-order model:

(Â, B̂, Ĉ, D̂) = (TlATr, TlB, CTr, D).

Goal: Find Tl and Tr and choose r such that ‖y − ŷ‖ is “small”.

9& %



' $
Parallel Model Reduction of Large Dynamical Linear Systems Austin - Sept. 2004

Taxonomy

(Antoulas’02):

• Krylov-based approximation methods.

– Approach: Compute a low-dimensional subspace T that approximates
the trajectory of x(t) and project the system into that subspace.

– Based on the Arnoldi iteration: composed of matrix-vector products.

– Exploit/preserve sparsity.

=⇒ Applicable to large-scale (sparse) systems!
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Taxonomy (Cont.)

• SVD-based approximation methods.

– Preserve stability.

– Provide a global error bound on ‖G− Ĝ‖.
– Numerically efficient, but applicable to large-scale (sparse) systems?

Even for large systems the answer is yes! (provided we use parallel
computing).
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Balanced Truncation (Moore, 81)

One of many absolute error methods, which aim at

min ‖G− Ĝ‖∞
as

‖y − ŷ‖2 ≤ ‖G− Ĝ‖∞‖u‖2.

Here, ‖ · ‖∞ denotes the H∞-norm which is . . . too complex to define using
words ;-)

Other methods: Hankel norm approximation, singular perturbation
approximation, relative error methods, etc.
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Balanced Truncation (Cont. I)

Composed of the following three steps:

Step 1. Solve the coupled Lyapunov matrix equations

AWc + WcA
T + BBT = 0,

ATWo + WoA + CTC = 0,

for the observability and controllability Gramians, Wc and Wo resp.

Actually, we need the Cholesky factors S and R such that

Wc = STS, Wo = RTR.

S and R are dense!
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Balanced Truncation (Cont. II)

Step 2. Compute the Hankel singular values (HSV) from

SRT = UΣV T = [ U1 U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
,

with U , V , and Σ partitioned at a certain order r.

The HSV in Σ = diag(σ1, . . . , σn), measure how much a state is involved
in energy transfer from a given input to a certain output!
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Balanced Truncation (Cont. III)

Step 3. In the square-root balance truncation (SRBT) method (Heath
et al, 87; Tombs, Postlethwaite’87):

Tl = Σ
−1/2
1 V T

1 R and Tr = STU1Σ
−1/2
1 ,

and (Â, B̂, Ĉ, D̂) = (TlATr, TlB, CTr, D).

• Computable error bound: ‖G− Ĝ‖∞ ≤ 2
∑n

k=r+1 σk.

• Allows adaptive choice of r.
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BT: Summary (in MATLAB)

>> % Step 1: Solve the coupled Lyapunov matrix equations

>> Wc = lyap(A,B*B’); S = chol(Wc);

>> Wo = lyap(A’,C’*C); R = chol(Wo);

>>

>> % Step 2: Compute the HSV

>> [U,Sigma,V] = svd(S*R’);

>>

>> % Step 3: Apply the SRBT method

>> U1 = U(:,1:r); V1 = V(:,1:r); Sigma1 = Sigma(1:r,1:r);

>>

>> T_l = inv(Sigma1.^(1/2)) * V1’ * R;

>> T_r = S’ * U1 * inv(Sigma1.^(1/2));

>>

>> Ar = T_l * A * T_r; Br = T_l * B; Cr = C * T_r;
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Balanced Truncation (Cont. IV)

Given (A, B, C,D, x0) with A large, and m, p � n. . .

How do we solve the previous numerical problems?

1. Coupled Lyapunov equations.

2. SVD of matrix product.

3. Application of the SRBT formulae to obtain the reduced-order model.
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Outline

1. Truncation methods for model reduction: SVD-based approach.

2. Solution of Lyapunov equations.

•Traditional methods.

• Sign function methods.

• LR-ADI iteration.

3. Large problems: Parallelization.

4. Getting to the user.

5. Conclusions.
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Case Study I

CD player.

• Tracking the lens of a CD player.

• Design problem: design low-cost
controller that makes servo-system
faster and robust to shocks.

• n = 120 states, m = 2 inputs,
p = 2 outputs.
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Traditional Methods (Bartels, Stewart, 72)

Consider the (real) Schur decomposition of A

A = UT ǍU,

where Ǎ is (quasi-)triangular and U is orthogonal. Then,

ATWo + WoA + CTC = 0 =⇒

U(ATWo + WoA + CTC = 0)UT =⇒

UATUTUWoU
T + UWoU

TUAUT + UCTCUT = 0 =⇒

ǍTW̌o + W̌oǍ + ČT Č = 0
≡

is a “reduced” form of this equation.
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Traditional Methods (Cont. I)

Method:

1. Obtain the Schur decomposition of A = UT ǍU.

2. Compute Č = CUT .

3. Solve the reduced equation

ǍTW̌o +W̌oǍ+ ČT Č = 0
≡

by “back-substitution”.

4. Compute Wo from Wo = UTW̌oU.

A variation allows to obtain the Cholesky factor of W̌o and from there that
of Wo (Hammarling, 82).
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Experimental Results: CD Player

Model reduction using Bartels-Stewart method:

CD player

n 120
r 42
np 1

Time 0.68′′

‖G− Ĝ‖∞ 1.6e− 01

• Less than 1′′!

• Allows construction of a cheaper controller!

• ‖G− Ĝ‖∞ ≈ 1.6e− 01

Isn’t that bad?
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Experimental Results: CD Player

Remember: ‖G− Ĝ‖∞ is an absolute error!
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Traditional Methods: Properties

• Function lyap in MATLAB r©.

• Currently based on routines of the same functionality in SLICOT
(NICONET European Joint Project):
http://win.tue.nl/niconet.

• The (real) Schur form is computed via the QR algorithm.

• Deliver Cholesky factors of order n.

• Do not exploit sparsity of A.

• Difficult to parallelize.

=⇒ applicable up to O(103).
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Case Study II

Optimal cooling of steel profiles.

• Part of a manufacturing method for
steel profiles.

• Design problem: design control
that achieves moderate gradient
temperatures when cooling from
1, 000o C to 500o C.

• n = 5, 171 states, m = 7 inputs,
p = 6 outputs.
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Sign Function Methods

Given α ∈ R,

sign (α) =

 1 if α > 0,
−1 if α < 0,
undefined otherwise.

For a matrix A ∈ Rn×n, sign (A) is a function of the signs of its
eigenvalues.

Given

H =

[
A 0

CTC −AT

]
, sign (H) =

[
−In 0
2Wo In

]
,

where Wo is the observability Gramian.

So, how do we compute the sign function?
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Sign Function Methods (Cont. I)

For H =

[
A 0

CTC −AT

]
the classical Newton iteration boils down to

Aj+1 =
1

2
(Aj + A−1

j )/2, A0 = A,

Rj+1 =
1√
2

[
Rj

RjA
−1
j

]
, R0 = C,

which converges to R, the Cholesky factor of Wo.

At each iteration Rj is increased in p rows (p being the number of
outputs).
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Sign Function Methods (Cont. II)

As in model reduction R (and S) is usually rank-deficient the cost of the
iteration and subsequent steps can be greatly reduced (Benner, Quintana,
98):

At the jth iteration, compute the rank-revealing QR (RRQR) factorization

1√
2

[
Rj

RjA
−1
j

]
= Q̄R̄Π

and then set

Rj+1 = (R̄Π)T .

On convergence the iteration produces dense, full-rank R̂ with l � n
columns, such that

R̂T R̂ ≈ RTR = Wo.
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Implications on Steps 2 and 3

Replace the Cholesky factors by their (dense) low-rank approximations in

SRT ≈ ŜT R̂ = UΣV T .

as the product ŜT R̂ is of order k × l, with k, l � n.

The computation of the projection matrices

Tl = Σ
−1/2
1 V T

1 R̂T
k , Tr = ŜkU1Σ

−1/2
1 ,

is also cheaper.
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Experimental Results

Cluster with 32 nodes × 2 Intel Pentium Xeon@2.4GHz, 1GB RAM,
connected with Myrinet switches, 2Gbps peak bandwidth.
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Experimental Results: Optimal cooling of steel profiles.

Parallel model reduction via sign function:

Profiles

n 5, 177
r 40
np 32

Time 38′33′′

‖G− Ĝ‖∞ 3.5e− 04

• Takes ≈ 40’ to reduce Example 6 from order 5,177 to 40.

• Remember, the reduced-order model serves two purposes:

– It is frequently necessary for control design.

– Reduces simulation time.

• Reduce once, use it as many times as you want!

31& %



' $
Parallel Model Reduction of Large Dynamical Linear Systems Austin - Sept. 2004

Sign Function Methods: Properties

• More reliable if S and R are numerically singular.

• Reduced form is better conditioned.

• Also more efficient as usually rank (S), rank (R) � n. . .

• Ultimately, quadratic convergence.

• Highly parallel, as demonstrated in PLiCMR (Benner, Quintana-Ort́ı×2):
http://spine.act.uji.es/~plicmr.

• Do not exploit any sparsity: The inverse of a sparse matrix is, in general,
dense.

=⇒ applicable up to O(104).
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Case Study III

µ-thruster array [IMTEK (Univ. Freiburg)/EU project µ-pyros]

• Co-integration of solid fuel with
silicon µ-machined system.

• Used for “nano-satellites” and gas
generation.

• Design problem: reach the ignition
temperature within the fuel without
reaching the critical temperature at
the neighbour µ-thrusters.

• n from 4,257−79,177 states, p = 7
outputs.
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Case Study III: µ-thruster array

Large-scale problems in model reduction are usually sparse.

State matrix:
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LR-ADI Iteration (Penzl, 98; Li, White, 99-02; Antoulas et al, 00-03)

Consider
AWc + WcA

T = BBT .

The LR-ADI iteration is defined as:

V0 = (A + p1In)
−1B, Ŝ0 =

√
−2 Re(p1) V0,

Vj+1 = Vj − δj(A + pj+1In)
−1Vj, Ŝj+1 =

[
Ŝj , γjVj+1

]
,

(1)

where γj =
√

Re(pj+1)/Re(pj).

Here, p = {p1, p2, . . . , pl} are the “shifts”.

After j iterations, we obtain a dense factor Ŝj ∈ Rn×(j·m) such that

ŜjŜ
T
j ≈ STS = Wc.
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Experimental Results: µ-thruster array

Parallel model reduction via LR-ADI iteration:

µ-thruster

n 79, 841
r 60
np 16

Time 6′58′′
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LR-ADI Iteration: Properties

Properties of the LR-ADI iteration:

• As reliable as the sign function.

• Also as efficient as usually rank (S), rank (R) � n. . .

• At most, superlinear convergence.

• Parallelism dictated by the sparsity of A and the solver; see SpaRed:
(Bad́ıa, Benner, Quintana-Ort́ı, Mayo):
http://spine.act.uji.es/~plicmr/SpaRedW3/SpaRed.html.

• Exploit the sparsity of A.

=⇒ applicable up to O(106), depending on the sparsity and solver.
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Outline

1. Truncation methods for model reduction: SVD-based approach.

2. Solution of Lyapunov equations.

3. Large problems: Parallelization.

•Use of parallel LA libraries.

4. Getting to the user.

5. Conclusions.
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Parallelization

Variety of LA operations:

LR−ADI

Lyapunov
equations SVD

Comp.
projectors

Comp.
model

M−V product

function
Sign

Matrix inversion

Matrix product Linear systems
Eigenvalues

Linear systems

RRQR fact.

Linear systems

SVD

Matrix product Matrix product Matrix product

dense
sparse/banded densedense dense sparse/banded

dense

method
SRBT
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Parallelization (Cont.)

Use multiple parallel LA libraries:

Sparse
system

US SS NS

MUMPS 4.3

LAPACK BLAS MPI

PLAPACK

?

SYGE NE GB SB NB

Banded
system

Dense
system

SuperLU 2.0ScaLAPACK
v1.6

Model
Reduction
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Outline

1. Truncation methods for model reduction: SVD-based approach.

2. Solution of Lyapunov equations.

3. Large problems: Parallelization.

4. Getting to the user.

5. Conclusions.
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Friendly Access (?)

Do you have a large-scale model to reduce and an appropriate cluster?

Steps:

1. Install BLAS, LAPACK, (and MPI?,)

2. Install SuperLU, MUMPS, ScaLAPACK, PLAPACK,

3. Install our parallel model reduction codes,...
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Friendly Access (Cont.)

. . . or visit http://spine.act.uji.es/~plicmr

http://spine.act.uji.es/~plicmr/SpaRedW3/SpaRedW3.html
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Concluding Remarks

• Krylov-based subspace methods are not enterily satisfactory.

• Existing serial libraries are not powerful enough:

MATLAB/SLICOT → O(103).

• Parallel model reduction algorithms in PLiCMR allow reduction of
systems with O(104) states.

• Parallel SRBT algorithms in SpaRed allow reduction of sparse systems
with O(106) states.

• Efficacy depends on parallelism of underlying parallel libraries and, in the
sparse case, in the sparsity pattern.

• Please, contact us if you have any large systems to reduce
→ quintana@icc.uji.es.
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