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Motivation

• Boundary Element Methods (BEM) for the solution of integral equations
in electromagnetics and acoustics lead to dense linear systems of
O(n5 − n6).

• Sometimes, fast multipole methods are not the solution.

A system with n = 1,000,000 requires ≈ 8 Tbytes of memory!

=⇒

• Necessary to use disk storage.

• Important to reduce I/O overhead: OOC techniques.
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Outline

• LU factorization.

• Slabwise OOC implementation.

• Update of an LU factorization.

• Tiled OOC implementation.

• Numerical experiments.

• Conclusions.
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LU factorization

Interest: First stage for solving a linear system Ax = b:

1. Factorize A = LU , with L/U lower/upper triangular.

2. Solve Ly = b.

3. Solve Ux = y.

We concentrate in stage 1 as it presents the major difficulties for OOC.

Several implementations are possible: right-looking, left-looking, etc.

Blocked variants are used for performance.

3& %



' $
Parallel High-Performance OOC Solvers for Electromagnetics PARA’04 - June 2004

LU factorization (Cont.)

Partial (rowwise) pivoting is added for numerical stability:

• Pivoting (as in LINPACK):

L−1
n Pn · · ·L−1

2 P2L
−1
1 P1A = U.

– Row permutations are applied to A as it is transformed.

– After the factorization, L is not provided explictly.

• In LAPACK permutations are reorganized:

L−1
n Pn · · ·L−1

2 P2L
−1
1 P1A =

L̂−1
n · · · L̂−1

2 L̂−1
1 Pn · · ·P2P1A = L−1PA = U.

– Row permutations are applied to L and A.
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Slabwise (left-looking) OOC implementation

Proceed by bringing slabs (panels) of t columns into memory:

• Left-looking algorithm minimizes memory writes.

• Working with slabs allows to respect partial pivoting.

t

n−j

j

Update

Update and Factorize

m=
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Slabwise (left-looking) OOC implementation (Cont. I)

Proceeding by slabs of dimension n× t:

• Read the slab and the lower trapezoidal matrix to the left, and write
back the slab

→ 2n2 + n3/3t I/O operations.

Thus,
I/O

Computation
=

2n2 + n3/3t

2n3/3
≈ 1

2t
.

As n grows, t ↓, so that I/O becomes considerable!
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Slabwise (left-looking) OOC implementation (Cont. II)

Tiled approaches (use square tiles of order t) solve this problem.

• System: 1 Gbyte of RAM, I/O rate=40 MBytes/sec., 2.6 Gflops.

However, it does
not allow partial
pivoting to be used!
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Update of an LU factorization

Consider the matrix (
A B
C D

)
.

Given that PA = LU is available,. . .

how can we use it to obtain a factorization of the whole matrix?

Interest: modeling the radar signature of an airplane (and also OOC; see in
a moment).

Solve j=0,1,2,. . . (
A Bj

Cj Dj

) (
x1,j

x2,j

)
=

(
b1,j

b2,j

)
,

with A much bigger than Bj, Cj, and Dj.
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Update of an LU factorization (Cont. I)

LU factorization of 2t× 2t

(
A B
C D

)
with incremental pivoting:

1. Factor PA = LU .

2. Update B consistently B := L−1PB.

3. Factor P̄

(
U
C

)
=

(
L̄1

L̄2

)
Ū = L̄Ū .

4. Update

(
B
D

)
:=

(
L̄−1

1 B
D − L̄2(L̄

−1
1 B)

)
.

5. Factor P̂D = L̂Û .

• Dummy approach: 4t3/3 additional flops.

• The key lies in exploiting the structure in stages 3 and 4.
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Update of an LU factorization (Cont. II)

Stage 3: Factor

(
U
C

)
proceeding by blocks of k × k.

P0
L0 U0

k

k

= =

Application of L−1
0 P0 to the remaining blocks preserves the structure.
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Update of an LU factorization (Cont. III)

P1
L1 U1= =

 

. . . and so on.
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Update of an LU factorization (Cont. IV)

As U already stores the factors of PA = LU from stage 1

→ Need additional storage for t/k (lower) triangular k × k factors.
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Update of an LU factorization (Cont. V)

Reorganizing L−1
2 P2L

−1
1 P1L

−1
0 P0

(
U
C

)
=

(
Ū
0

)
as in LAPACK destroys

the structure of L increasing the cost of the update in stage 4!

P1

Fill−in in L
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Numerical Stability

Stability of LU factorization is linked with element growth.

Growth Worst case Avg. case

Complete pivoting O(n1+x) n1/2

Partial pivoting 2n−1 n2/3

Pairwise pivoting 4n−1 n

• Theoretically, both partial and pairwise pivoting are unstable.

• However, practice tells us to trust partial pivoting.

• Pairwise pivoting is not that much worse (Wilkinson, Demmel, Sorensen).

• Incremental pivoting is a combination of partial/pairwise pivoting.

• Solutions can be improved by iterative refinement: unexpensive.
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Numerical Stability

Averaged element growth; 10 repetitions for each matrix size.
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Tiled OOC implementation

Just employ a generalization of the LU update idea. . .

C

B

D

A

A

C D

B

A B

C D

DC

A B

...

. . .
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Tiled OOC implementation (Cont. I)

• One-tile, two-tile, three-tile algorithms are possible.

• In practice, we use a right-looking three-tile algorithm.

Rapid development? Use of FLAME APIs described in previous talk:

• From paper to running MATLAB code in one morning.

• 463 lines of code using MATLAB, 923 using FLAMEC, 1825 using
PLAPACK+POOPLAPACK.
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Numerical Experiments

• All results obtained on an Intel Itanium2 (R) architecture (900MHz) with
8 Gbytes of RAM memory (donated by HP).

• Use of ieee double-precision arithmetic.

• Theoretical peak of 3.6 Gflops.

• In practice, 3.1 Glops for in-core LU factorization (5,200× 5,200 matrix).
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Numerical Experiments (Cont. I)
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Concluding Remarks

• Update of an LU factorization.

• Tiled algorithm for OOC LU factorization → linear systems.

• Easy implementation using FLAME, PLAPACK, and POOCLAPACK.

• Good performance and scalability.

• Numerical stability different from that of partial pivoting
→ iterative refinement.
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