Evaluation and Tuning of Level 3 CUBLAS for Graphics Processors

Sergio Barrachina Maribel Castillo Francisco Igual Rafael Mayo Enrique S. Quintana-Ortí

> Universitat Jaume I Spain

9th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing Miami, April 2008

🗇 🕨 🔺 🖻 🕨 🔺 🖻

Motivation

Current graphics processors (GPUs) are gaining wide appeal as HPC accelerators

Evaluation and Tuning of Level 3 CUBLAS

<ロ> <回> <回> <回> < 回> < 回>

Motivation (II)

- GPUs are being transformed into general-purpose devices of wide appeal (GPGPU):
 - High performance
 - 2 Low cost
 - Programmability

• Applied in many problems: physical simulations, real-time image processing, linear algebra, signal processing,...

🗇 🕨 🖌 🖻 🕨 🖌 🗐 🕨

Outline

2 Level 3 CUBLAS Evaluation and Tuning

- GEMM. Padding
- SYRK and TRSM
- Partitioning for Larger Matrices
- Hybrid Computation

• • = • • =

CUDA Hardware

- A CUDA-enabled device is seen as a coprocessor to the CPU, capable of executing a very high number of threads in parallel
- Example: nVIDIA G80 as a set of SIMD Multiprocessors with On-Chip Shared Memory

- Up to 128 *Streaming Processors* (SP), grouped in clusters
- SP are SIMD processors
- Small and fast Shared Memory shared per SP cluster

• Local 32-bit registers per processor

CUDA Software

- The CUDA API provides a simple framework for writing C programs for execution on the GPU
- Consists of:
 - A minimal set of extensions to the C language
 - A runtime library of routines for controlling the transfers between video and main memory, run-time configuration, execution of device-specific functions, handling multiple GPUs,...

CUDA libraries

On top of CUDA, nVIDIA provides two optimized libraries: CUFFT and CUBLAS

イロト イポト イヨト イヨト

CUBLAS Example

```
int main( void ){
                                         A typical CUDA (and
float * h_vector, * d_vector;
                                         CUBLAS) program has 3
h_vector = (float *) malloc (M*sizeof (float));
                                         phases:
cublasAlloc(M. sizeof(float).
                                          Allocation and transfer of
           (void **) &d_vector);
                                              data to GPU
cublasSetVector(M, sizeof(float), h_vector,
               d_vector. 1):
                                          Execution of the BLAS
cublasSscal(M, ALPHA, d_vector, 1);
cublasGetVector(M, sizeof(float), d_vector,
                                              kernel
               h_vector. 1):
                                          Transfer of results back to
cublasFree(d_vector);
                                              main memory
```

(日) (同) (三) (三)

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

Level 3 CUBLAS Evaluation

- BLAS are the building blocks for more complex linear algebra operations (e.g., solution of dense linear systems)
- There exist optimized versions of the BLAS tuned for most current processors: GotoBLAS, Intel MKL, AMD ACML,...

・ロト ・同ト ・ヨト ・ヨト

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

Level 3 CUBLAS Evaluation

- BLAS are the building blocks for more complex linear algebra operations (e.g., solution of dense linear systems)
- There exist optimized versions of the BLAS tuned for most current processors: GotoBLAS, Intel MKL, AMD ACML,...

Goals

- Evaluate the result of the Level 3 BLAS in CUBLAS
- Tune the implementations in CUBLAS to attain higher performance

イロト イポト イヨト イヨト

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

Experimental Setup

Intel Core 2 Duo with a nVIDIA 8800 Ultra board:

	CPU	GPU
Processor	Intel Core 2 Duo	NVIDIA 8800 Ultra
Codename	Crusoe E6320	G80
Clock frequency	1.86 GHz	575 MHz
Memory speed	$2 \times 333 \text{ MHz}$	$2 \times 900 \text{ MHz}$
Bus width	64 bits	384 bits
Max. bandwidth	5.3 GB/s	86.4 GB/s
Memory	1024 MB DDR2	768 MB GDDR3
Bus	PCI Express x16 (4 GB/s)	

CUDA and CUBLAS 1.0 and single precision arithmetic used in the experiments

(日) (同) (三) (三)

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

Evaluated BLAS routines

GEMM

$$C := \beta \cdot C + \alpha \cdot op(A) \cdot op(B)$$

SYRK

$$C := \beta \cdot C + \alpha \cdot A \cdot A^T \text{ or} C := \beta \cdot C + \alpha \cdot A^T \cdot A$$

TRSM

$$op(A) \cdot X = \alpha \cdot B$$
 or
 $X \cdot op(A) = \alpha \cdot B$

where op(X) = X or X^T

SYMM and TRMM similar

Evaluation and Tuning of Level 3 CUBLAS

< ロ > < 回 > < 回 > < 回 > < 回 > .

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

GEMM Evaluation

Evaluation and Tuning of Level 3 CUBLAS

<ロ> <同> <同> < 回> < 回>

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

GEMM Evaluation

Main remarks

• Peak performance is ~ 116 Gflops for GEMM

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

GEMM Evaluation

Main remarks

- $\bullet\,$ Peak performance is ${\sim}116$ Gflops for GEMM
- Performance attained for large matrices is much better than that of small/medium problems

Stream-oriented architecture

・ロト ・同ト ・ヨト ・ヨト

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

GEMM Evaluation

Main remarks

- $\bullet\,$ Peak performance is ${\sim}116$ Gflops for GEMM
- Performance attained for large matrices is much better than that of small/medium problems

₩

Stream-oriented architecture

- The peak observed for m = 4000 is also observed for all dimensions multiple of 32
- Our proposal: padding to improve performance

< ロ > < 同 > < 三 > < 三

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

GEMM Tuning: Padding

Evaluation and Tuning of Level 3 CUBLAS

<ロ> <同> <同> < 回> < 回>

э

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

SYRK Evaluation

Matrix dimension (m=k)

Evaluation and Tuning of Level 3 CUBLAS

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

SYRK Evaluation

Main remarks

• Peak performance is \sim 40 Gflops for SYRK \Rightarrow Suboptimal implementation

Evaluation and Tuning of Level 3 CUBLAS

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

SYRK Evaluation

Main remarks

- Peak performance is \sim 40 Gflops for SYRK \Rightarrow Suboptimal implementation
- As for GEMM, results attained for big matrices are better

(日) (同) (三) (三)

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

SYRK Evaluation

Main remarks

- Peak performance is \sim 40 Gflops for SYRK \Rightarrow Suboptimal implementation
- As for GEMM, results attained for big matrices are better
- Our proposal: padding and build on top of GEMM

(日) (同) (三) (三)

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

Building SYRK on top of GEMM

- Both SYRK and TRSM yield poor performance compared with that of the GEMM
- Assuming the partitioning for SYRK:

• if the first block of columns of *C* has been computed, we can proceed by:

$$C_{11} := \beta \cdot C_{11} + \alpha \cdot A_1 \cdot A_1^T$$
$$C_{21} := \beta \cdot C_{21} + \alpha \cdot A_2 \cdot A_1^T$$

SYRK and TRSM

Building SYRK on top of GEMM

SSYRK

Evaluation and Tuning of Level 3 CUBLAS

・ 同 ト ・ 三 ト ・ 三

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

Building TRSM on top of GEMM

Evaluation and Tuning of Level 3 CUBLAS

A (10) A (10) A (10)

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

Partitioning for Larger Matrices

- Transfer times GPU <---> CPU are an important bottleneck
- Our blocked version of GEMM allows to overlap:
 - The partial multiplication A_p and B_p and
 - The transference of the next pair of blocks A_{p+1} and B_{p+1} , being A_p and B_p blocks of columns of A and B, respectively
- Nor CUDA 1.0 neither G80 allow the overlapping of communication and calculation on GPU (supported by more recent systems!)
- An orthogonal benefit: it enables computation with larger matrices that do not fit on GPU memory

イロト イポト イヨト イヨト

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

Hybrid Computation

- While GPU is performing a calculation, CPU can also be executing part of the computation
- We implement a hybrid GEMM implementation following the decomposition:

- Values for N' and N'' must be selected carefully to balance the computation load
- Same approach applied to SYRK and TRSM with similar results

< ロ > < 同 > < 三 > < 三

GEMM. Padding SYRK and TRSM Partitioning for Larger Matrices Hybrid Computation

Hybrid Computation

Matrix dimension (m=n=k)

SGEMM

Evaluation and Tuning of Level 3 CUBLAS

<ロ> <同> <同> < 回> < 回>

Conclusions and Future Work

- Although CUBLAS is a vendor-specific library, it is not highly optimized. In particular, not all routines are equally optimized (GEMM is the best)
- Applying simple ideas, it is possible to attain higher and more predictable results without modifying CUBLAS
- The source code of CUBLAS has been recently released!!

Possible to apply our improvements directly to CUBLAS, and even apply more fine-grained optimizations

- 4 同 6 4 日 6 4 日 6

Thanks for your interest!

Enrique S. Quintana-Ortí

More information

quintana@icc.uji.es
http://www3.uji.es/~figual/publications.html