SuperMatrix Out-of-Order Scheduling of Matrix Operations
for SMP and Multi-core Architectures

Enrique S. Quintana-Orti

UNIVERSITAT
JAUME-I

Dept. de Ingenieria y Ciencia de Computadores
Universidad Jaime | de Castellon

quintana@icc.uji.es

Developing dense LA libraries

 FLAME: joint project with Robert van de Geijn (UT-Austin)
http://www.cs.utexas.edu/users/flame

: il H

UNIVERSITAT
JAUME-I

- Methodology for formal derivation of dense LA algorithms
- Optimization on HPC architectures

» Support from:

- NSF CCF-0540926 “Foundations of programming linear
algebra algorithms on SMP and multicore systems”

- NSF CCF-0702714 “Foundations and applications of
hierarchically stored matrices”

Outline

 Motivation
« FLAME
e FLAME for SMP and multi-core architectures

Outline

* Motivation
Developing dense LA libraries for HPC architectures

Architectures C*&
(hardware) PR ING

Motivation

« Development of dense LA libraries:
- Needs of scientists and engineers
- “Current” HPC architecture

1975- 1985- 1995- 2005- 2015-

Multi-core,FPGA,
GPU

Clusters

H

How to develop the final dense LA library?

Motivation

« What features should one expect from a final library?

Functionality, high performance, portability, and accuracy of current libraries

The real challenge is compatibility with the 7uture (unknown)

1975- 1985- 1995- 2005- 2015-

Multi-core, FPGA,
GPU

Vector Clusters

Motivation

« What features should one expect from a final library?

Functionality, high performance, portability, and accuracy of current libraries

Future (unknown)

New operations
(functionality)

Algorithms
New architectures L//’]x New languages

Architectures
(hardware)

Motivation

 How to develop the final dense LA library? Mid-term goal of FLAME

/

Tools for the
mechanic (automatic) generation from:

Mathematical specification
of the operation

Algorithms
Model of the J] P\\\] Rewritting rules

architecture . of the language
Architectures
(hardware)

Outline

- FLAME

[ACM1] P. Bientinesi, J. A. Gunnels, M. Myers, E. S. Quintana,
R. van de Geijn, “The science of deriving dense linear algebra
algorithms”, ACM TOMS, 2005

— ULProcessors

- Notation

- New operations

- New languages

- New architectures

FLAME

« Case study: Cholesky factorization of (s.p.d.) matrix A

=LLT

*Needed in the solution of a certain class of linear systems Ax =5

FLAME:

10

FLAME: systematic derivation

Problem

AN

Experience
& art

Algorithm

.

FLAME:

-New operations

/ Scientific method

[ACMA1]: Systematic procedure for dense LA
- Composed of 8 steps

- The first two steps determine the following ones:
- 1st step: precondition and poscondition

P_: (A=AT) & (A>0)

pre

P . (tRLAA)=L)& (LLT =A)

pos

- 2nd step: loop-invariant

(ATL ATR] (LTL ATR

[ABL ABR J [LBL ABR-LBL LBLT

11

FLAME:

-New operations

FLAME: systematic derivation

Problem

AN

Systematic
procedure

Algorithm

Algorithm: A i— CuoL_une (A}
i

FLAME notation

Alporithm: A= CHoL_uvNe(A)

‘_.-_1.- A.-
Partition 4 — (LL fH)

Apr Az r
where Ay is 0 =10

while wn(App) < m(d) do

Repartition

b

i i
(A'I'LIAT'H) A}HJIHJL 2‘41;
— iy I”ll .

A A
ar|Asn Agp Jozr [Azaz

b

where s 1 = 1

)] == 4,4K7]

fay 1= dag gy

.-"-133 = .-"-lgg —’I‘Iill,{-ugl-u-ilzl

Continue with

Ao | oo Ifii-ui

Arp | Arg
J T I
I — | a{g o] ais
Apr |Asr -
Asg |azy | Azz

endwhile

12

FLAME:

-New operations

FLAME: systematic derivation

e Current status:

Applied with success to BLAS-1, BLAS-2, BLAS-3,
and a major part of LAPACK

* Impact:

Systematic derivation of dense LA from mathematical specifications
of the operations

New operations
(functionality)

Algorithms

Archictures : : Compilers,

(hardware) Languages, and libraries

13

FLAME:

-New languages

FLAME: application programming interfaces

. [[ACM1]: C interface
Algorithm

Alporithm: A= (!.‘llr::ul,_l'ma{Aj
Arr VAre)

Apr |Asr

where _dpp is 00 = 0

Algorithm: A — CHOL_UNGLA)

Partition 4 — (

Transi/ation?

int Chol_unb(FLA_Obj A)
{

Code

ST

&ABL, &ABR, 0, 0, FLA_TL);

1

2

3 PP

4 JMFLA_Part 2x2(A, &ATL, &ATR,
5

6

7

FROGRAMMIMNG
LANCUNGE \

[

B T

FLAME:

-New languages

FLAME: application programming interfaces

e Current status:

C, Fortran
—

Algorithm =—p APIs —p \atlab, Labview
LaTeX

* Impact:

The knowledge (algorithm) remains unchanged when a new
language appears; it suffices to develop the corresponding AP/

New operations
(functionality)

Algorithms

7
- New languages

Architectures
(hardware)

FLAME:

-New architectures

FLAME: families of algorithms

Algorithm

Algorithm: A — CHOL_UNGLA)

Optimization?

Architecture

[For each operation, there exist several algorithms

/1)

3 scalar variants and
3 blocked variants:

K families of algorithms

16

FLAME:

-New architectures

FLAME: families of algorithms

[Different variants yield different performance

Algorithm
ATEoriimy 1= ot Performance on a single processor of SGI Altix 350
6
51 //_/-f "
@O,
S5 —— V1
©
k=2 —=—V3
o S 2
Optimization .
0
. o o o o o o o o o o o
Architecture 5 8 § 8 ¢ 8 8 8 g 8 &g
Matrix size
K ltanium2@1.5GHz (IA-64) L3 6MB

17

FLAME:

-New architectures

FLAME: families of algorithms

[Also on SMPs

Algorithm
ATeorTiho: T i Performance on 16 processors of SGI Altix 350
90
80 1 V1 best
o 70
8 60 - —=— V1
:IL; 50 - —a\/2
2 40 —— V3
L G 30
Optimization 20 |
10 -
0
. o o o o o o o o o o
Architecture S 8 8 8 8 g8 8 g8 g g
Matrix size
K 16 x ltanium2@1.5GHz (IA-64) L3 6MB
+ SGI NUMAIink

18

FLAME:

-New architectures

FLAME: families of algorithms

Algorithm

Algorithm: A — CHOL_UNGLA)

Optimization

Architecture

[[ACM1]: Generation of families of algorithms

Precondition, poscondition,
and loop-invariants |4, I,,.., 1,

1

Automatic i Im]ﬁu.mﬂﬁ

generation i

/ 1\

Algorithms V4, V,,..,V,

19

FLAME:

-New architectures

FLAME: families of algorithms

Algorithm

Algorithm: A — CHOL_UNGLA)

Optimization

Architecture

[[ACM1]: Analysis of families of algorithms

Algorithms V4, V,,..,.V,

\ 1/

Analysis and
optimization

Optimal performance

20

FLAME:

-New architectures

FLAME: families of algorithms

 Current status: libFLAME 0.9

Applied with success to BLAS-1, BLAS-2, BLAS-3,
and a major part of LAPACK, for IA-32, IA-64 and SMPs

* Impact:

Exploring the best option among several (algorithms)
for a specific architecture

New operations
(functionality)

Algorithms

“New” architectures Architectures Compilers, New languages

(hardware) languages, and libraries

21

FLAME: summary

Mathematical specification

of the operation

1

Formal
derivation

FLAME:

-Notation

-New operations
-New languages
-New architectures

Development of
dense LA libraries
for current HPC architectures

Rewritting rules of the
tlanguage

APIls: mechanical
translation into codes

Model of the
architecture

Analysis and
optimization

A
AR
ANTE

RAM

Disk/remote mem.

22

Outline

e FLAME for SMP and multi-core architectures

[ACM2] E. Chan, E. S. Quintana, G. Quintana, R. van de Geijn,
‘Supermatrix out-of-order scheduling of matrix operations for
SMP and multi-core architectures” 19th ACM SPAA, 2007

— SMP and multi-core

- Motivation

- Improving the scalability

- Improving the locality of reference
- Results

23

FLAME CMP:
-Motivation

FLAME multi-core: motivation

 FLAME is forward compatible to future architectures!

Multi-core processors or CMPs (chip multiprocessors)

-IBM+Sony+Toshiba CELL BE: 1+8 cores

- SUN UltraSparc Niagara T1 (8 cores), Intel Quad Core (4 cores),
AMD Athlon 64 x2 (2 cores)

Future?

- Intel prototype with 80 cores, manycore in the near future
- Double #cores per generation

24

FLAME CMP:
-Motivation

FLAME multi-core: motivation

« CMP # Shared Memory Multiprocessors (SMPs)
- Scale: hundreds of cores in a chip
- Heterogeneity in CMPs (e.g., systems with cores with different capabilities)
- Organization

CMP

MMC
(")
TTT P
L1 L1 L1 L1

L1 L1 L1 L1
I I I I

| | | | | | | |
L2
_ | _J

>< Red

l
I

Network in chip: fast/cheap communications between cores in CMPs

25

FLAME CMP:
-Motivation

FLAME multi-core: motivation

* Requirements on libraries for CMPs:
- Scalability
- Flexibility (for heterogeneity)
- Locality of reference (keep communications inside chip)

Where are we now (SMPs)?
- Atrtificial limits to the degree of concurrency
- Implementation only for experts
- Locality of reference based solely on blocked algorithms

FLAME multi-core: scalability

Organization of a superscalar processor:

Instruction
window

UF,

ﬁ

ISS

/

UF,

N

UF,

1. In-order decodification stage (/nstruction Level Parallelism)
2. Out-of-order issue stage, preserving dependences (Tomasulo)

3. Parallel execution

FLAME CMP:

-Scalability

27

FLAME multi-core: scalability

FLAME CMP:

-Scalability

* Organization of scalable parallel processingin CMP (proposal)

Task
window

Dec.

ﬁ

Sched

/

N

1. Decomposition into task in the first stage of execution (Data/Task Level

Parallelism)

2. Dynamic scheduling
3. Out-of-order issue stage, preserving dependences (Tomasulo)

28

FLAME CMP:

-Scalability
FLAME multi-core: scalability
1. Decomposition into tasks (automatic stage)
| int Chol blk(FLA Obj A, int b) -
2 A
3
4 while (FLA_Obj_length(ATL) < FLA_Obj_length(A)){
5
6 Task
7 /* All := Chol_unb(All) */ .
8 Chol_unb(A1l); WII’]dOW
9
10 /* A21 := A21 * TRIL(All)~-T */ Dec Y
11 FLA_Trsm(..., All, A21);)
12
13 /* A22 := A22 — TRIL(A21 * A21"T) */
14 FLA_Syrk(..., A21,..., A22);
15 /% e
16 .
17 }

- Decomposition module is common to all library
- Recursive decomposition; 2-D for scalability
- Tasksize: b

29

FLAME CMP:

-Scalability
FLAME multi-core: scalability
2. Dynamic scheduling = Spatial assignment of tasks to cores
1 int Chol blk(FLA Ob3 A, int b) -
2 A
3
4 while (FLA_Obj_length(ATL) < FLA_Obj_length(A)){
5
6 Task
7 /* All := Chol_unb(All) */ .
8 Chol_unb(All); window
9
10 /* A21 := A21 * TRIL(All)~-T */ Dec. t=—p
11 FLA Trsm(..., All, A21);)
12
13 /* A22 := A22 — TRIL(A21 * A21"T) */
14 FLA_Syrk(..., A21,..., A22);
15 /% e
16 .
17 }

- Different computational cost of tasks requires dynamic scheduling for
balancing

30

FLAME CMP:

-Scalability

FLAME multi-core: scalability

3. Out-of-order issue = 7Temporal assignment of tasks to cores

Task
window

—p| Sched.

Dim

- Scheduler (module) common to all library; architecture-aware
- Schedule first those tasks in the critical path

FLAME CMP:

-Scalability

FLAME multi-core: scalability

3. Out-of-order issue

1st lter. 2nd lter. 3rd lter.

- Concurrency is only limited by data dependencies: data/task parallelism

- Keeping track of dependencies: software implementation of Tomasulo’s
algorithm

32

FLAME multi-core: locality of reference

« Reducing off-chip communications

CMP

‘B)
‘TTT

L1 L1 L1 L1
I I I I

| Rd |
L2
_ | _J

1. Affinity of tasks, threads, and cores
2. Recursive storage for matrices

Chip

FLAME CMP:

-Locality of reference

33

FLAME multi-core: locality of reference

1. Affinity of tasks, threads, and cores

T1

produces/consumes

e

> T2

CMP

LT

L1 Lt
I I
>

L1
|
Red

Ry
3

Chip

FLAME CMP:

-Locality of reference

A thread per core, which hopefully does not migrate during exectution

(depends on O.S.)

Dynamic scheduling of tasks to threads yes, but ot random:

locality of reference to local caches

34

FLAME CMP:

-Locality of reference

FLAME multi-core: locality of reference

2. Recursive storage for matrices

Traditional (C: rowwise)

Blockwise with a single level of recursion

- No need to pack/unpack blocks
- Operating by blocks reduces the number of data/TLB caches misses

- On the other hand, the storage schemes becomes less intuitive:
— FLASH API

35

FLAME CMP:

-Results
FLAME multi-core: results
* Preliminary: SMP = CMP

90 -

80 -

70 | —=— Scalability+Affinity+Recursive

storage

o 60 1 —s— Scalability +Affinity
u -
3 50 - —=— Scalabilit
i y
D 40
() —=— V3

30 +

—=— LAPACK

20 +

10

0

o o o o o o o o o o
s § 8 § 8 & R & 8§ g

Matrix size

16 x [tanium2@1.5GHz (I1A-64) L3 6MB

36

FLAME CMP:
-Motivation
-Scalability

-Locality of reference
-Results

FLAME multi-core: summary

e Current status:

Applied with success to Cholesky and LU w/out pivoting factorizations, BLAS-3;
LU with pivoting and QR factorization under development

* Impact:

The knowledge (library) remains unchanged,; it suffices to develop
the corresponding runtime system (dec.+scheduler)

New operations
(functionality)

Algorithms

New architectures Architectures Compilers, New languages

(hardware) languages, and libraries

37

FLAME: summary

Hierarchical
storage (API)

Dec. b

T

Automatic decomposition
into tasks

FLAME CMP:
-Motivation
-Scalability

-Locality of reference

-Results

Development of
dense LA libraries
for multi-core processors

