High Performance Matrix Inversion on a Multi-core

Platform with Several GPUs

Pablo Ezzattil, Enrique S. Quintana-Orti? and Alfredo Remdn?

LCentro de Calculo-Instituto de Computacién, Univ. de la Reptblica
pezzatti@fing.edu.uy
2Depto. de Ing. y Ciencia de los Computadores, Univ. Jaume | de Castellén
{quintana,remon}@icc.uji.es

Ayia Napa — February 2011

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion of large-scale matrices

@ Appears in a number of scientific applications like model
reduction or optimal control

@ Requires a high computational effort, 2n> floating-point
operations (flops)

Graphics processors (GPUs)

@ Massively parallel architectures

@ Good results on the acceleration of linear algebra operations

Alfredo Remén (remon@icc.uji.es)

High Performance Matrix Inversion with Several GPUs

Outline

© Motivation

@ Matrix inversion

© Implementations on a multi-core CPU and multiple CPUs
© Experimental analysis

© Concluding remarks

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion

Two different approaches

@ Based on the Gaussian elimination (i.e., the LU factorization)
© Based on the Gauss-Jordan elimination (GJE)

Both approaches present similar computational cost
but different properties

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion via LU factorization

Q@ PA=LU

Q@ U—- Ut

@ Solve the system XL = U1 for X
@ Undo the permutations A~ := XP

Implementation

@ The algorithm sweeps through the matrix four times.

@ Presents a mild load imbalance, due to the work with
triangular factors.

Algorithm implemented by LAPACK

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion via GJE

Based on Gauss-Jordan elimination

@ In essence, it is a reordering of the operations

@ Same arithmetical cost

Implementation

@ The algorithm sweeps through the matrix once
— Less memory accesses

@ Most of the computations are highly parallel
— More parallelism

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion via GJE

At a given iteration:

A00 A01
A00 AOL AO2 0; A02
A10 All A12
A10 All Al2
A20 A21 A22
A20 A21 A22
A01 AOl
Aun | = GJEyns An
. Az A2
A11 isb x b

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion via GJE

A00 AOL A02 A00 A01 A02

A10 All A12 A10 All Al2

A20 A21 A22 A20 A21 A22
Aoo := Aoo + Ao1A1o Aoz := Aoz + Ao1A12
Ao := Az + Az1A10 Az = A + ArArn
Ao := A11A10 A1 = AnlAp

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion via GJE

Move boundaries for the next iteration

A0 Aol | Aoz

A10 All A12

A0 A21 A22
A11 isb x b

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Outline

@ Motivation

@ Matrix inversion

© Implementations on a multi-core CPU and multiple CPUs
© Experimental analysis

© Concluding remarks

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJE,,gpu

@ Executes every operation on the most convenient device:

o GJEyns on the CPU
@ Matrix-matrix products on the GPUs

Data distribution

@ Data is uniformly distributed among
GPUs

@ Each GPU performs the operations
that involve their respective panel

. Gru 1 GPU2 GPu3 M GRU4

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJE,,gpu

@ All GPUs compute concurrently

@ The update of current panel on the
CPU is overlapped with some
updates on the GPUs

@ The active column panel is
transferred to the CPU initially,
and broadcasted to the GPUs after
being updated

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJE; 5

@ Based on GJE,,gpy but reordering the
operations applying a look-ahead
approach

@ The first b columns of block
[Ao2; A12; Azo] are updated and
transferred to the CPU

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJE; 4

@ The CPU updates [Ap1; A11; A21] and
the new received block (that is, blocks
[Ao1; A11; A21] of the next iteration)

@ Concurrently, the GPUs update the
rest of the matrix.

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEp,.

@ The optimal algorithmic block-size for CPU and GPU are
significantly different

@ The use of the same block-size in both architectures limits the
performance of GJE 4

@ In this version, the CPU employs a blocked version of GJE
instead of the unblocked one

@ The CPU and GPUs employ block-sizes b and b, respectively,
allowing each architecture to optimize its performance

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEcp

@ At any iteration, one of the GPUs
require more time than the rest,
leading to load imbalance

@ We can partially overcome this
problem by employing a cyclic
distribution

@ The matrix is partitioned in blocks of
b columns, and the ith block of o o T O

columns is stored and updated by the
(i mod k)-th GPU

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEperge

@ All GPUs perform 3 operations per iteration

@ Performing a minor change on our algorithm, we can reduce it
to one operation per iteration with the following advantages:

o Less overhead due to routines invokations

@ Avoid the matrix-matrix products that involve small blocks

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEyerge

At a given iteration:

AO00 AO1 A02 A00 A01 AO2
A10 All Al2 A10 All Al12
A20 A21 A22 A20 A21 A22

) Ao1 Aot

Ai1isb x b A | = GJEpLk A1

A2l A2l

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEyerge

A00 A0 A02

A10 All A12 Wi = Ao
Ao =0
Ws = A
A =

A20 A2l A22 12:=0

AooAo2 AooAo2 Ao1
AwA | = | AwAn |+ | Au | [WiW,]

A20A22 A20A2 A2

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEyerge

Move boundaries for the next iteration

AGO ! AOL A02

A0 All AL2

A0 A21 A22
A11 isb x b

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEperge

@ An important improvement in performance can be obtained by
merging the extra copies with the swap stage required by
pivoting.

o Thus, Wi and W5 will contain blocks A1 and Ajo after the
pivoting has been applied.

o This considerably reduces the number of memory accesses and
partially hides the overhead introduced by the copies of Ajg
and Ajp»

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Outline

© Motivation

@ Matrix inversion

© Implementations on a multi-core CPU and multiple CPUs
© Experimental analysis

© Concluding remarks

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Experimental analysis

Processors # Cores Frequency | L2 cache | Memory
(MB) (GB)

Intel Xeon QuadCore 8 (2x4) 2.27 8 48

NVIDIA TESLA c1060 || 960 (4x240) 1.3 - 16(4x4)

BLAS Implementations

e MKL 11.1

o NVIDIA CUBLAS 3.0

Results for matrices with 1000 < n < 64000

Alfredo Remén (remon@icc.uji.es)

High Performance Matrix Inversion with Several GPUs

Experimental analysis

(Martix inversion on 2 GPUs)

600 ‘
LAPACK -+
LINO -~
GJEmgpu
s00 b CIE, A —
a0 | —
n
&
S 300 | —
[
3]
200 b —
100 | —
0 s s s s s s s
0 5 10 15 20 30 35

Matrix dimension (

Alfredo Remén (remon@icc.uji.es)

40

25
x1000)

High Performance Matrix Inversion with Several GPUs

Experimental analysis

(Martix inversion on 4 GPUs)

1200 T T

1000 |

800 |

600 |

GFLOPS

e S s

0 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Matrix dimension (x1000)

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Experimental analysis

(Variant GJEperge on 1, 2, 3 and 4 GPUs)

1400 . T
GJEMerge on 1 GPU
GJEMerge on 2 GPUs —o—
- A A .
1200 I GJEperge on 3 GPUs —=— - P
GJEperge on 4 GPUs
1000 [R
'J/.'J—I*'
©v 800 | |
o,
o
|
[
S 600 P |
400 R
200 F e
0
0 10 20 3 70

0 40 50
Matrix dimension (x1000)

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Outline

© Motivation

@ Matrix inversion

© Implementations on a multi-core CPU and multiple CPUs
© Experimental analysis

© Concluding remarks

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Concluding Remarks

@ We have presented five implementations of matrix inversion
based on the GJE method on multiple GPUs

@ Those implementations are between 6 and 12 times faster
than LAPACK using 4 GPUs and exhibit excellent scalability
properties (with a nearly linear speed-up)

@ The use of multiple GPUs
o Reduce the computational time
@ Increments the amount of memory available, allowing the
inversion of larger matrices

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

@ Evaluation of double precision arithmetic on the new NVIDIA
Fermi architecture

® GJEperge implementation is clearly limited by the performance
of CUBLAS routine for matrix-matrix products. Other GPU
Kernels should be evaluated

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Questions ?

Alfredo Remén (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

