
High Performance Matrix Inversion on a Multi-core

Platform with Several GPUs

Pablo Ezzatti1, Enrique S. Quintana-Ort́ı2 and Alfredo Remón2

1Centro de Cálculo-Instituto de Computación, Univ. de la República
pezzatti@fing.edu.uy

2Depto. de Ing. y Ciencia de los Computadores, Univ. Jaume I de Castellón
{quintana,remon}@icc.uji.es

Ayia Napa – February 2011

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion of large-scale matrices

Appears in a number of scientific applications like model
reduction or optimal control

Requires a high computational effort, 2n3 floating-point
operations (flops)

Graphics processors (GPUs)

Massively parallel architectures

Good results on the acceleration of linear algebra operations

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Outline

1 Motivation

2 Matrix inversion

3 Implementations on a multi-core CPU and multiple CPUs

4 Experimental analysis

5 Concluding remarks

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion

Two different approaches

1 Based on the Gaussian elimination (i.e., the LU factorization)

2 Based on the Gauss-Jordan elimination (GJE)

Both approaches present similar computational cost
but different properties

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion via LU factorization

1 PA = LU

2 U → U
−1

3 Solve the system XL = U
−1 for X

4 Undo the permutations A
−1 := XP

Implementation

The algorithm sweeps through the matrix four times.

Presents a mild load imbalance, due to the work with
triangular factors.

Algorithm implemented by LAPACK

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion via GJE

Based on Gauss-Jordan elimination

In essence, it is a reordering of the operations

Same arithmetical cost

Implementation

The algorithm sweeps through the matrix once
→ Less memory accesses

Most of the computations are highly parallel
→ More parallelism

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion via GJE

At a given iteration:

A11A10 A12

A21A20 A22

A01A00 A02

A11 is b × b

A11A10 A12

A21A20 A22

A01A00 A02

2

4

A01

A11

A21

3

5 := GJEunb

0

@

2

4

A01

A11

A21

3

5

1

A

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion via GJE

A11A10 A12

A21A20 A22

A01A00 A02

A00 := A00 + A01A10

A20 := A20 + A21A10

A10 := A11A10

A11A10 A12

A21A20 A22

A01A00 A02

A02 := A02 + A01A12

A22 := A22 + A21A12

A12 := A11A12

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Matrix inversion via GJE

Move boundaries for the next iteration

A00 A01 A02

A10 A11 A12

A20 A21 A22

A11 is b × b

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Outline

1 Motivation

2 Matrix inversion

3 Implementations on a multi-core CPU and multiple CPUs

4 Experimental analysis

5 Concluding remarks

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEmGPU

Executes every operation on the most convenient device:

GJEUNB on the CPU
Matrix-matrix products on the GPUs

Data distribution

Data is uniformly distributed among
GPUs

Each GPU performs the operations
that involve their respective panel

GPU 1 GPU 2 GPU 3 GPU 4

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEmGPU

All GPUs compute concurrently

The update of current panel on the
CPU is overlapped with some
updates on the GPUs

The active column panel is
transferred to the CPU initially,
and broadcasted to the GPUs after
being updated

GPU 1 GPU 2 GPU 3 GPU 4

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJELA

Based on GJEmGPU but reordering the
operations applying a look-ahead
approach

The first b columns of block
[A02;A12;A22] are updated and
transferred to the CPU

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

GPU 1 GPU 2 GPU 3 GPU 4

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJELA

The CPU updates [A01;A11;A21] and
the new received block (that is, blocks
[A01;A11;A21] of the next iteration)

Concurrently, the GPUs update the
rest of the matrix. ���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

GPU 1 GPU 2 GPU 3 GPU 4

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEML

The optimal algorithmic block-size for CPU and GPU are
significantly different

The use of the same block-size in both architectures limits the
performance of GJELA

In this version, the CPU employs a blocked version of GJE
instead of the unblocked one

The CPU and GPUs employ block-sizes b and bc respectively,
allowing each architecture to optimize its performance

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJECD

At any iteration, one of the GPUs
require more time than the rest,
leading to load imbalance

We can partially overcome this
problem by employing a cyclic
distribution

The matrix is partitioned in blocks of
b columns, and the ith block of
columns is stored and updated by the
(i mod k)-th GPU

GPU 1 GPU 2 GPU 3 GPU 4

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEMerge

All GPUs perform 3 operations per iteration

Performing a minor change on our algorithm, we can reduce it
to one operation per iteration with the following advantages:

Less overhead due to routines invokations

Avoid the matrix-matrix products that involve small blocks

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs
Implementation GJEMerge

At a given iteration:

A11A10 A12

A21A20 A22

A01A00 A02

A11 is b × b

A11A10 A12

A21A20 A22

A01A00 A02

2

4

A01

A11

A21

3

5 := GJEblk

0

@

2

4

A01

A11

A21

3

5

1

A

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs
Implementation GJEMerge

A11A10 A12

A21A20 A22

A01A00 A02

W1 := A10

A10 := 0

W2 := A12

A12 := 0

2

4

A00A02

A10A12

A20A22

3

5 :=

2

4

A00A02

A10A12

A20A22

3

5 +

2

4

A01

A11

A21

3

5 [W1W2]

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs
Implementation GJEMerge

Move boundaries for the next iteration

A00 A01 A02

A10 A11 A12

A20 A21 A22

A11 is b × b

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Implementations on a multi-core CPU and multiple GPUs

Implementation GJEMerge

An important improvement in performance can be obtained by
merging the extra copies with the swap stage required by
pivoting.

Thus, W1 and W2 will contain blocks A10 and A12 after the
pivoting has been applied.

This considerably reduces the number of memory accesses and
partially hides the overhead introduced by the copies of A10

and A12

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Outline

1 Motivation

2 Matrix inversion

3 Implementations on a multi-core CPU and multiple CPUs

4 Experimental analysis

5 Concluding remarks

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Experimental analysis

Processors # Cores Frequency L2 cache Memory

(MB) (GB)

Intel Xeon QuadCore 8 (2x4) 2.27 8 48

NVIDIA TESLA c1060 960 (4x240) 1.3 - 16(4x4)

BLAS Implementations

MKL 11.1

NVIDIA CUBLAS 3.0

Results for matrices with 1000 ≤ n ≤ 64000

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Experimental analysis

(Martix inversion on 2 GPUs)

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40

LIN0

G
F
L
O
P
S

Matrix dimension (x1000)

LAPACK

GJEmGPU
GJELA
GJEML
GJECD

GJEMerge

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Experimental analysis

(Martix inversion on 4 GPUs)

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40

G
F
L
O
P
S

Matrix dimension (x1000)

LAPACK
GJEmGPU

GJELA

GJEML

GJECD

GJEMerge

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Experimental analysis

(Variant GJEMerge on 1, 2, 3 and 4 GPUs)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70

G
F
L
O
P
S

Matrix dimension (x1000)

GJEMerge on 1 GPU
GJEMerge on 2 GPUs
GJEMerge on 3 GPUs
GJEMerge on 4 GPUs

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Outline

1 Motivation

2 Matrix inversion

3 Implementations on a multi-core CPU and multiple CPUs

4 Experimental analysis

5 Concluding remarks

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Concluding Remarks

We have presented five implementations of matrix inversion
based on the GJE method on multiple GPUs

Those implementations are between 6 and 12 times faster
than LAPACK using 4 GPUs and exhibit excellent scalability
properties (with a nearly linear speed-up)

The use of multiple GPUs

Reduce the computational time
Increments the amount of memory available, allowing the
inversion of larger matrices

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Future Work

Evaluation of double precision arithmetic on the new NVIDIA
Fermi architecture

GJEMerge implementation is clearly limited by the performance
of CUBLAS routine for matrix-matrix products. Other GPU
Kernels should be evaluated

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

Questions ?

Alfredo Remón (remon@icc.uji.es) High Performance Matrix Inversion with Several GPUs

