
High Performance Matrix Inversion of SPD
Matrices on Graphics Processors

P. Benner1, P. Ezzatti2, E.S. Quintana-Ort́ı3, Alfredo Remón3

1Max-Planck-Institute for Dynamics of Complex Technical Systems (Magdeburg, Germany).
2Centro de Cálculo-Inst. de la Computación,Univ. de la República (Montevideo, Uruguay).
3Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I (Castellón, Spain).

WEHA’11 - July 2011

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 1



Why matrix inversion?

▶ Matrix inversion requires an important computational effort

▶ Sometimes can be by-passed by solving systems of linear equations

→ But in some situations is necessary

▶ Examples include earth sciences and the matrix sign function
method for expectral decomposition

Why SPD matrices?

▶ In previous works we targeted the inversion of general matrices

▶ In this case the structure and properties of the matrix can be
exploited, reporting important savings in terms of memory and
computational time.

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 2



Why matrix inversion?

▶ Matrix inversion requires an important computational effort

▶ Sometimes can be by-passed by solving systems of linear equations

→ But in some situations is necessary

▶ Examples include earth sciences and the matrix sign function
method for expectral decomposition

Why SPD matrices?

▶ In previous works we targeted the inversion of general matrices

▶ In this case the structure and properties of the matrix can be
exploited, reporting important savings in terms of memory and
computational time.

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 2



Outline

Matrix inversion of SPD matrices

High performance implementations

Numerical results

Conclusions and future works

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 3



Matrix inversion of an SPD matrix
Traditional approach

Algorithm 2 Matrix inversion

1: Compute the Cholesky factorization A = UTU, where U ∈ ℝn×n is
upper triangular

2: Invert the triangular factor U → U−1

3: Obtain the inverse from the product U−1U−T = A−1

Requires n3 floating-point operations

Sweeps throught the matrix 3 times

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 4



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method

The the Gauss-Jordan elimination algorithm

▶ In essence, it is a reordering of the operations

▶ Presents the same arithmetical cost

Implementation

▶ The algorithm sweeps through the matrix once
→ Less memory accesses

▶ Most of the computations are highly parallel
→ More parallelism

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 5



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 1

Algorithm: [A] := GJEblk v1(A)

Partition A→
(
ATL ATR

★ ABR

)

where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

★ ABR

)
→

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

where A11 is b× b

W := −A00 ⋅A01 SYMM
A11 := A11 + AT

01 ⋅ A01 GEMM
A11 := chol(A11) POTRF

triu(A11) := triu(A11)
−1 TRTRI

W := W ⋅A11 TRMM
A01 := W ⋅AT

11 TRMM
A00 := A00 +W ⋅W T SYRK

A11 := triu(A11) ⋅ triu(A11)
T LAUUM

Continue with

(
ATL ATR

★ ABR

)
←

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

endwhile

Figure 1. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 1).

lower triangular part of the matrix, which are not referenced. We believe the
rest of the notation is intuitive. Next to each operation, we provide the name of
the BLAS kernel that is employed to perform the corresponding operation. In
both algorithms the inverse overwrites the initial matrix.

Up to eight operations are carried out at each iteration in the algorithm in
Figure 1. Two factors will limit the performance of a parallel implementation of
this algorithm. First, data dependencies serialize the execution of most of the
operations. Second, except the update of block A00, the computations involve
uniquely blocks of reduced size (taking into account that, for performance rea-
sons, the value of the block size b is chosen to be small compared with n). This
limits the inherent parallelism of the variant, specially during the first iterations
of the loop, when A00 is also a small block.

Figure 2 shows a second variant of the GJE algorithm where all the elements
of the upper part of the matrix are updated at each iteration. This results in the
same computational effort at any iteration. Again, data dependencies serialize

▶ 8 operations per
iteration

▶ 6 of them are
MM products

Limitations

▶ Data
dependencies

▶ Except A00 all
blocks are
”small”

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 6



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 1

Algorithm: [A] := GJEblk v1(A)

Partition A→
(
ATL ATR

★ ABR

)

where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

★ ABR

)
→

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

where A11 is b× b

W := −A00 ⋅A01 SYMM
A11 := A11 + AT

01 ⋅ A01 GEMM
A11 := chol(A11) POTRF

triu(A11) := triu(A11)
−1 TRTRI

W := W ⋅A11 TRMM
A01 := W ⋅AT

11 TRMM
A00 := A00 +W ⋅W T SYRK

A11 := triu(A11) ⋅ triu(A11)
T LAUUM

Continue with

(
ATL ATR

★ ABR

)
←

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

endwhile

Figure 1. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 1).

lower triangular part of the matrix, which are not referenced. We believe the
rest of the notation is intuitive. Next to each operation, we provide the name of
the BLAS kernel that is employed to perform the corresponding operation. In
both algorithms the inverse overwrites the initial matrix.

Up to eight operations are carried out at each iteration in the algorithm in
Figure 1. Two factors will limit the performance of a parallel implementation of
this algorithm. First, data dependencies serialize the execution of most of the
operations. Second, except the update of block A00, the computations involve
uniquely blocks of reduced size (taking into account that, for performance rea-
sons, the value of the block size b is chosen to be small compared with n). This
limits the inherent parallelism of the variant, specially during the first iterations
of the loop, when A00 is also a small block.

Figure 2 shows a second variant of the GJE algorithm where all the elements
of the upper part of the matrix are updated at each iteration. This results in the
same computational effort at any iteration. Again, data dependencies serialize

▶ 8 operations per
iteration

▶ 6 of them are
MM products

Limitations

▶ Data
dependencies

▶ Except A00 all
blocks are
”small”

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 6



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 1

Algorithm: [A] := GJEblk v1(A)

Partition A→
(
ATL ATR

★ ABR

)

where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

★ ABR

)
→

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

where A11 is b× b

W := −A00 ⋅A01 SYMM
A11 := A11 + AT

01 ⋅ A01 GEMM
A11 := chol(A11) POTRF

triu(A11) := triu(A11)
−1 TRTRI

W := W ⋅A11 TRMM
A01 := W ⋅AT

11 TRMM
A00 := A00 +W ⋅W T SYRK

A11 := triu(A11) ⋅ triu(A11)
T LAUUM

Continue with

(
ATL ATR

★ ABR

)
←

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

endwhile

Figure 1. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 1).

lower triangular part of the matrix, which are not referenced. We believe the
rest of the notation is intuitive. Next to each operation, we provide the name of
the BLAS kernel that is employed to perform the corresponding operation. In
both algorithms the inverse overwrites the initial matrix.

Up to eight operations are carried out at each iteration in the algorithm in
Figure 1. Two factors will limit the performance of a parallel implementation of
this algorithm. First, data dependencies serialize the execution of most of the
operations. Second, except the update of block A00, the computations involve
uniquely blocks of reduced size (taking into account that, for performance rea-
sons, the value of the block size b is chosen to be small compared with n). This
limits the inherent parallelism of the variant, specially during the first iterations
of the loop, when A00 is also a small block.

Figure 2 shows a second variant of the GJE algorithm where all the elements
of the upper part of the matrix are updated at each iteration. This results in the
same computational effort at any iteration. Again, data dependencies serialize

▶ 8 operations per
iteration

▶ 6 of them are
MM products

Limitations

▶ Data
dependencies

▶ Except A00 all
blocks are
”small”

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 6



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 1

Algorithm: [A] := GJEblk v1(A)

Partition A→
(
ATL ATR

★ ABR

)

where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

★ ABR

)
→

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

where A11 is b× b

W := −A00 ⋅A01 SYMM
A11 := A11 + AT

01 ⋅ A01 GEMM
A11 := chol(A11) POTRF

triu(A11) := triu(A11)
−1 TRTRI

W := W ⋅A11 TRMM
A01 := W ⋅AT

11 TRMM
A00 := A00 +W ⋅W T SYRK

A11 := triu(A11) ⋅ triu(A11)
T LAUUM

Continue with

(
ATL ATR

★ ABR

)
←

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

endwhile

Figure 1. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 1).

lower triangular part of the matrix, which are not referenced. We believe the
rest of the notation is intuitive. Next to each operation, we provide the name of
the BLAS kernel that is employed to perform the corresponding operation. In
both algorithms the inverse overwrites the initial matrix.

Up to eight operations are carried out at each iteration in the algorithm in
Figure 1. Two factors will limit the performance of a parallel implementation of
this algorithm. First, data dependencies serialize the execution of most of the
operations. Second, except the update of block A00, the computations involve
uniquely blocks of reduced size (taking into account that, for performance rea-
sons, the value of the block size b is chosen to be small compared with n). This
limits the inherent parallelism of the variant, specially during the first iterations
of the loop, when A00 is also a small block.

Figure 2 shows a second variant of the GJE algorithm where all the elements
of the upper part of the matrix are updated at each iteration. This results in the
same computational effort at any iteration. Again, data dependencies serialize

▶ 8 operations per
iteration

▶ 6 of them are
MM products

Limitations

▶ Data
dependencies

▶ Except A00 all
blocks are
”small”

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 6



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 1

Algorithm: [A] := GJEblk v1(A)

Partition A→
(
ATL ATR

★ ABR

)

where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

★ ABR

)
→

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

where A11 is b× b

W := −A00 ⋅A01 SYMM
A11 := A11 + AT

01 ⋅ A01 GEMM
A11 := chol(A11) POTRF

triu(A11) := triu(A11)
−1 TRTRI

W := W ⋅A11 TRMM
A01 := W ⋅AT

11 TRMM
A00 := A00 +W ⋅W T SYRK

A11 := triu(A11) ⋅ triu(A11)
T LAUUM

Continue with

(
ATL ATR

★ ABR

)
←

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

endwhile

Figure 1. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 1).

lower triangular part of the matrix, which are not referenced. We believe the
rest of the notation is intuitive. Next to each operation, we provide the name of
the BLAS kernel that is employed to perform the corresponding operation. In
both algorithms the inverse overwrites the initial matrix.

Up to eight operations are carried out at each iteration in the algorithm in
Figure 1. Two factors will limit the performance of a parallel implementation of
this algorithm. First, data dependencies serialize the execution of most of the
operations. Second, except the update of block A00, the computations involve
uniquely blocks of reduced size (taking into account that, for performance rea-
sons, the value of the block size b is chosen to be small compared with n). This
limits the inherent parallelism of the variant, specially during the first iterations
of the loop, when A00 is also a small block.

Figure 2 shows a second variant of the GJE algorithm where all the elements
of the upper part of the matrix are updated at each iteration. This results in the
same computational effort at any iteration. Again, data dependencies serialize

▶ 8 operations per
iteration

▶ 6 of them are
MM products

Limitations

▶ Data
dependencies

▶ Except A00 all
blocks are
”small”

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 6



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 2

Algorithm: [A] := GJEblk v2(A)

Partition A→
(
ATL ATR

★ ABR

)

where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

★ ABR

)
→

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

where A11 is b× b

A11 := chol(A11) POTRF
triu(A11) := triu(A−1

11 ) TRTRI
A01 := A01 ⋅ A11 TRMM

A00 := A00 + A01 ⋅AT
01 SYRK

A01 := A01 ⋅ A11 TRMM

A12 := A−T
11 ⋅A12 TRMM

A22 := A22 − AT
12 ⋅A12 SYRK

A02 := A02 − A01 ⋅A12 GEMM
A12 := −(A11 ⋅A12) TRMM
A11 := A11 ⋅ AT

12 LAUUM

Continue with

(
ATL ATR

★ ABR

)
←

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

endwhile

Figure 2. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 2).

the execution of most operations. Thus, parallelism can only be extracted from
within the invocation of single operations. In this variant, the updates of blocks
A00 and A22 concentrate most of the computations, while the rest of operations
involve small blocks. This implementation presents two advantages respect the
previous variant:

– It does not require any additional work space.
– The computational cost of each iteration is constant.

5 High performance implementations

5.1 Implementations based on the Cholesky factorization

The algorithm based on the Cholesky factorization for the computation of the
inverse of an SPD matrix (see Section 4.1) is composed of three steps that must

▶ 10 operations
per iteration

▶ 8 of them MM
products

▶ Updates of A00

and A22

concentrate the
cost

Limitations

▶ Data
dependencies

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 7



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 2

Algorithm: [A] := GJEblk v2(A)

Partition A→
(
ATL ATR

★ ABR

)

where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

★ ABR

)
→

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

where A11 is b× b

A11 := chol(A11) POTRF
triu(A11) := triu(A−1

11 ) TRTRI
A01 := A01 ⋅ A11 TRMM

A00 := A00 + A01 ⋅AT
01 SYRK

A01 := A01 ⋅ A11 TRMM

A12 := A−T
11 ⋅A12 TRMM

A22 := A22 − AT
12 ⋅A12 SYRK

A02 := A02 − A01 ⋅A12 GEMM
A12 := −(A11 ⋅A12) TRMM
A11 := A11 ⋅ AT

12 LAUUM

Continue with

(
ATL ATR

★ ABR

)
←

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

endwhile

Figure 2. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 2).

the execution of most operations. Thus, parallelism can only be extracted from
within the invocation of single operations. In this variant, the updates of blocks
A00 and A22 concentrate most of the computations, while the rest of operations
involve small blocks. This implementation presents two advantages respect the
previous variant:

– It does not require any additional work space.
– The computational cost of each iteration is constant.

5 High performance implementations

5.1 Implementations based on the Cholesky factorization

The algorithm based on the Cholesky factorization for the computation of the
inverse of an SPD matrix (see Section 4.1) is composed of three steps that must

▶ 10 operations
per iteration

▶ 8 of them MM
products

▶ Updates of A00

and A22

concentrate the
cost

Limitations

▶ Data
dependencies

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 7



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 2

Algorithm: [A] := GJEblk v2(A)

Partition A→
(
ATL ATR

★ ABR

)

where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

★ ABR

)
→

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

where A11 is b× b

A11 := chol(A11) POTRF
triu(A11) := triu(A−1

11 ) TRTRI
A01 := A01 ⋅ A11 TRMM

A00 := A00 + A01 ⋅AT
01 SYRK

A01 := A01 ⋅ A11 TRMM

A12 := A−T
11 ⋅A12 TRMM

A22 := A22 − AT
12 ⋅A12 SYRK

A02 := A02 − A01 ⋅A12 GEMM
A12 := −(A11 ⋅A12) TRMM
A11 := A11 ⋅ AT

12 LAUUM

Continue with

(
ATL ATR

★ ABR

)
←

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

endwhile

Figure 2. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 2).

the execution of most operations. Thus, parallelism can only be extracted from
within the invocation of single operations. In this variant, the updates of blocks
A00 and A22 concentrate most of the computations, while the rest of operations
involve small blocks. This implementation presents two advantages respect the
previous variant:

– It does not require any additional work space.
– The computational cost of each iteration is constant.

5 High performance implementations

5.1 Implementations based on the Cholesky factorization

The algorithm based on the Cholesky factorization for the computation of the
inverse of an SPD matrix (see Section 4.1) is composed of three steps that must

▶ 10 operations
per iteration

▶ 8 of them MM
products

▶ Updates of A00

and A22

concentrate the
cost

Limitations

▶ Data
dependencies

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 7



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 2

Algorithm: [A] := GJEblk v2(A)

Partition A→
(
ATL ATR

★ ABR

)

where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

★ ABR

)
→

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

where A11 is b× b

A11 := chol(A11) POTRF
triu(A11) := triu(A−1

11 ) TRTRI
A01 := A01 ⋅ A11 TRMM

A00 := A00 + A01 ⋅AT
01 SYRK

A01 := A01 ⋅ A11 TRMM

A12 := A−T
11 ⋅A12 TRMM

A22 := A22 − AT
12 ⋅A12 SYRK

A02 := A02 − A01 ⋅A12 GEMM
A12 := −(A11 ⋅A12) TRMM
A11 := A11 ⋅ AT

12 LAUUM

Continue with

(
ATL ATR

★ ABR

)
←

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

endwhile

Figure 2. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 2).

the execution of most operations. Thus, parallelism can only be extracted from
within the invocation of single operations. In this variant, the updates of blocks
A00 and A22 concentrate most of the computations, while the rest of operations
involve small blocks. This implementation presents two advantages respect the
previous variant:

– It does not require any additional work space.
– The computational cost of each iteration is constant.

5 High performance implementations

5.1 Implementations based on the Cholesky factorization

The algorithm based on the Cholesky factorization for the computation of the
inverse of an SPD matrix (see Section 4.1) is composed of three steps that must

▶ 10 operations
per iteration

▶ 8 of them MM
products

▶ Updates of A00

and A22

concentrate the
cost

Limitations

▶ Data
dependencies

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 7



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 2

Algorithm: [A] := GJEblk v2(A)

Partition A→
(
ATL ATR

★ ABR

)

where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

★ ABR

)
→

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

where A11 is b× b

A11 := chol(A11) POTRF
triu(A11) := triu(A−1

11 ) TRTRI
A01 := A01 ⋅ A11 TRMM

A00 := A00 + A01 ⋅AT
01 SYRK

A01 := A01 ⋅ A11 TRMM

A12 := A−T
11 ⋅A12 TRMM

A22 := A22 − AT
12 ⋅A12 SYRK

A02 := A02 − A01 ⋅A12 GEMM
A12 := −(A11 ⋅A12) TRMM
A11 := A11 ⋅ AT

12 LAUUM

Continue with

(
ATL ATR

★ ABR

)
←

⎛
⎝

A00 A01 A02

★ A11 A12

★ ★ A22

⎞
⎠

endwhile

Figure 2. Blocked algorithm for matrix inversion of SPD matrices via GJE (Variant 2).

the execution of most operations. Thus, parallelism can only be extracted from
within the invocation of single operations. In this variant, the updates of blocks
A00 and A22 concentrate most of the computations, while the rest of operations
involve small blocks. This implementation presents two advantages respect the
previous variant:

– It does not require any additional work space.
– The computational cost of each iteration is constant.

5 High performance implementations

5.1 Implementations based on the Cholesky factorization

The algorithm based on the Cholesky factorization for the computation of the
inverse of an SPD matrix (see Section 4.1) is composed of three steps that must

▶ 10 operations
per iteration

▶ 8 of them MM
products

▶ Updates of A00

and A22

concentrate the
cost

Limitations

▶ Data
dependencies

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 7



Outline

Matrix inversion of SPD matrices

High performance implementations

Numerical results

Conclusions and future works

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 8



High performance implementations
Based on the Cholesky factorization

On a multi-core CPU

▶ Based on routines potrf and potri of a multithread MKL version

On a many-core GPU

▶ Routines gpu potrf and gpu potri for the GPU have been
implemented

On a hybrid CPU-GPU platform

▶ Each operation is executed on the most covenient device

▶ CPU and GPU work jointly in the computation of the Cholesky
factorization

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 9



High performance implementations
Based on the GJE algorithm

On a multi-core CPU

▶ Two implementations, one per each variant of the algorithm

▶ Based on the usage of MKL routines

On a many-core GPU

▶ Two implementations, one per each variant of the algorithm

▶ Based on the usage of gpu potrf and gpu potri routines and
CUBLAS kernels

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 10



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 2

On a hybrid CPU-GPU platform

▶ Only 3 transfers
are necessary per
step

▶ 7 operations
executed on the
GPU, all of them
MM products

▶ Only 3 small
operations
executed on the
CPU

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 11



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 2

On a hybrid CPU-GPU platform

▶ Only 3 transfers
are necessary per
step

▶ 7 operations
executed on the
GPU, all of them
MM products

▶ Only 3 small
operations
executed on the
CPU

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 11



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 2

On a hybrid CPU-GPU platform

▶ Only 3 transfers
are necessary per
step

▶ 7 operations
executed on the
GPU, all of them
MM products

▶ Only 3 small
operations
executed on the
CPU

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 11



Matrix inversion of an SPD matrix
Gauss-Jordan elimination method - variant 2

On a hybrid CPU-GPU platform

▶ Only 3 transfers
are necessary per
step

▶ 7 operations
executed on the
GPU, all of them
MM products

▶ Only 3 small
operations
executed on the
CPU

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 11



Outline

Matrix inversion of SPD matrices

High performance implementations

Numerical results

Conclusions and future works

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 12



Numerical results
Hardware and software

▶ Hardware
▶ Platform consisting of eight Intel Xeon QuadCore X7550 processors

at 2.0GHz. (32 cores) connected to an nVidia C2050 (448 cores)

▶ Software
▶ Computations on the CPU are performed using kernels from MKL

v.11.0
▶ While computations on the GPU are performed using CUBLAS v.3.2

All experiments performed using single precision arithmetic

Results for matrices with 1000 ≤ n ≤ 15000

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 13



Numerical results
Implementations based on the Cholesky factorization

4

Algorithm: [A] := GJEBLK V2(A)

Partition A→
„

ATL ATR

⋆ ABR

«

where ATL is 0×0 andABR is n×n
while m(ATL) < m(A) do

Determine block sizeb
Repartition

„

ATL ATR

⋆ ABR

«

→

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

where A11 is b× b

Transfer block A11 to the CPU
A11 := Chol(A11) (CPU)

triu(A11) := triu(A−1
11 ) (CPU)

Transfer block A11 to the GPU
A01 := A01 · A11 (GPU)
A00 := A00 + A01 · AT

01 (GPU)
A01 := A01 · A11 (GPU)
A12 := A−T

11 ·A12 (GPU)
A22 := A22 − AT

12 · A12 (GPU)
A02 := A02 − A01 · A12 (GPU)
A12 := −(A11 ·A12) (GPU)
A11 := A11 · AT

12 (CPU)
Transfer block A11 to the GPU

Continue with
„

ATL ATR

⋆ ABR

«

←

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

endwhile

Figure 3. Hybrid concurrent implementation for matrix inversion of symmet-
ric positive matrices via GJE (Variant 2) in a hybrid architecture composed
by a multicore CPU and a GPU.

Processors #cores Freq. L2 Memory
(GHz) (MB) (GB)

Intel Xeon X7550 (8×4) 32 2.0 18 129
nVidia C2050 448 1.15 – 6

Table I
HARDWARE EMPLOYED IN THE EXPERIMENTS.

the GPUs is employed in the experiments. Further details on
the hardware can be found in Table I.

Kernels from the Intel MKL 11.0 multi-threaded implemen-
tation of BLAS are used for most of the computations on
the multi-core, while routines from nVidia CUBLAS 3.2 are
employed on the GPU. As the MKL library kernels do not
scale well beyond 16 cores we omit the results obtained using
32 threads.

Figure 4 shows the performance attained by the implemen-
tations based on the Cholesky factorization. The LAPACK
implementation obtains the best performance for matrices of
dimension up to 10,000, while implementations for the GPU
clearly outperform LAPACK for larger matrices. The hybrid
approach increases the performance notoriously, becoming
nearly 2× faster than the traditional LAPACK implementation
for matrices of dimension 15,000. Furthermore, while the
performance of the LAPACK implementation peaks at a matrix
dimension of 3,000 but then stabilizes around problem sizes
of 6,000, the performance of the GPU-based implementations
continues growing even for the larger matrices evaluated inthe

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

100

120

Matrix dimension

G
F
l
o
p
s

 

 
LAPACK
FACT(GPU)
FACT(HIB)

Figure 4. Performance of the matrix inversion codes based onthe Cholesky
factorization.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

200

250

300

350

400

Matrix dimension

G
F
l
o
p
s

 

 

GJE_V1(CPU)
GJE_V2(CPU)
GJE_V1(GPU)
GJE_V2(GPU)
GJE(HIB)

Figure 5. Performance of the matrix inversion codes based onthe GJE
algorithm.

experiment. Thus, the use of a massively parallel architecture,
like the GPU, improves the scalability of the implementation.

Figure 5 shows the performance achieved by the different
implementations based on the GJE algorithm. The best perfor-
mance for small and medium matrices (up to 7,000) is again
obtained with a CPU-based implementation. For larger matri-
ces, the hybrid variant is the best implementation. Routines
that only use the graphics processor deliver a poor perfor-
mance, due to the number of operations in the algorithm that
involve small blocks. Those operations are not well suited for
the GPU architecture, so high performance cannot be expected
from their execution. The consequence is that the execution
time dedicated to perform small operations is too high, and
hereby the performance of the overall process suffers. On the
other hand, the multi-core efficiently executes the operations
that involve small blocks so, despite this architecture is slower
for the large operations, the overall performance is higher. The
hybrid approach efficiently leverages both architectures,exe-
cuting the small operations on the CPU and large operations
on the GPU. This is why it reports the lowest execution time
for medium and large matrices.

Figure 6 shows the optimal block size for the best im-
plementation on each architecture. The optimal algorithmic
block size is a trade-off between the optimal block size for
small and large operations. When the block size is reduced,
more computations are performed in terms of large updates

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 14



Numerical results
Implementations based on the Gauss-Jordan elimination

4

Algorithm: [A] := GJEBLK V2(A)

Partition A→
„

ATL ATR

⋆ ABR

«

where ATL is 0×0 andABR is n×n
while m(ATL) < m(A) do

Determine block sizeb
Repartition

„

ATL ATR

⋆ ABR

«

→

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

where A11 is b× b

Transfer block A11 to the CPU
A11 := Chol(A11) (CPU)

triu(A11) := triu(A−1
11 ) (CPU)

Transfer block A11 to the GPU
A01 := A01 · A11 (GPU)
A00 := A00 + A01 · AT

01 (GPU)
A01 := A01 · A11 (GPU)
A12 := A−T

11 ·A12 (GPU)
A22 := A22 − AT

12 · A12 (GPU)
A02 := A02 − A01 · A12 (GPU)
A12 := −(A11 ·A12) (GPU)
A11 := A11 · AT

12 (CPU)
Transfer block A11 to the GPU

Continue with
„

ATL ATR

⋆ ABR

«

←

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

endwhile

Figure 3. Hybrid concurrent implementation for matrix inversion of symmet-
ric positive matrices via GJE (Variant 2) in a hybrid architecture composed
by a multicore CPU and a GPU.

Processors #cores Freq. L2 Memory
(GHz) (MB) (GB)

Intel Xeon X7550 (8×4) 32 2.0 18 129
nVidia C2050 448 1.15 – 6

Table I
HARDWARE EMPLOYED IN THE EXPERIMENTS.

the GPUs is employed in the experiments. Further details on
the hardware can be found in Table I.

Kernels from the Intel MKL 11.0 multi-threaded implemen-
tation of BLAS are used for most of the computations on
the multi-core, while routines from nVidia CUBLAS 3.2 are
employed on the GPU. As the MKL library kernels do not
scale well beyond 16 cores we omit the results obtained using
32 threads.

Figure 4 shows the performance attained by the implemen-
tations based on the Cholesky factorization. The LAPACK
implementation obtains the best performance for matrices of
dimension up to 10,000, while implementations for the GPU
clearly outperform LAPACK for larger matrices. The hybrid
approach increases the performance notoriously, becoming
nearly 2× faster than the traditional LAPACK implementation
for matrices of dimension 15,000. Furthermore, while the
performance of the LAPACK implementation peaks at a matrix
dimension of 3,000 but then stabilizes around problem sizes
of 6,000, the performance of the GPU-based implementations
continues growing even for the larger matrices evaluated inthe

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

100

120

Matrix dimension

G
F
l
o
p
s

 

 
LAPACK
FACT(GPU)
FACT(HIB)

Figure 4. Performance of the matrix inversion codes based onthe Cholesky
factorization.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

200

250

300

350

400

Matrix dimension

G
F
l
o
p
s

 

 

GJE_V1(CPU)
GJE_V2(CPU)
GJE_V1(GPU)
GJE_V2(GPU)
GJE(HIB)

Figure 5. Performance of the matrix inversion codes based onthe GJE
algorithm.

experiment. Thus, the use of a massively parallel architecture,
like the GPU, improves the scalability of the implementation.

Figure 5 shows the performance achieved by the different
implementations based on the GJE algorithm. The best perfor-
mance for small and medium matrices (up to 7,000) is again
obtained with a CPU-based implementation. For larger matri-
ces, the hybrid variant is the best implementation. Routines
that only use the graphics processor deliver a poor perfor-
mance, due to the number of operations in the algorithm that
involve small blocks. Those operations are not well suited for
the GPU architecture, so high performance cannot be expected
from their execution. The consequence is that the execution
time dedicated to perform small operations is too high, and
hereby the performance of the overall process suffers. On the
other hand, the multi-core efficiently executes the operations
that involve small blocks so, despite this architecture is slower
for the large operations, the overall performance is higher. The
hybrid approach efficiently leverages both architectures,exe-
cuting the small operations on the CPU and large operations
on the GPU. This is why it reports the lowest execution time
for medium and large matrices.

Figure 6 shows the optimal block size for the best im-
plementation on each architecture. The optimal algorithmic
block size is a trade-off between the optimal block size for
small and large operations. When the block size is reduced,
more computations are performed in terms of large updates

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 15



Numerical results
Best implementations

5

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

200

250

300

Matrix dimension

G
F
l
o
p
s

 

 

GJE_V2(CPU)
GJE_V2(GPU)
GJE(HIB)

Figure 6. Optimal algorithmic block size.

(basically matrix-matrix products), this also complicates the
efficient use of the hierarchical memory, limiting the per-
formance. In the GPU-based implementations, given the low
performance attained by the small operations and the high
performance attained for the large matrix-matrix products, the
optimal block size is relatively small. The opposite happens for
the multi-core implementation, where the difference between
the performance attained by the large and the small operations
is smaller.

The hybrid approach is somewhere in the middle between
the two other alternatives: the optimal block size is increased
from 32 to 256. The objective here is to balance the execution
time of the small operations on the multi-core and the large
operations on the GPU.

Finally, Figure 7 shows the performance of the LAPACK
implementation and the best implementations for each archi-
tecture. It is important to notice that, for all the architectures,
the best implementation is based on the GJE algorithm.
Routine GJEv2(GPU) outperforms LAPACK when the matrix
dimension is larger than 9,000. With smaller matrices, the
data transfer time and the operations with small blocks makes
renders this code inefficient. The multi-core implementation,
GJE v2(CPU), offers a relevant behavior, and clearly outper-
forms LAPACK and GJEv2(GPU). The fastest option for
large matrices is the hybrid implementation based on the GJE
algorithm; despite the communication overhead, it executes
each operation on the most convenient device, and also per-
forms concurrent operations on both devices, so it offers higher
performance for matrices of dimension larger than 7,000.
Finally, we point out the scalability of the GJE(HIB) variant,
and, in general, of all the implementations based on the GJE
algorithm.

V. CONCLUDING REMARKS

We have analyzed the inversion of SPD matrices. This op-
eration appears in different scientific applications and features
a high computational cost, which asks for the use of high
performance architectures like multi-core CPUs or many-core
graphics processors (GPUs). The study includes the evaluation
of two different algorithms, the conventional one based on the
Cholesky factorization, and the GJE algorithm, more suitable
for parallel architectures.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

200

250

300

350

400

Matrix dimension

G
F
l
o
p
s

 

 

LAPACK
GJE_V2(CPU)
GJE_V2(GPU)
GJE(HIB)

Figure 7. Performance of the matrix inversion codes.

Several implementations are presented for each algorithm
and architecture. Most of the computations are executed in-
voking kernels from high performance libraries, Intel MKL
library in the case of the multi-core CPU, and nVidia CUBLAS
library for the GPU.

Experimental results show that higher performance is at-
tained from those routines based on the GJE algorithm. This
algorithm exhibits a remarkable scalability in all its implemen-
tations. Three different hardware options are addressed: multi-
core CPU, GPU, and a hybrid platform consisting of a multi-
core CPU connected to a GPU. The best performance for large
matrices is obtained with the hybrid implementation, where
both architectures collaborate to obtain the matrix inverse. The
main advantage of the hybrid implementation comes from the
execution of each operation on the most convenient device,
and the concurrent usage of both resources.

Future research to improve the proposed hybrid implemen-
tation will include:

• Overlap communication and computations using asyn-
chronous transfers. A careful schedule of operations in
both architectures will make possible to partly overlap
communications and computations.

• Use of different block sizes for each architecture. In
this case, the use of different block sizes for the CPU
and the GPU will increase the productivity from both
architectures.

• Use of multiple GPUs. This is specially interesting for
the inversion of very large matrices.

• Use of other GPU kernels or libraries that outperform
CUBLAS.

ACKNOWLEDGMENTS

The authors would like to thank Francisco Igual for his
technical support, and Manuel Ujaldon from the University
of Malaga (Spain) for granting the access to the hardware
facilities employed in the performance evaluation.

Enrique S. Quintana-Ortı́ and Alfredo Remón were sup-
ported by the CICYT project TIN2008-06570-C04.

This work was partially performed while Alfredo Remón
and Pablo Ezzatti were visiting the Max Plank Institute (MPI)
in Magdeburg. Pablo Ezzatti gratefully acknowledges support
received from the MPI.

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 16



Outline

Matrix inversion of SPD matrices

High performance implementations

Numerical results

Conclusions and future works

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 17



Conclusions

▶ We have studied the inversion of symmetric positive definite
matrices on a hybrid CPU-GPU platform

▶ This operation appears in many scientific applications and features a
high computational cost

▶ GJE-based routines exhibit a remarkable performance

▶ An hybrid implementation, where each task is executed on the most
convenient device, provides the best performance

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 18



Future works

▶ Overlap communications and computations using asynchronous
transfers

▶ Use of different block sizes for each architecture

▶ Use of multiple GPUs

▶ Employ other GPU kernels that outperform CUBLAS

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 19



Thanks.

remon@uji.es P. Benner et al Matrix Inversion of SPD Matrices on GPUs 20


	Matrix inversion of SPD matrices
	High performance implementations
	Numerical results
	Conclusions and future works

