High Performance Matrix Inversion of SPD Matrices on Graphics Processors

P. Benner¹, P. Ezzatti², E.S. Quintana-Ortí³, Alfredo Remón³

¹Max-Planck-Institute for Dynamics of Complex Technical Systems (Magdeburg, Germany).
 ²Centro de Cálculo-Inst. de la Computación,Univ. de la República (Montevideo, Uruguay).
 ³Depto. de Ingeniería y Ciencia de Computadores, Universidad Jaume I (Castellón, Spain).

WEHA'11 - July 2011

Why matrix inversion?

- Matrix inversion requires an important computational effort
- Sometimes can be by-passed by solving systems of linear equations

 \rightarrow But in some situations is necessary

 Examples include earth sciences and the matrix sign function method for expectral decomposition

Why matrix inversion?

- Matrix inversion requires an important computational effort
- Sometimes can be by-passed by solving systems of linear equations

 \rightarrow But in some situations is necessary

 Examples include earth sciences and the matrix sign function method for expectral decomposition

Why SPD matrices?

- In previous works we targeted the inversion of general matrices
- In this case the structure and properties of the matrix can be exploited, reporting important savings in terms of memory and computational time.

Matrix inversion of SPD matrices

High performance implementations

Numerical results

Conclusions and future works

< ≣⇒

Traditional approach

Algorithm 2 Matrix_inversion

- 1: Compute the Cholesky factorization $A = U^T U$, where $U \in \mathbb{R}^{n \times n}$ is upper triangular
- 2: Invert the triangular factor $U
 ightarrow U^{-1}$
- 3: Obtain the inverse from the product $U^{-1}U^{-T} = A^{-1}$

Requires n^3 floating-point operations

Sweeps throught the matrix 3 times

Gauss-Jordan elimination method

The the Gauss-Jordan elimination algorithm

- In essence, it is a reordering of the operations
- Presents the same arithmetical cost

Implementation

- ► The algorithm sweeps through the matrix once → Less memory accesses
- Most of the computations are highly parallel
 - $\rightarrow \text{More parallelism}$

Gauss-Jordan elimination method - variant 1

- 8 operations per iteration
- 6 of them are MM products

- Data dependencies
- Except A₀₀ all blocks are "small"

Gauss-Jordan elimination method - variant 1

8 operations per iteration

 6 of them are MM products

- Data dependencies
- Except A₀₀ all blocks are "small"

Gauss-Jordan elimination method - variant 1

- 8 operations per iteration
- 6 of them are MM products

- Data dependencies
- Except A₀₀ all blocks are "small"

Gauss-Jordan elimination method - variant 1

- 8 operations per iteration
- 6 of them are MM products

- Data dependencies
- Except A₀₀ all blocks are "small"

Gauss- lordan elimination method - variant 1

- 8 operations per iteration
- 6 of them are MM products

- Data dependencies
- Except A₀₀ all blocks are "small"

Gauss-Jordan elimination method - variant 2

remon@uji.es

Algorithm: $[A] := GJE_{BLK_V2}(A)$		
Partition $A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ \hline \star & A_{BR} \end{pmatrix}$ where A_{TL} is 0×0 and A_{BR} is n	×n	
while $m(A_{TL}) < m(A)$ do		
Determine block size b		
Repartition		
$ \begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{0} \\ \star & A_{11} & A_{1} \\ \star & \star & A_{2} \\ \text{where } A_{11} \text{ is } b \times b \\ \end{cases} $	$\left(\frac{2}{2}\right)$	
$A_{11} := \operatorname{CHOL}(A_{11})$	POTRF	
$\operatorname{TRIU}(A_{11}) := \operatorname{TRIU}(A_{11}^{-1})$	TRTRI	
$A_{01} := A_{01} \cdot A_{11}$	TRMM	
$A_{00} := A_{00} + A_{01} \cdot A_{01}^T$	SYRK	
$A_{01} := A_{01} \cdot A_{11}$	TRMM	
$A_{12} := A_{11}^{-T} \cdot A_{12}$	TRMM	
$A_{22} := A_{22}^T - A_{12}^T \cdot A_{12}$	SYRK	
$A_{02} := A_{02} - A_{01} \cdot A_{12}$	GEMM	
$A_{12} := -(A_{11} \cdot A_{12})$	TRMM	
$A_{11} := A_{11} \cdot A_{12}^T$	LAUUM	
Continue with		
$\left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline & \star & A_{BR} \end{array} \right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A \\ \hline \star & A_{11} & A \\ \hline & \star & \star & A \end{array} \right)$ endwhile	$\frac{02}{12}}{222}$	

P. Benner et al

- 10 operations per iteration
- 8 of them MM products
- Updates of A₀₀ and A₂₂ concentrate the cost

Limitations

Matrix Inversion of SPD Matrices on GPUs

 Data dependencies

< ≣⇒

Gauss-Jordan elimination method - variant 2

Algorithm: $[A] := GJE_{BLK_V2}(A)$		
$\begin{tabular}{ c c c c c } \hline \mathbf{Partition} & A \rightarrow \left(\begin{array}{c} A_{TL} & A_{TR} \\ \hline \star & A_{BR} \end{array} \right) \\ \mathbf{where} & A_{TL} \text{ is } 0 \times 0 \text{ and } A_{BR} \text{ is } n \end{tabular}$	×n	
while $m(A_{TL}) < m(A)$ do		
Determine block size b		
Repartition		
$\begin{pmatrix} A_{TL} & A_{TR} \\ \hline \star & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \hline \star & A_{11} & A_{12} \\ \hline \star & \star & A_{22} \\ \text{where } A_{11} \text{ is } b \times b \end{cases}$.)	
$A_{11} := CHOL(A_{11})$	POTRF	-
$\operatorname{TRIU}(A_{11}) := \operatorname{TRIU}(A_{11}^{-1})$	TRTRI	
$A_{01} := A_{01} \cdot A_{11}$	TRMM	
$A_{00} := A_{00} + A_{01} \cdot A_{01}^T$	SYRK	
$A_{01} := A_{01} \cdot A_{11}$	TRMM	
$A_{12} := A_{11}^{-T} \cdot A_{12}$	TRMM	
$A_{22} := A_{22} - A_{12}^T \cdot A_{12}$	SYRK	
$A_{02} := A_{02} - A_{01} \cdot A_{12}$	GEMM	
$A_{12} := -(A_{11} \cdot A_{12})$	TRMM	
$A_{11} := A_{11} \cdot A_{12}^T$	LAUUM	
Continue with		-
$\begin{pmatrix} A_{TL} & A_{TR} \\ \hline \star & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & A_{01} \\ \hline \star & A_{11} & A_{12} \\ \hline \star & \star & A_{22} \\ \hline \\ \text{endwhile} \end{pmatrix}$	22 22 22	

10 operations per iteration

- 8 of them MM products
- Updates of A₀₀ and A₂₂ concentrate the cost

Limitations

 Data dependencies

< ≣⇒

Gauss-Jordan elimination method - variant 2

Algorithm: $[A] := GJE_{BLK_V2}(A)$		
Partition $A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ \hline \star & A_{BR} \end{pmatrix}$ where A_{TL} is 0×0 and A_{BR} is n	$\times n$	
while $m(A_{TL}) < m(A)$ do		
Determine block size b		
Repartition		
$ \begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{0} \\ \star & A_{11} & A_{1} \\ \star & \star & A_{2} \end{pmatrix} $ where A_{11} is $b \times b$	$\left(\frac{2}{2}\right)$	
$A_{11} := CHOL(A_{11})$	POTRF	
$TRIU(A_{11}) := TRIU(A_{11}^{-1})$	TRTRI	
$A_{01} := A_{01} \cdot A_{11}$	TRMM	
$A_{00} := A_{00} + A_{01} \cdot A_{01}^T$	SYRK	
$A_{01} := A_{01} \cdot A_{11}$	TRMM	
$A_{12} := A_{11}^{-T} \cdot A_{12}$	TRMM	
$A_{22} := A_{22} - A_{12}^T \cdot A_{12}$	SYRK	
$A_{02} := A_{02} - A_{01} \cdot A_{12}$	GEMM	
$A_{12} := -(A_{11} \cdot A_{12})$	TRMM	
$A_{11} := A_{11} \cdot A_{12}^T$	LAUUM	
Continue with		
$\left(\frac{A_{TL}}{\star} \begin{vmatrix} A_{TR} \\ A_{BR} \end{vmatrix} \leftarrow \left(\frac{A_{00}}{\star} \begin{vmatrix} A_{01} & A \\ \hline \star & A_{11} & A \\ \hline \star & \star & A \end{vmatrix}\right)$ endwhile	02 12 22	

- 10 operations per iteration
- 8 of them MM products
- Updates of A₀₀ and A₂₂ concentrate the cost

Limitations

 Data dependencies

< ∃ →

Gauss-Jordan elimination method - variant 2

Algorithm: $[A] := GJE_{BLK_V2}(A)$		
Partition $A \rightarrow \left(\begin{array}{c} A_{TL} & A_{TR} \\ \hline \star & A_{BR} \end{array} \right)$ where A_{TL} is 0×0 and A_{BR} is n	×n	
while $m(A_{TL}) < m(A)$ do		
Determine block size b		
Repartition		
$ \begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \star & A_{11} & A_{12} \\ \star & \star & A_{22} \\ \text{where } A_{11} \text{ is } b \times b \end{cases} $		
$A_{11} := \operatorname{CHOL}(A_{11})$	POTRF	
$TRIU(A_{11}) := TRIU(A_{11}^{-1})$	TRTRI	
$A_{01} := A_{01} \cdot A_{11}$	TRMM	
$A_{00} := A_{00} + A_{01} \cdot A_{01}^T$	SYRK	
$A_{01} := A_{01} \cdot A_{11}$	TRMM	
$A_{12} := A_{11}^{-T} \cdot A_{12}$	TRMM	
$A_{22} := A_{22} - A_{12}^T \cdot A_{12}$	SYRK	
$A_{02} := A_{02} - A_{01} \cdot A_{12}$	GEMM	
$A_{12} := -(A_{11} \cdot A_{12})$	TRMM	
$A_{11} := A_{11} \cdot A_{12}^T$	LAUUM	
Continue with		—
$\left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline \begin{pmatrix} A_{TL} & A_{TR} \\ \hline \star & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A \\ \hline \star & A_{11} & A \\ \hline \star & \star & A \end{array}\right)$ endwhile	$\frac{12}{12}$	

- 10 operations per iteration
- 8 of them MM products
- Updates of A₀₀ and A₂₂ concentrate the cost

Limitations

 Data dependencies

∢ ≣ ≯

Gauss-Jordan elimination method - variant 2

Algorithm: $[A] := GJE_{BLK_V2}(A)$		
Partition $A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix}$ where A_{TL} is 0×0 and A_{BR} is n	$\times n$	
while $m(A_{TL}) < m(A)$ do		
Determine block size b		
Repartition		
$ \begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{0} \\ \star & A_{11} & A_{1} \\ \star & \star & A_{2} \\ $	$\left(\frac{2}{2}\right)$	
$A_{11} := \operatorname{CHOL}(A_{11})$	POTRF	
$TRIU(A_{11}) := TRIU(A_{11}^{-1})$	TRTRI	
$A_{01} := A_{01} \cdot A_{11}$	TRMM	
$A_{00} := A_{00} + A_{01} \cdot A_{01}^T$	SYRK	
$A_{01} := A_{01} \cdot A_{11}$	TRMM	
$A_{12} := A_{11}^{-T} \cdot A_{12}$	TRMM	
$A_{22} := A_{22} - A_{12}^T \cdot A_{12}$	SYRK	
$A_{02} := A_{02} - A_{01} \cdot A_{12}$	GEMM	
$A_{12} := -(A_{11} \cdot A_{12})$	TRMM	
$A_{11} := A_{11} \cdot A_{12}^T$	LAUUM	
Continue with		—
$\left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline \star & A_{BR} \end{array} \right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A \\ \hline \star & A_{11} & A \\ \hline \star & \star & A \end{array} \right)$ endwhile	02 12 22	

- 10 operations per iteration
- 8 of them MM products
- Updates of A₀₀ and A₂₂ concentrate the cost

Limitations

 Data dependencies

< ∃→

Matrix inversion of SPD matrices

High performance implementations

Numerical results

Conclusions and future works

< ∃→

On a multi-core CPU

Based on routines potrf and potri of a multithread MKL version

On a many-core GPU

 Routines gpu_potrf and gpu_potri for the GPU have been implemented

On a hybrid CPU-GPU platform

- Each operation is executed on the most covenient device
- CPU and GPU work jointly in the computation of the Cholesky factorization

On a multi-core CPU

- Two implementations, one per each variant of the algorithm
- Based on the usage of MKL routines

On a many-core GPU

- ► Two implementations, one per each variant of the algorithm
- Based on the usage of gpu_potrf and gpu_potri routines and CUBLAS kernels

Gauss-Jordan elimination method - variant 2

On a hybrid CPU-GPU platform

Algorithm: $[A] := GJE_{BLK V2}(A)$	
Partition $A \rightarrow \left(\begin{array}{cc} A_{TL} & A_{TR} \\ \star & A_{BR} \end{array}\right)$ where A_{TL} is 0×0 and A_{BR} is $n \times n$ while $m(A_{TL}) < m(A)$ do Determine block size b Repartition	
$ \begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \hline \star & A_{11} & A_{12} \\ \hline \star & \star & A_{22} \end{pmatrix} $ where A_{11} is $b \times b$	
Transfer block Ass to the CPU	
$A_{11} := \operatorname{Chol}(A_{11})$	(CPU)
$\operatorname{trin}(A_{11}) := \operatorname{trin}(A_{-1}^{-1})$	(CPU)
Transfer block A ₁₁ to the GPU	(010)
$A_{01} := A_{01} \cdot A_{11}$	(GPU)
$A_{00} := A_{00} + A_{01} \cdot A_{01}^T$	(GPU)
$A_{01} := A_{01} \cdot A_{11}$	(GPU)
$A_{12} := A_{12}^{-T} \cdot A_{12}$	(GPU)
$A_{22} := A_{22} - A_{12}^T \cdot A_{12}$	(GPU)
$A_{02} := A_{02} - A_{01} \cdot A_{12}$	(GPU)
$A_{12} := -(A_{11} \cdot A_{12})$	(GPU)
$A_{11} := A_{11} \cdot A_{10}^T$	(CPU)
Transfer block A_{11} to the GPU	/
Continue with	

(Amr)	4	1	A_{00}	A_{01}	A_{02}	١.
(<u>ATL</u>	A_{TR} $($		*	A_{11}	A_{12}	
(*)	A_{BR} /	1	*	*	A22	/
endwhile						

- Only 3 transfers are necessary per step
- 7 operations executed on the GPU, all of them MM products
- Only 3 small operations executed on the CPU

Gauss-Jordan elimination method - variant 2

On a hybrid CPU-GPU platform

Algorithm: $[A] := GJE_{BLK V2}(A)$	
Partition $A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix}$ where A_{TL} is 0×0 and A_{BR} is $n \times n$ while $m(A_{TL}) < m(A)$ do Determine block size b Repartition	
$ \begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \hline \star & A_{11} & A_{12} \\ \hline \star & \star & A_{22} \end{pmatrix} $ where A_{11} is $b \times b$	
Transfer block A., to the CPU	
$A_{11} := Chol(A_{11})$	(CPU)
$\operatorname{trin}(A_{++}) := \operatorname{trin}(A^{-1})$	(CPII)
Transfer block A_{11} to the GPU	(010)
$A_{01} := A_{01} \cdot A_{11}$	(GPII)
$A_{00} := A_{00} \pm A_{01} + A^T$	(GPU)
$A_{01} := A_{01} \cdot A_{11}$	(GPU)
$A_{12} = A^{-T} A_{12}$	(GPU)
$A_{12} = A_{11} \cdot A_{12}$ $A_{12} = A_{12} \cdot A_{12}$	(GPU)
$A_{22} := A_{22} - A_{12} \cdot A_{12}$	(GPU)
$A_{02} = A_{02} - A_{01} \cdot A_{12}$	(OPU)
$A_{12} = -(A_{11} \cdot A_{12})$	(CPU)
$A_{11} := A_{11} \cdot A_{12}$ Tomoto Mach A to the CBU	(CPU)
transfer block All to the GPU	
Continue with	

$\begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \hline \star & A_{11} & A_{12} \\ \hline \star & \star & A_{22} \end{pmatrix}$ endwhile

- Only 3 transfers are necessary per step
- 7 operations executed on the GPU, all of them MM products
- Only 3 small operations executed on the CPU

Gauss- lordan elimination method - variant 2

On a hybrid CPU-GPU platform

Algorithm: $[A] := GJE_{BLK V2}(A)$	
Partition $A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix}$ where A_{TL} is 0×0 and A_{BR} is $n \times n$ while $m(A_{TL}) < m(A)$ do Determine block size b Repartition	
$ \begin{pmatrix} A_{TL} & A_{TR} \\ \hline \star & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \hline \star & A_{11} & A_{12} \\ \hline \star & \star & A_{22} \end{pmatrix} $ where A_{11} is $b \times b$	
Transfer block Ass to the CPU	
$A_{11} := Chol(A_{11})$	(CPU)
$\operatorname{trin}(A_{11}) := \operatorname{trin}(A_{11}^{-1})$	(CPU)
Transfer block A ₁₁ to the GPU	(010)
$A_{01} := A_{01} \cdot A_{11}$	(GPU)
$A_{00} := A_{00} \pm A_{01} \cdot A_{01}^T$	GPU
$A_{01} := A_{01} \cdot A_{11}$	(GPU)
$A_{10} := A^{-T} \cdot A_{10}$	GPID
$A_{00} := A_{00} - A^T \cdot A_{10}$	(GPU)
$A_{00} := A_{00} - A_{01} \cdot A_{10}$	(GPU)
$A_{10} := -(A_{11} \cdot A_{10})$	(GPU)
$A_{11} := A_{11} \cdot A_{10}^T$	CPU
Transfer block A11 to the GPU	(0)
integer title fill to the Gro	
Continuo with	

Continue with

(Amr.	4	A_{00}	A_{01}	A_{02}	÷.
$\left(\frac{-\alpha_{TL}}{-1} \right)$	$\frac{TTR}{A} \rightarrow ($	*	A_{11}	A_{12}	
(*)	A_{BR} /	*	*	A22 /	1
ndwhile					

- Only 3 transfers are necessary per step
- 7 operations executed on the GPU, all of them MM products
- Only 3 small executed on the

Gauss-Jordan elimination method - variant 2

On a hybrid CPU-GPU platform

Algorithm: $[A] := GJE_{BLK V2}(A)$	
Partition $A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix}$ where A_{TL} is 0×0 and A_{BR} is $n \times n$ while $m(A_{TL}) < m(A)$ do Determine block size b Repartition	
$ \begin{pmatrix} A_{TL} & A_{TR} \\ \star & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \hline \star & A_{11} & A_{12} \\ \hline \star & \star & A_{22} \end{pmatrix} $ where A_{11} is $b \times b$	
Transfer block A., to the CPU	
$A_{11} := Chol(A_{11})$	(CPII)
$\operatorname{trin}(4, \cdot) := \operatorname{trin}(4^{-1})$	(CPU)
$Transfor block A_{11}$ to the GPU	(010)
Act :- $A_{ci} + A_{ii}$	(GPID
$A_{aa} := A_{aa} \perp A_{aa} \perp AT$	(GPU)
$A_{00} := A_{00} + A_{01} + A_{01}$	(GPU)
$A_{01} = A_{01} A_{11}$	(OPU)
$A_{12} := A_{11} \cdot A_{12}$	(GPU)
$A_{22} := A_{22} - A_{12} \cdot A_{12}$	(GPU)
$A_{02} := A_{02} - A_{01} \cdot A_{12}$	(GPU)
$A_{12} := -(A_{11} \cdot A_{12})$	(GPU)
$A_{11} := A_{11} \cdot A_{12}^2$	(CPU)
Transfer block A ₁₁ to the GPU	
Continue with	

 $\begin{pmatrix} A_{TL} & A_{TR} \\ \hline \star & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \hline \star & A_{11} & A_{12} \\ \hline \star & \star & A_{22} \end{pmatrix}$ endwhile

- Only 3 transfers are necessary per step
- 7 operations executed on the GPU, all of them MM products
- Only 3 small operations executed on the CPU

Matrix inversion of SPD matrices

High performance implementations

Numerical results

Conclusions and future works

< ∃→

Hardware and software

► Hardware

 Platform consisting of eight INTEL Xeon QuadCore X7550 processors at 2.0GHz. (32 cores) connected to an NVIDIA C2050 (448 cores)

Software

- Computations on the CPU are performed using kernels from MKL v.11.0
- While computations on the GPU are performed using CUBLAS v.3.2

All experiments performed using single precision arithmetic Results for matrices with 1000 $\leq n \leq$ 15000

Image: Second second

Numerical results

Implementations based on the Cholesky factorization

Numerical results

Implementations based on the Gauss-Jordan elimination

Numerical results

Best implementations

Э

Matrix inversion of SPD matrices

High performance implementations

Numerical results

Conclusions and future works

< ≣⇒

Conclusions

We have studied the inversion of symmetric positive definite matrices on a hybrid CPU-GPU platform

 This operation appears in many scientific applications and features a high computational cost

GJE-based routines exhibit a remarkable performance

An hybrid implementation, where each task is executed on the most convenient device, provides the best performance

Overlap communications and computations using asynchronous transfers

Use of different block sizes for each architecture

Use of multiple GPUs

Employ other GPU kernels that outperform CUBLAS

THANKS.

₹ 9Q@

・ロン ・個人 ・モン ・モン